Computing homotopic line simplification

M.A. Abam ${ }^{\text {a }}$, S. Daneshpajouh ${ }^{\text {a }}$, L. Deleuran ${ }^{\text {c }}$, S. Ehsani ${ }^{\text {a }}$, M. Ghodsi ${ }^{\text {a,b }}$
a Computer Engineering Department, Sharif University of Technology, Iran
b School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Iran
c Center for MAssive Data ALGOrithmics and Computer Science Department of Aarhus University, Denmark

A R TICLE I N F O

Article history:

Received 3 December 2011
Received in revised form 29 October 2012
Accepted 7 February 2014
Available online xxxx
Communicated by P. Agarwal

Keywords:

Computational geometry
Simplification
Homotopy
Path
Line
Curve
Chain

Abstract

In this paper, we study a variant of the well-known line-simplification problem. For this problem, we are given a polygonal path $\mathcal{P}=p_{1}, p_{2}, \ldots, p_{n}$ and a set \mathcal{S} of m point obstacles in the plane, with the goal being to determine an optimal homotopic simplification of \mathcal{P}. This means finding a minimum subsequence $\mathcal{Q}=q_{1}, q_{2}, \ldots, q_{k}\left(q_{1}=p_{1}\right.$ and $\left.q_{k}=p_{n}\right)$ of \mathcal{P} that approximates \mathcal{P} within a given error ε that is also homotopic to \mathcal{P}. In this context, the error is defined under a distance function that can be a Hausdorff or Fréchet distance function, sometimes referred to as the error measure. In this paper, we present the first polynomial-time algorithm that computes an optimal homotopic simplification of \mathcal{P} in $O\left(n^{6} m^{2}\right)+T_{F}(n)$ time, where $T_{F}(n)$ is the time to compute all shortcuts $p_{i} p_{j}$ with errors of at most ε under the error measure F. Moreover, we define a new concept of strongly homotopic simplification where every link $q_{l} q_{l+1}$ of \mathcal{Q} corresponding to the shortcut $p_{i} p_{j}$ of \mathcal{P} is homotopic to the sub-path p_{i}, \ldots, p_{j}. We present a method that in $O(n(m+n) \log (n+m))$ time identifies all such shortcuts. If \mathcal{P} is x-monotone, we show that this problem can be solved in $O(m \log (n+m)+n \log n \log (n+m)+k)$ time, where k is the number of such shortcuts. We can use Imai and Iri's framework [24] to obtain the simplification at the additional cost of $T_{F}(n)$.

© 2014 Published by Elsevier B.V.

1. Introduction

Motivation. Visualization of a large geographical map may require different levels of simplifications. A map may consist of a collection of non-intersecting chains representing features, such as rivers or country borders, and of points representing places, such as cities, etc. A simplified map of interest resembles the original map in the following aspects: (i) the distance between each point on the original chain and its corresponding simplified chain should be within a given error tolerance and (ii) the original chain and its simplified version must be in the same homotopy class. ${ }^{1}$ Roughly speaking, this means that if a point (a city, for instance) lies below the original chain (a river, for example), it must also remain below the simplified chain. We, however, consider a simpler variant of the above simplification criteria, which will be described below.

Problem. We are given a polygonal path $\mathcal{P}=p_{1}, p_{2}, \ldots, p_{n}$, a set $\mathcal{S}=\left\{s_{1}, \ldots, s_{m}\right\}$ of m point obstacles in the plane not intersecting \mathcal{P}, and an error ε defined under a distance function F. The problem is to simplify the path \mathcal{P} by $\mathcal{Q}=q_{1}, q_{2}, \ldots, q_{k}$ ($q_{1}=p_{1}$ and $q_{k}=p_{n}$) within the given error ε so that \mathcal{Q} is homotopic (to be exactly defined later) to \mathcal{P}.

E-mail address: daneshpajouh@ce.sharif.edu (S. Daneshpajouh).
${ }^{1}$ A homotopy class is the class of all paths that are homotopic to each other in a plane.
http://dx.doi.org/10.1016/j.comgeo.2014.02.002
0925-7721/© 2014 Published by Elsevier B.V.

(i)

(ii)

Fig. 1. (i) Two simplifications \mathcal{Q} and \mathcal{Q}^{\prime} of \mathcal{P}. Only \mathcal{Q} is homotopic to \mathcal{P}. (ii) While the simplified path \mathcal{Q} and the original path \mathcal{P} are homotopic, some shortcuts such as $p_{1} p_{i}$ and $p_{j} p_{k}$ are not homotopic to $\mathcal{P}(1, i)$ and $\mathcal{P}(j, k)$, respectively. Therefore, \mathcal{P} and \mathcal{Q} are not strongly homotopic.

