
ParLeda: A Library for Parallel Proessing in ComputationalGeometry AppliationsMohammad Ghodsi Mehdi SharifzadehComputer Engineering DepartmentSharif University of Tehnologyghodsi�sharif.a.ir, shzadeh�yahoo.omAbstratParLeda is a software library that provides the basi primitives needed for parallel im-plementation of omputational geometry appliations. It an also be used in implementinga parallel appliation that uses geometri data strutures. The parallel model that we useis based on a new heterogeneous parallel model named HBSP whih is based on BSP and isintrodued here. ParLeda uses two main libraries that are widely used: MPI for its messagepassing in the parallel environment and LEDA for its data strutures and omputations. Dy-nami load balaning and repliating C++ objets are two key features of this library. Thislibrary was implemented after a survey in researhes on parallel omputational geometryalgorithms and seletion of their ommon primitives.Keywords: Computational Geometry, Parallel Proessing, Load Balaning, LEDA, MPI,ParLeda.1 IntrodutionResearhers in many �elds of siene and engineering have a never-ending demand for more pro-essing power and for inrease in the omputation eÆieny. Computational Geometry (CG)problems with extensive amount of omputation and huge input/output size are exellent an-didates for parallel implementation. For example, DARPA Arhiteture Workshop BenhmarkStudy, inserted four omputational geometry problem in the eleven problem list whih they hadprovided for performane evaluation of parallel arhitetures [7℄.Implementation of parallel CG appliations is a quite time onsuming job and needs goodattention to many details. The purpose of this paper is to present issues involved in implementinga software library, alled ParLeda, that provides a set of general parallel primitives to be usedin parallel implementation of most appliations with geometry data strutures, speially CGappliations. The primitives are seleted suh that the programmers are relieved from somedetails of the parallel implementation.To selet a good set of basi parallel primitives, we have studied eÆient parallel algorithmsused for di�erent lassial CG problems (suh as onvex hull, triangulation, et.) and reognizetheir basi ommon parallel primitives. These primitives are then de�ned in a general settingand are implemented as programming API for the proposed software library.1

The parallel omputation model whih ParLeda is based on is a heterogeneous model namedHeterogeneous Bulk Synhronous Parallel (HBSP) whih uses heterogeneous omputation unitsin BSP1 model.Most parallel omputational geometry algorithms use some omputational phases whihshare ommon algorithmi behavior but di�er in input data types. Most of these phases are notomputational geometry spei� and are used in another parallel algorithms too. In designingParLeda, we have suggested an abstrat de�nition for suh phases whih is data and algorithmindependent. This idea has been taken from Morin's researh in [4℄ where has suggested anAPI for a library named PLeda and has de�ned some basi parallel operators for omputationalgeometry problems. However, the design and implementation of this library has been done fromsrath.As ParLeda works on a heterogeneous network of UNIX mahines, we have designed andimplemented algorithm spei� load balaning methods in the library whih will be explainedlater in this artile. At the end of this paper, we will show a sample of programming withParLeda API.2 Previous WorksIn this setion we present some researh on parallel CG problems we have onsidered in oursurvey.Puppo, et al. developed a parallel algorithm for terrain Delaunay triangulation and imple-mented their algorithm on a CM-2 mahine [12℄. The problem had been addressed by severalother authors in the literature but they have had an atual parallel implementation for the �rsttime. Y. Ding and P.J. Densham [13℄ presented a parallel algorithm for onstruting Delaunaytriangulation whih uses a dynami, reursive and altering bisetion approah to ompose arasterized spae into partitions of whih loalized triangulation are onstruted. The algorithmwas implemented on a distributed memory transputer and the results were presented for a rangeof problem sizes.G. Hristesu [10℄ addressed the problem of eÆient parallel triangulation methods for a�nite set of points in the plane and presented two approahes for the problem and implementedthem on a hyperube. P. Magillo and E. Puppo [11℄ reviewed examples of parallel algorithmsfor di�erent problems of terrain modeling and visualization. They have onsidered di�erentprogramming paradigms and di�erent arhitetures and have onsidered both the theoretialand pratial aspets of this problem.As an another researh in parallel terrain modeling problems, Y. Ansel Teng, et al.[16℄presented a parallel algorithm with O(log2n) time omplexity for omputing the visible pointsof a polyhedral terrain from a given viewpoint. They improved the algorithm proposed by Katz,et al.A. Clematis, et al [14℄ presented their experiene in parallelising, in a systemati way, a lassof Geographial Information Systems appliations. They used PVM and Linda as ommunia-tion libraries for spatial data handling. In a researh artile S. C. Rohe and B. M. Gittings [15℄disussed the e�etiveness of both automati and manual parallelising tehniques in GIS appli-ations. They have used these tehniques in a polygon line shading algorithm and onsidered theresults. M. J. Atallah and M. T. Goodrih [7℄ onsidered some well-known CG algorithms like1Bulk Synhronous Parallel 2