Background. The above problem is a variant of the well-known line-simplification problem, also known in the literature as path, curve, or chain simplification, in which, for a given \mathcal{P}, the goal is to find the simplified path \mathcal{Q} with fewer vertices approximating \mathcal{P} within ε. This problem arises in many applications, such as GIS [5,6,15], image processing, and/or computer graphics $[9,14]$, where reduction of the volume of data or lowering the complexity of the costly processing operations is important. In some of the applications, preserving the homotopy of the shape is also desirable. This ensures that the aboveness relation ${ }^{2}$ of points and chains in the original and simplified maps remains unchanged.

Many variants of the line-simplification problems have been considered in the past, which can be classified into two main versions-unrestricted and restricted. In the former, the vertices of \mathcal{Q} are allowed to be any arbitrary points, not just the vertices of \mathcal{P} (see [20,21,23] for some results). In the restricted version, the vertices of \mathcal{Q} are a subsequence of \mathcal{P}, and each segment $q_{l} q_{l+1}$ is called a link. In this paper, we focus on the restricted version.

Each segment $p_{i} p_{j}$ is called a shortcut, and each link $q_{l} q_{l+1}$ of \mathcal{Q} corresponds to a shortcut $p_{i} p_{j}$ (with $j>i$). The error of such a link is defined as the distance between $p_{i} p_{j}$ and the sub-path p_{i}, \ldots, p_{j} (denoted by $\mathcal{P}(i, j)$) under a desired distance function F, which is often Hausdorff or Fréchet. The total error of \mathcal{Q} denoted by $\operatorname{error}(\mathcal{Q}, \mathcal{P})$ is also defined as the maximum error among all of its links. For each distance function, there exist two constrained optimization problems: (i) min-\#: considering that \mathcal{P} and ϵ are given, compute \mathcal{Q} with the minimum number of vertices in such a way that $\operatorname{error}(\mathcal{Q}, \mathcal{P}) \leqslant \epsilon$, and (ii) min- ϵ : considering that \mathcal{P} and a maximum number of vertices k are given, compute \mathcal{Q} of \mathcal{P} with the smallest possible error in a way that it uses at most k vertices. The min $-\epsilon$ version is usually computed by performing a binary search over the pre-computed errors and by applying a min-\# algorithm at each step. In this paper, we focus on the min-\# version in the restricted model. For brevity, we use "simplification" for "min-\# line simplification in the restricted model" to avoid confusion.

The simplified path \mathcal{Q} is homotopic to the original path \mathcal{P} (or \mathcal{Q} and \mathcal{P} are in the same homotopy class) if it (the simplified path \mathcal{Q}) is continuously deformable to \mathcal{P} without passing over any points of \mathcal{S} while keeping its end-vertices fixed. Precisely, the two paths α and $\beta:[0,1] \rightarrow \mathbb{R}^{2}$, sharing the start and end points, are homotopically equivalent with respect to \mathcal{S} if there exists a continuous function $\Gamma:[0,1] \times[0,1] \rightarrow \mathbb{R}^{2}$ with the following properties:
(i) $\Gamma(0, t)=\alpha(t)$ and $\Gamma(1, t)=\beta(t)$ for $0 \leqslant t \leqslant 1$,
(ii) $\Gamma(s, 0)=\alpha(0)=\beta(0)$, and $\Gamma(s, 1)=\alpha(1)=\beta(1)$, and
(iii) $\Gamma(s, t) \notin \mathcal{S}$ for $0 \leqslant s \leqslant 1$ and $0<t<1$.

Fig. 1(i) illustrates two simplifications of \mathcal{P} where \mathcal{Q} is homotopic to \mathcal{P}, but \mathcal{Q}^{\prime} is not. We define the concept of strongly homotopic as follows: \mathcal{Q} is strongly homotopic to \mathcal{P} if for any link $q_{l} q_{l+1}$ of \mathcal{Q} corresponding to the shortcut $p_{i} p_{j}$, the sub-path $\mathcal{P}(i, j)$ and $p_{i} p_{j}$ are also homotopic. Such a shortcut is also called a homotopic shortcut. Obviously, if \mathcal{Q} is strongly homotopic to \mathcal{P}, then they are homotopic to each other, but the reverse is not necessarily true, as shown in Fig. 1(ii). However, it is easy to conclude that any x-monotone chain is strongly homotopic to any of its homotopic simplifications. We can obviously think of applications for this concept, even though its theoretical impact is of more interest to us. For example, imagine a robot and a utility wagon inside a building that includes some pillars. The robots should move along a predefined polygonal path and fix some issues in the building using the utilities in the wagon. As the wagon movement is costly, we want to minimize this cost. Furthermore, the robot cannot access the wagon if it is not within the distance ε from it. To solve this problem, we find the strongly homotopic minimum path simplification under Fréchet distance. Note that the robot cannot rotate its hand to pick up a utility from the wagon if there is a pillar between them.

Related works. There are few results on line simplification in the presence of other objects that observe the concept of homotopy type. algorithm [15,22], which is a heuristic method and does not guarantee an optimal solution. Imai and Iri [24] solved the min- ε and the min-\# versions by modeling each version as a shortest-path problem in the directed

[^0]
(i)

(ii)

(iii)

Fig. 2. (i) The path α with the sequence $\overline{A B C D D C C C} \underline{B A}$. (ii) The deformation of α that deletes $\overline{D D}$. (iii) The deformed α with the sequence $\overline{A B} \underline{B A}$, which is called $\operatorname{CS}(\alpha)$.
acyclic graphs. The running time of their method was proved to be quadratic or near quadratic by Chin and Chan [11] and by Melkman and O'Rourke [26] for the Hausdorff distance under the Euclidean metric. We refer the readers to [1,2,13,16] and to references therein for more results.

Recently, some geometers have shown interest in problems such as determining whether two paths are homotopic [10], computing the shortest homotopic path of a given path, [8] and deforming one path to another at minimal cost [7,18]. In the context of line simplification, de Berg et al. [5,6] were the first to study the homotopic line simplification in the restricted model using the Hausdorff distance measure under the Euclidean metric. Their algorithm finds the optimal simplification in $O(n(n+m) \log n)$ time, provided that \mathcal{P} is x-monotone; otherwise, the simplification is not guaranteed to be optimal. Guibas et al. [21] showed that the optimal homotopic line-simplification problem in the unrestricted model is NP-hard when the simplification is forced to be simple (non-self-intersecting). A general version, a subdivision simplification, was later proved to be MIN PB-complete [19]. ${ }^{3}$ Estkowski and Mitchell [19] proposed some heuristic algorithms for this problem.

Our results. For any x-monotone path \mathcal{P}, we present an algorithm that computes all homotopic shortcuts of \mathcal{P} in $O(m \log (n+m)+n \log n \log (n+m)+k)$ time where k is the number of such shortcuts. For simple paths, we propose an $O(n(m+n) \log (n+m))$ time algorithm to compute all homotopic shortcuts. Both algorithms can be combined with Imai and Iri's general framework to compute the optimal strongly-homotopic simplification. For the simple path case, computing all homotopic shortcuts is not sufficient to find the optimal homotopic simplification as Fig. 1(ii) illustrates. We present the first polynomial-time algorithm that computes the optimal homotopic simplification. This algorithm can be applied to non-simple paths as well.

This study is organized as follows. In Section 2, we recall some existing approaches and definitions. Section 3 presents our algorithm to compute the optimal strongly homotopic simplification. In Section 4, we present the polynomial time algorithm that computes the optimal homotopic simplification. We conclude the paper with a few remarks in Section 5.

2. Preliminaries

Imai and Iri's framework. Most simplification algorithms given in the restricted model are based on this framework where for a given ε, an unweighted directed graph $G_{\varepsilon}(\mathcal{P})$ (or simply G_{ε}) is constructed as follows: $G_{\varepsilon}=\left(V, E_{\varepsilon}\right)$ where $V=\left\{p_{1}, \ldots, p_{n}\right\}$ and

$$
E_{\varepsilon}=\left\{\left(p_{i}, p_{j}\right) \mid d_{F}\left(p_{i} p_{j}, \mathcal{P}(i, j)\right) \leqslant \varepsilon\right\}
$$

Here, $d_{F}\left(p_{i} p_{j}, \mathcal{P}(i, j)\right)$ is the F distance of the shortcut $p_{i} p_{j}$ and $\mathcal{P}(i, j)$ for a desired distance function F. Each \mathcal{Q} with the error of, at the most, ε corresponds to a path in G_{ε} from p_{1} to p_{n}. Therefore, the optimal simplification is the shortest-link path in G_{ε} from p_{1} to p_{n}, which can be computed by a breadth-first search in time $O\left(\left|G_{\varepsilon}\right|\right)$.