onvex hull, intersetion of half-planes, kernel of a simple polygon, distane between two onvexpolygons, 3-dimensional maxima, and the visibility problem in the framework of parallelism.They have reminded that as many of CG problems arose in real time appliations related toGIS, CAD/CAM, et we need to solve them as fast as possible and for many of these problems,however, we already are at the limits of what an be ahieved through sequential omputation.Thus, it is natural to study what kinds of speed-ups an be ahieved through parallel omputing.M. J. Attallah in [5℄ studied some typial CG problems and the parallelisation of their best al-gorithms on parallel mahine models like PRAM, Mesh, hyperube and some hybrid models. Hestated that previous work in parallel CG had been mostly theoretial and only some researhershave developed speial purpose parallel CG algorithms for speial parallel mahines.As the �rst general experimental work on parallel CG, Patrik Morin [4℄ de�ned the API ofa general parallel CG library to be used by CG programmers in order to develop parallel CGalgorithms. He has alled his LEDA [2℄ based library PLEDA.In ontext of repliable objets that we use in our implementation, many ideas have beendeveloped in order to provide parallelism for an objet oriented language like C++. Theirapproah is based on implementing lasses whih an provide parallelism in their methods andan be used for sending and reeiving data in a parallel objet oriented environment. In thisway, some libraries like Para++ [19℄ have been developed. Many of these libraries are in fatsoftware shells on ommuniation libraries like MPI or PVM and only some of them like Dome[20℄ provide a distributed environment for sending and reeiving large data strutures as vetorsor arrays. Some approahes for parallelism has been developed in language strutures. Sothe modi�ations have been done in the original language to generate a parallel programminglanguage. As we know none of these approahes have primitives for ommuniating C++ objetsbetween nodes of a parallel mahine. Only some of them have features for speial data typeslike arrays and lists [21, 22, 23℄.3 ParLeda in Appliation DevelopmentParLeda has been designed after studying many lassial parallel CG algorithms with the purposeof retrieving ommon basi primitives. The library provides basi primitives for partitioningthe domain of problem and features for load balaning between omputation units. ParLeda'sdesign and implementation onepts are platform independent and it is portable. MPI library, insituation of a message passing standard that has been implemented on several di�erent platformsand portability is one of its design goals, plays a basi role in ParLeda's funtionality and preparesan environment for message passing over a TCP/IP based network. Some API funtions of thislibrary has been hanged to be used in parallel CG appliations.ParLeda is also based on a a publi domain software library alled LEDA2 [2℄. whih provideseÆient implementation of many data strutures and algorithms on CG and other ommon areas.Basi ParLeda primitives that provide data partitioning use LEDA's data types and an easilybe used in data parallel programs that use LEDA data types as the building bloks of theirdata area. Developers in other relevant �elds like GIS an use ParLeda in onjuntion withtheir appliation spei� libraries. In other words, one an build speial purpose libraries forCG related appliations like GIS or uid dynamis appliations over ParLeda. In the role of aninterfae, ParLeda provides parallel proessing onepts (data partitioning, load balaning, et.)2Library of EÆient Data strutures and Algorithms3