Canonical sequence of a path α, denoted by $\operatorname{CS}(\alpha)$ [10]. Let α be a path with some non-intersecting point obstacles, each of which is represented by a character. One way to represent α is to write it as a sequence of obstacle characters that α passes through either from above or below (shown by overbar or underbar). Precisely, imagine that a vertical line is drawn from each obstacle. We walk along α from its source s to its destination t. Whenever we reach a vertical obstacle line drawn from an obstacle, say A, if we are above A, we write \bar{A} in the sequence, otherwise we write \underline{A}. For example, such a sequence for the path α illustrated in Fig. 2(i) is $\overline{A B C D D C C C B A . ~ W e ~ c a n ~ u s e ~ t h e ~ f o l l o w i n g ~ r u l e ~ a n d ~ s h o r t e n ~ t h i s ~ s e q u e n c e ~}$ without changing its homotopy class. This means that the corresponding path of shortened sequence is homotopic to α. The shortening process is as follows. If two adjacent symbols in the sequence of α are identical (i.e., for an obstacle A, both adjacent symbols are \bar{A} or \underline{A}), then both symbols can be deleted by deforming (or shortening) α in a way that α does not intersect with the related vertical obstacle line. Fig. 2(ii) illustrates a deformation process that deletes $\overline{D D}$ in the

[^1]

Fig. 3. A simple polygon $\Psi(\mathcal{P}, \mathcal{S})$ enclosing \mathcal{P}.
sequence of α. This symbol deletion and path deformation is continued until no two adjacent symbols are identical. The resulting sequence is called the canonical sequence of α (denoted by $\operatorname{CS}(\alpha)$). Fig. 2(iii) illustrates α after several deformations, thus leading to $\operatorname{CS}(\alpha)$. It is shown in [10] that two paths α and β, sharing their endpoints, are homotopic if and only if $\operatorname{CS}(\alpha)=\operatorname{CS}(\beta)$. Clearly, the CS of a path is unique. From this point on, when we say "shortening a path", we mean to repeatedly deform the path until we end up with its canonical sequence.

3. Optimal strongly homotopic simplification

Algorithm. Our general algorithm is as follows. First, we compute G_{ε} in the absence of the obstacles under the given distance function $F_{,}^{4}$ and we then test whether each edge $p_{i} p_{j}$ in G_{ε} is homotopic to $\mathcal{P}(i, j)$ in the presence of the obstacles. We remove non-homotopic shortcuts from G_{ε} and finally compute the shortest path in G_{ε} from p_{1} to p_{n} by a breadth-first search algorithm to obtain the optimal strongly homotopic simplification.

Computing homotopic shortcuts. A challenging step of our algorithms is how to efficiently compute the homotopic shortcuts. This step can be computed by applying the homotopy-testing algorithm [10] to each shortcut and its corresponding sub-path in $O\left(\left(n^{3}+n^{2} m\right) \log (n+m)\right)$ time, which is far from being efficient. Here, we present two algorithms to compute the homotopic shortcuts, one for x-monotone paths and the other for the simple paths. The running time of our algorithms are $O(m \log (n+m)+n \log n \log (n+m)+k)$ and $O(n(m+n) \log (n+m))$, respectively, where k is the number of such shortcuts. The above algorithm combined with Lemmas 3 and 7 yields the following theorem.

Theorem 1. Let \mathcal{P} be a simple polygonal path with size n in a plane containing a set \mathcal{S} of m point obstacles. Suppose that $T_{F}(n)$ is the time needed to compute G_{ε} under the distance function F in the absence of the obstacles, where distance function F can be a Haussdorf, Fréchet, or any other desired distance function. If \mathcal{P} is x-monotone, the optimal strongly homotopic simplification of \mathcal{P} can be computed in $T_{F}(n)+O(m \log (n+m)+n \log n \log (n+m)+k)$ time, where k is the number of homotopic shortcuts. If \mathcal{P} is a simple path, this can be computed in $T_{F}(n)+O(n(m+n) \log (n+m))$ time.