HardwareSoftwareLEDA MPIParLedaCG Speial Purpose LibrariesParallel Appliation

Figure 1: ParLeda in Parallel Appliation Developmentand programmers an be relieved from the parallel implementation details and onentrate onappliation spei� areas of the solution.Figure 1 depits a layer struture for developing a portable and modular parallel CG relatedappliation in ParLeda. Using separate related modules and an eÆient implementation of theinterfaes between layers an result in an eÆient design of the solution.4 Computational ModelParLeda is based on a heterogeneous parallel omputational model, named HBSP whih is anextension to BSP model. The idea of design and using suh model has been originated from[3℄ that used a similar model (HCGM) based on CGM. HBSP uses heterogeneous proessorswith di�erent speeds. The speed of proessors are onsidered as model parameters. This speedis a funtion of all software and hardware parameters like its virtual memory and proessorspeed involved in proessor's overall performane. A Heterogeneous Bulk Synhronous Parallel(HBSP) mahine has p di�erent proessing units P0, P1, ... Pp�1 with di�erent speeds of S0, S1,... Sp�1 whih are integer numbers. The parameter S = Pp�1i=0 Si is denoted as the mahine'stotal speed.Eah Pi proesses a work with amount of W units, in time W=Si. In this model, eahproessor is aware of the speeds of other proessors. The speeds of the fastest and the slowestproessor are denoted as Smax and Smin respetively.In this way, Pmax = Pminfi:Si=Smaxg and Pmin = Pminfi:Si=Sming are identi�ed as fastestand slowest proessors. A typial HBSP with 4 proessors has been showed in �gure 2. Inthis mahine, Pmax = P1, Smax = 2, Pmin = P0 and Smin = 1. In a speial ase thatS0 = S1 = : : : = Sp�1 the mahines is BSP.Two parameters g and l from BSP model are di�erent in HBSP and should be de�ned asaverages on di�erent proessing units in parallel mahine. Eah proessor has its own loalmemory with a size dependent to its speed. As speeds of proessors are not the same, a uni�eddistribution of problem data auses an unbalaned proessing load. So a good distribution4

S0 = 1S1 = 2S2 = 1S3 = 2 P0memoryP1memoryP2memoryP3memory Interonneting networkHHHHHj ������AAAU ����Figure 2: an HBSP with 4 proessorsmethod should send more data to the faster proessors to gain better performane. We willexplain data partitioning methods for heterogeneous proessors in setion 5.5 Data Partitioning/Moving TehniquesMost parallel CG algorithms are data parallel in nature. In these algorithms, partitioning ofproblem data set is an important issue and the relation between two neighboring data subsetsand the size of eah are as important.In eah partitioning method, a relation � exists between eah two neighboring partitions.This relation is de�ned based on domain type. As an example, when we divide 2-dimensionalpoints into two right and left subsets with a vertial line, we use a relation � for x oordinateof points.For a balaned partitioning we should onsider the size of eah resulting subset. Somemethods use regular shaped partitioning but others use unique data sizes in partitions whihhave no ommon shapes.ParLeda provides data partitioning methods for ommon ases whih we have observed inparallel CG problems. These methods are explained below. We have determined no shape forthe area inluding seleted geometri data sets in ParLeda, the only omputed parameter is thesize of partitions.5.1 Random SamplingRandom parallel algorithms use random sampling as a eÆient tool. Random sampling ishoosing random subset with size O(r) of a data set with size n. This subset is sent to oneof the proessors and that proessor sends the results to other proessors after the requiredomputation. As Pmax is the fastest proessor in HBSP mahine, it would be better to send therandom sample to this proessor. The algorithm is something like the following:Algorithm 11. Eah proessor Pi hooses eah data item in its loal set for random set with the probabilityof rn .2. Chosen subsets in eah proessor are sent to one of them (Pmax).5

5.2 Linear PartitioningIf we assume that S is the set of problem data and the relation � is a partial ordering on S,the linear partitioning of S is dividing it to p individual subsets S0, S1, ... , Sp�1 so that for allx 2 Si and y 2 Sj that i < j we have x � y.Most parallel algorithms use linear partitioning as an initial stage. Sorting is a speial aseof linear partitioning whih all subsets reside on one mahine's loal memory. The followingalgorithm for HBSP model is a typial linear partitioning method:Algorithm 21. Eah proessor hooses a random sample of its data set with size O(r) (r is a onstant)using Random Sampling algorithm and sends it to proessor Pmax.2. Pmax sorts reeived subsets. We assume that the reeived data are inserted in sorted listK0, K1, ... , Kpr�1.3. Pmax omputes p+ 1 splitters s0, s1, ..., sp among the list data items.si = 8>><>>: �1 if i = 0KlPij=0 rjm if 0 < i < p1 if i = prj is the share of proessor Pj of a data set with size pr.4. Pmax sends splitters to all other proessors.5. Eah proessor Pi puts data item x of its subset into buket Bij if and only if sj � x � sj+1.6. Eah proessor Pi sends the data items in buket Bij to Pj .5.3 Random PermutationRandom permutation is an approah for load balaning between proessors of a parallel mahinein whih the problem data are sent to involved proessors randomly. If the involved proessorsare similar, we should apply a homogeneous data distribution. But in HBSP uses the proessorspeeds in data distribution. The algorithm is:Algorithm 31. Eah proessor Pi sends eah data item to one of p bukets Bi0, ... , Bip�1 in a random way.The probability of sending eah data item to buket Bij is equal to Probj. (Pp�1j=0 Probj =1)2. Eah proessor Pi sends the data items in buket Bij to Pj .The probability Probj is omputed based proessor's work load. By means of a load balaningmethod from time omplexity of the omputation algorithm whih will be applied on de�neddata sets, we an determine eah proessor work load. In this ase the probability of sendingdata to a proessor with a high work load is more than another proessor.6

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

Scatter

GatherFigure 3: Satter and Gather operators5.4 Global SortingSorting loal data sets is the next step after partitioning of problem domain and distribut-ing de�ned subsets. The following parallel sorting algorithm whih is a ombination of linearpartitioning and sequential sorting and has been used in [10℄, is implemented in ParLeda.Algorithm 41. Problem data is partitioned into p subsets using linear partitioning algorithm.2. Eah proessor sorts its own data set in a sequential way and synhronous with otherproessors.5.5 Satter/GatherTwo dual primitives satter and gather are used in distributing of a partitioning algorithmde�ned subsets and gathering loal results by the root proessor. In both operators one proessoris in a speial role named root and is responsible for sending and reeiving of data sets. Theseoperators are shown in �gure 3.6 Repliable ObjetsLEDA has implemented the geometrial objets as C++ objets. So ParLeda must be able toexhange these objets between di�erent proessors in a parallel mahine. As API funtions ofMPI are implemented in C, we an not use them to operate on C++ objets. In other words,this library and MPI library an not be used in paking, sending and reeiving C++ objets andprogrammer should manually pak and send their data parts to other proessors and rebuildthem from their data parts in the target proessor. In this way, we an restruture a new versionof an objet similar to original objet only in data parts not in behavior.As C++ objets have ombined the methods and some ontrol tables like inheritane tablebeside data parts, we an not use MPI transfer funtions whih have been implemented to workon basi data types. Some objet properties like inheritane and polymorphism an not bemoved from original objet to its new version in another proessor.In ontrast with suggested works, ParLeda has implemented a general approah and provideda proedure for onverting a C++ lass to an equivalent repliable C++ lass. Programmeran drive his/her lass based on a repliable lass and de�ne lass virtual methods for pakingand sending lass objets to use MPI funtions in order to send and rebuild objets in remote7