3.1. Computing homotopic shortcuts for x-monotone paths

The main idea behind our algorithm is to enclose \mathcal{P} inside a simple polygon $\Psi(\mathcal{P}, \mathcal{S})$ such that $p_{i} p_{j}$ is a homotopic shortcut if and only if p_{j} is visible by p_{i} inside $\Psi(\mathcal{P}, \mathcal{S})$.

For brevity, we use Ψ for $\Psi(\mathcal{P}, \mathcal{S})$. We construct Ψ as follows. First, we determine the aboveness relation between the obstacles and \mathcal{P} in $O(m \log n)$ time by locating each obstacle with respect to \mathcal{P} in $O(\log n)$ time. We then compute, in $O(n+m)$ time, an axis-parallel rectangle enclosing the path vertices and the obstacles. Let λ be a sufficiently small number less than half of the x-coordinate difference of any two points of the path vertices and obstacles. Note that λ can be computed in $O((n+m) \log (n+m))$ time. For each obstacle $s_{i} \in \mathcal{S}$ above \mathcal{P}, we define two points s_{i}^{+}and s_{i}^{-}on the upper boundary of the rectangle with x-coordinates $x\left(s_{i}\right)+\lambda$ and $x\left(s_{i}\right)-\lambda$, respectively, where $x\left(s_{i}\right)$ is the x-coordinate of s_{i}. We connect s_{i} to s_{i}^{+}and s_{i}^{-}and remove the part of the rectangle joining s_{i}^{+}to s_{i}^{-}. Similarly, we define s_{i}^{+}and s_{i}^{-}and the associated edges for obstacles s_{i} below \mathcal{P}. Together, this gives us the simple polygon Ψ (see Fig. 3).

Lemma 2. A shortcut $p_{i} p_{j}$ is a homotopic shortcut if and only if p_{j} is visible by p_{i} inside $\Psi(\mathcal{P}, \mathcal{S})$.
Proof. p_{i} is inside Ψ by the choice of λ. If p_{j} is visible by p_{i} inside Ψ, then $p_{i} p_{j}$ and $\mathcal{P}(i, j)$ make a cycle inside the simple Ψ, which can be deformed into a single point, thereby implying that $p_{i} p_{j}$ and $\mathcal{P}(i, j)$ are homotopic. Assume $p_{i} p_{j}$ is a homotopic shortcut. To the contrary, assume that p_{i} and p_{j} are not visible to each other inside Ψ. This means that

[^2]
(i)

Fig. 5. (i) The original path $\mathcal{P}=p_{1}, \ldots, p_{11}$. (ii) The rectified path. (iii) The tree \mathcal{T} in plane \mathcal{H}_{1}. The nodes of \mathcal{T} are denoted by empty circles. (iv) The rectified shortcuts in plane \mathcal{H}_{2}.

Algorithm Computing Номоторic Shortcuts

1. Rectify \mathcal{P}.
2. Construct a segment-dragging queries structure over point obstacles.
3. for $h=1$ to n
do Let $\mathcal{H}_{1}, \mathcal{H}_{2}, \mathcal{T}$ be empty.
Compute $\operatorname{CRP}(\mathcal{P}(h, i)), h<i \leqslant n$ and encode all in a geometric tree \mathcal{T} in plane \mathcal{H}_{1}.
4. Rectify all shortcuts $p_{h} p_{i}, h<i \leqslant n$ whose $\operatorname{CRP}(\mathcal{P}(h, i))$ is x-monotone in plane \mathcal{H}_{2}.
5. Test whether each $\operatorname{CRP}(\mathcal{P}(h, i)), h<i \leqslant n$ in \mathcal{H}_{1} and the corresponding rectified shortcuts in \mathcal{H}_{2} are homotopic and output them.

Next, we explain the details of each step of our algorithm for $h=1$.
Rectifying \mathcal{P}. Because \mathcal{P} is simple, the edges of \mathcal{P} and the obstacles of \mathcal{S} induce the aboveness relation, which is acyclic and computable in time $O((n+m) \log (n+m))$ [27]. In fact, the aboveness relation defines a partial order that can be easily extended to a total order. Let $\operatorname{rank}_{p}(\mathcal{O})$ be the rank of an object \mathcal{O} (obstacle or edge) in the total order. By letting the y-coordinate of any point of object \mathcal{O} be $\operatorname{rank}_{p}(\mathcal{O})$, the path \mathcal{P} becomes rectified, i.e., each edge is represented as a horizontal segment. We join two horizontal segments corresponding to two consecutive edges in \mathcal{P} by a vertical segment to maintain the original connectivity. Note that for each segment $p_{i} p_{i+1}$, there is a horizontal segment in the rectified \mathcal{P}. We denote the endpoint of this horizontal segment corresponding to p_{i+1} by \widehat{p}_{i+1}, see Fig. 5(ii).