proessors. He/She an set the number of sent bu�ers and their sizes to minimize the size ofmessage inluding objet data.The main idea is that we should implement lasses named repliable to provide data itemsneeded for onstruting a opy of an objet based on an original objet in their interfaes. Thesedata is de�ned by lass virtual methods. Two paking and rebuilding methods whih are dataindependent and use these virtual methods have also been implemented. Any C++ lass whihis inherited from a repliable objet and de�ne its virtual methods an be used in MPI funtionsfor sending and reeiving in proessors.Every C++ objet has a data part and some methods. For repliating this objet on adi�erent proess or proessor we need to know the data part and the dynami part of its methods(we all theses parts extents). So if we have these data in the target proess, we an rebuildthe objet. As an example for a LEDA point objet, its x and y oordinates are the data weneed to rebuild it. So for its repliation or immigration (destruting original objet) we pak itsx and y oordinate, pak them and send them to the target proess. In the target proess weshould unpak the reeived bu�er, onstrut a point objet and set its x and y oordinates tothe data stored in the reeived bu�er. This senario is repeated for eah objet.Now, we have a general repliation method, but the programmer should need details aboutextents of the objet whih he want to repliate. If LEDA store a ontrol data in its point lass,repliated objet that uses only x and y oordinate of the original point for its onstruting isnot the same as the original. So, we de�ne two general lasses for all repliable lasses: One,basi repliable lass whih is repliable but have no repliable objet in its data part. Two,omposite repliable lass whih its data part is omposed of repliable objets.Eah repliable lass has virtual methods for the following: 1) providing information aboutextents and their sizes (ex. value of x(size=4bytes), value of y(size=4bytes)). 2) providingnumber of extents (ex. 2), and 3) pak and unpak methods whih pak extents in bu�ers orunpak them from reeived bu�ers. The following example shows repliating a basi repliableobjet named rpoint in a proess:#inlude <PARLEDA/RPoint.h>point p(3,5);rpoint rp(p, MPI_COMM_WORLD);(void)rp.pak();MPI_Send(rp.pbuff(), rp.ppos(), MPI_PACKED, 1, BUFFER_SIZE,rp.getomm());Rebuilding objet in the target proess:#inlude <PARLEDA/RPoint.h>point p;rpoint rp(p, MPI_COMM_WORLD);MPI_Rev(rp.pbuff(), rp.plen(), MPI_PACKED, 0, BUFFER_SIZE,rp.getomm());rp.unpak();It is interesting to know that in ParLeda eah proess repliates an objet named Node-Info whih has information about its running proessor like its speed in other proesses. Thisinformation is used for load balaning.
8

7 Load BalaningIn a parallel environment with homogeneous proessors, partitioning of data domain into subsetsof equal size will ause an equal load balane for proessors. Examples of data domain an bethe number of 2-dimensional points in a 2-d onvex hull problem or the surfae of partitions ina triangulation problem.In a heterogeneous parallel mahine, however, an equal size partitioning of data would resultin unbalaned loads between proessors. In this way, faster proessors �nish their work fasterthan the slower ones and should wait for possible synhronization.Proessor P with speed S an �nish omputation W in time WS . (S is the parameter weonsidered in HBSP model de�nition) This time has been onsidered in ParLeda as a parameterfor partitioning the problem domain. W is interpreted as the algorithm omplexity of a ompu-tation step and is a funtion over n (problem input size) (W =W (n)). This parameter is de�nedfor eah proessor based on its data subset and the omputation needed for this subset. If allproessors have the same value for this parameter, we hope that all of them �nish omputationW in the same time.Given that Pi works on a data of size ni and Wi = W (ni) is the time omplexity of thiswork, in order to have all proessors �nish the work on their loal data subsets onurrently andat the same time, we should have:W (n0)S0 = W (n1)S1 = : : : = W (np�1)Sp�1For example in a parallel sort we should loally sort loal data in eah proessor afterdistributing global data between proessors. As the best time omplexity of this phase isW (n) =nlogn we should onstrut subsets of size n1, n2, ..., np�1 so that:n0logn0S0 = n1logn1S1 = : : : = np�1lognp�1Sp�1Sine the amount of Pp�1i=0 ni = n and the values of Si for eah proessor are known, we ansolve this set of p equations and p variables and determine the value of ni for eah Pi.Lemma 1 In an HBSP mahine with p proessors P0; P1; : : : ; and Pp� 1 with speeds S0, S1,: : :, and Sp� 1 respetively, a onurrent omputation phase with time omplexity W = W (n)on a data of size n whih is distributed between proessors will be �nished at the same time inall proessors if and only if: W (n0)S0 = W (n1)S1 = : : : = W (np�1)Sp�1Proof:We know that W (ni)Si is the time for ompletion of work W on data with size ni in proessorPi whih its speed is Si. So the equation in the above lemma is lear.In order to �nd ni, we should solve this set of p equations and determine the value of pvariables: (W (n0)S0 = W (n1)S1 = : : : = W (np�1)Sp�1Pp�1i=0 ni = n 9

n and Si are �xed.It is diÆult to solve the set if W (n) is a omplex formula. So we use a way to determinevalues lose to problem solution in ParLeda. Determining a range for the parameter W (ni)Si andusing divide and onquer method are the main idea of the solution.We assume that : S0 � S1 � : : : � Sp�1So we have: n0 � n1 � : : : � np�1It is lear that the following relation is true:n0 � np � np�1As W (n) is an inremental funtion of n so this relation is true too:W (n0) �W (np) �W (np�1)Now we an determine the range for value of W (ni)Si :W (n0)S0 � W (np)S0W (np�1)Sp�1 � W (np)Sp�1Or in another word: W (np)Sp�1 � W (n0)S0 = : : : = W (np�1)Sp�1 � W (np)S0The following divide and onquer algorithm �nds the share of eah proessor in a balaneddata partitioning using these two limits for parameter W (ni)Si :Algorithm 51. Initialize two parameters Pt1 and Ptp as the following:Pt1 = W (np)Sp�1Ptp = W (np)S02. Initialize Pt = Pt1+Ptp2 .3. Determine ni for i = 0; : : : ; p� 1 in relation W (ni) = SiPt.4. If Pp�1i=0 ni > n Then Ptp = Pt and follow the algorithm from step 2.5. If Pp�1i=0 ni < n Then Pt1 = Pt and follow the algorithm from step 2.6. In this step we have Pp�1i=0 ni = n and the value of ni are the solution for our problem.10

4 proessors 2 proessors 1 proessor number of points10 15 21 200017 43 60 400026 62 90 6000Table 1: The run time of parallel Delaunay triangulation using ParLeda (seond)8 Programming APIParLeda has been based on a C++ lass named ParLeda whih has implemented all ParLeda'sfuntionalities as its methods. A programmer uses these funtionalities with reating an objetbased on this lass. Calling ParLeda's methods is valid after alling its Init method and isinvalid after alling Finalize method in soure ode. Init initializes ParLeda and Finalizegraefully shuts it down. Programmer should initialize MPI before alling Init with MPI APIfuntion MPI_INIT. ParLeda omputes the speed of eah proessor using number of jobs in itsrun queue and some parameters like size of virtual memory and swap spae for load balaning.Two methods SetAlg and UnsetAlg are used before and after data transmission phase. Thesemethods set time omplexity of the next omputation step in ParLeda.As an example, the following is a global sort whih has been implemented using a serialsorting algorithm whih time omplexity of O(nlogn):ParLeda pl(MPI_COMM_WORLD);void GlobalSort(list<int> data) {pl.SetAlg(PL_NLOGN);pl.Partition(data, int_mp);pl.UnsetAlg();data.sort();} Algorithm's time omplexity an be set in ParLeda using onstants like PL_NLOGN whih havebeen de�ned in the library.9 Experimental ResultsWe have implemented a parallel Delaunay triangulation algorithm using ParLeda operators.The algorithm uses a method named \Dividing Wall" for partitioning the whole set of points in2-dimensional spae. In another phase, we determine the triangles of �nal triangulation whihinterset with the dividing wall. Then we triangulate two partition resulted by the wall. Thealgorithm is a parallel master/slave algorithm in whih a master proess gathers �nal resultsfrom another proesses.In original version of the dividing wall algorithm separates the original set into two subsetsof equal size. But using ParLeda load balaning operators we divide the set aording to theappropriate proessor loads.It's interesting to say that ParLeda implementation of the algorithms is 20less that its originalimplementation in ase of program lines. 11

4 proessors 2 proessors number of points2.1 1.4 20003.5 1.39 40003.46 1.45 6000Table 2: The speed-up resulted by running parallel Delaunay triangulation using ParLeda10 Summary and ConlusionWe have explained the proess of design and implementation of a software library named Parledafor developing parallel CG appliations. We have identi�ed ommon primitives whih are usedin parallel CG algorithms. These operators an be used in omputational data transmission andfor the balaned distribution between proessors. ParLeda has implemented typial proessordata interhange methods. Programmers use a global objet whih has de�ned these methodsin its interfae and an dynamially balane proessor loads. We have de�ned a parallel modelfor our parallel mahine named HBSP whih has heterogeneous proessors.Referenes[1℄ MPI Forum, \MPI: A message passing interfae," Pro. of Superomputing '93, 878{883,November 1993.[2℄ K. Mehlhorn and S. Naher, \LEDA: A Platform for Combinatorial and Geometri Com-puting," 1994, http://www.mpi-sb.mpg.de/LEDA.html.[3℄ P. R. Morin, \Two Topis in Applied Algorithmis," M.S. Thesis, Shool of CS., CarletonUniversity, CA, 1998, Available through URL http://www.ss.arleton.a/ morin.[4℄ P. R. Morin, \PLEDA User's Manual (v0.0)," Personal Communiation, 12 De 1997.[5℄ A. Y. H. Zomaya (Ed.), \Parallel and Distributed Computing Handbook," MGraw-Hill,1996.[6℄ R. Healy (Ed.), \Parallel Proessing Algorithms for GIS," Taylors & Franis, 1998.[7℄ M. J. Atallah and M. T. Goodrih, \Deterministi Parallel Computational Geometry," 1993.[8℄ F. Dehne, A. Fabri, and A. Rau-Chaplin, \Salable Parallel Geometri Algorithms forCoarse Grained Multiomputers," Pro. ACM 9th Annual Computational Geometry, 298-307, 1993.[9℄ F. Dehne, X. Deng, P. Dymond, A. Fabri, and A. Khokhar, \A Randomized Parallel 3DConvex Hull Algorithm for Coarse Grained Multiomputers," 1993.[10℄ G. Hristesu, \Parallel Triangulation of a Set of Point for Coarse Grained Multiomputers,"Department of Computer Siene, Rutgers University, Otober 1994.[11℄ P. Magillo and E. Puppo, \Algorithms for Parallel Terrain Modelling and Visualization,"Parallel Proessing Algorithms for GIS, Taylors & Franis, 352-386, 1996.12

[12℄ E. Puppo, LS Davis, D. DeMenthon, and A. Teng, \Parallel Terrain Triangulation," Inter-national Journal of Geographial Information Systems, 8(2), 105-128, 1994.[13℄ Y. Ding and P. J. Densham, \A Dynami and Reursive Parallel Algorithm for ConstrutingDelaunay Triangulations," Proeedings 6th International Symp. on Spatial Data Handling,Edinburgh, UK, 682-696, 1994.[14℄ A. Clematis, B. Falidieno, and M. Spagnuolo \Parallel Proessing on Heterogeneous Net-works for GIS appliations," International Journal of Geographial Information Systems,10(6), 747-767, 1996.[15℄ S. C. Rohe and B. M. Gittings, \Parallel Polygon Line Shading: The Quest for more om-putational power from an existing GIS algorithm," International Journal of GeographialInformation Systems, 10(6), 731-746, 1996.[16℄ Y. A. Teng, D. Mount, E. Puppo, and L. S. Davis, \Parallelising an Algorithm for Visibilityon Polyhedral Terrains," International Journal of Computational Geometry and Applia-tions, World Sienti� Publishing Company, 1995.[17℄ L. De Floriani, C. Montani, and R. Sopigno, \Parallelizing Visibility Computations onTriangulated Terrains," International Journal of Geographial Information Systems, 8(6),515-531, 1994.[18℄ Y. Ding and P. J. Densham, \Spatial Strategies for Parallel Spatial Modelling," Interna-tional Journal of Geographial Information Systems, 10(6), 669-698, 1996.[19℄ \Para++: C++ bindings for Message Passing Libraries," EuroPvm'95, Sept. 1995, Lyon,FRANCE, http://www.loria.fr/para++/parapp.html.[20℄ J. Arabe, A. Beguelin, B. Lowekamp, E. Seligman, M. Starkey, and P. Stephan., \Dome:Parallel programming in a heterogeneous multi-user environment," Tehnial ReportCMU-CS-95-137, Shool of Computer Siene, Carnegie Mellon University, April 1995,http://www.s.mu.edu/afs/s.mu.edu/projet/netar-adamb/ web/Dome.html.[21℄ MPC++, http://www.rwp.or.jp/people/mpslab/mp++/ mp++.html.[22℄ Dennis Gannon, Shelby X. Yang, and Peter Bekman, \pC++", Departmentof Computer Siene CICA Indiana University, Bloomington, Indiana, U.S.A.,http://www.extreme.indiana.edu/sage/.[23℄ Petitpierre C., \Synhronous C++, a Language for Interative Appliations", IEEE Com-puter, September 1998, pp. 65-72, http://diwww.epfl.h/w3lti/spp.html.
13