Segment-dragging queries. Our algorithm relies on a segment-dragging data structure defined over m point obstacles to compute $\operatorname{CRP}(i)$. This data structure is used to find the first obstacle hit when the given vertical segment is translated vertically. From this point forward, we call such an obstacle the closest obstacle to a given vertical segment. We use Chazelle's data structure [12] that preprocesses the obstacles in time $O(m \log m)$ while using $O(m)$ space to answer segment-dragging queries in $O(\log m)$ time.

Canonical rectified paths. We maintain two stacks \mathcal{S}_{c} and \mathcal{S}_{u}. Upon processing \widehat{p}_{i+1}, stack \mathcal{S}_{c} maintains CRP (i) as a sequence of horizontal and vertical segments, and stack \mathcal{S}_{u} maintains U-turns as a sequence of vertical segments at which $\operatorname{CRP}(i)$ makes U-turns. Moreover, \mathcal{T} contains all $\operatorname{CRP}(j), 1<j<i+1$. In the beginning, \mathcal{S}_{u} is set to be empty, and \mathcal{S}_{c} is set to be the first edge of the rectified \mathcal{P}. We also initialize the tree \mathcal{T} by adding new nodes $\eta\left(p_{1}\right)$ and $\eta\left(p_{2}\right)$, as well as the directed edge $\left(\eta\left(p_{1}\right), \eta\left(p_{2}\right)\right)$ to the empty tree \mathcal{T} and set $\eta\left(p_{1}\right)$ to be the root of \mathcal{T}, where $\eta(p)$ denotes the node with label p placed at the position of point p. Now, $\operatorname{CRP}(i+1)$ is computed as follows. Consider the horizontal segment of the rectified \mathcal{P} ending at \widehat{p}_{i+1}. Let the other endpoint of this segment be q. We pop \mathcal{S}_{c}, which is a segment ending at \widehat{p}_{i} and starting at another point, say r. If $r \widehat{p}_{i}$ is vertical, we should pop one more segment from \mathcal{S}_{c}. Without loss of generality, assume that

Fig. 6. Different cases depending on the positions of $r \widehat{p}_{i}$ and $q \widehat{p}_{i+1}$ and the obstacles when \widehat{p}_{i} is to the right of r.
$r \widehat{p}_{i}$ is horizontal and \widehat{p}_{i} is to the right of r-the cases, where \widehat{p}_{i} is to the left of r, can be handled similarly. Note that \widehat{p}_{i} and q are connected in the rectified \mathcal{P} by a vertical segment. We distinguish four cases based on being either true or false according to the following three propositions: $\left(Q_{1}\right) \widehat{p}_{i+1}$ is to the right of $\widehat{p}_{i} ;\left(Q_{2}\right)$ there is at least one obstacle above segment $r \widehat{p}_{i}$ and below segment $q \widehat{p}_{i+1}$; and $\left(Q_{3}\right)$ the length of $q \widehat{p}_{i+1}$ is greater than the length of $r \widehat{p}_{i}-$ see Fig. 6 , which depicts all four cases. It is easy to verify whether Q_{2} is true or false using the segment-dragging structure
(i) Q_{1} : the segments $r \widehat{p}_{i}, \widehat{p}_{i} q$, and $q \widehat{p}_{i+1}$ are simply pushed into \mathcal{S}_{c}. Moreover, if \mathcal{S}_{u} is empty, we update \mathcal{T} by adding new nodes $\eta\left(p_{i+1}\right)$ and $\eta(q)$, as well as new edges $\left(\eta\left(p_{i}\right), \eta(q)\right)$, and $\left(\eta(q), \eta\left(p_{i+1}\right)\right)$ to \mathcal{T}.
(ii) Not $\left(Q_{1}\right)$ but $Q_{2}: \widehat{p}_{i+1}$ is to the right of \widehat{p}_{i} and let $r^{\prime} q^{\prime}$ be the vertical segment touching s_{k} from right where s_{k} is the right-most obstacle on the left side of $\widehat{p}_{i} q$. We push $r r^{\prime}, r^{\prime} q^{\prime}$, and $q^{\prime} \widehat{p}_{i+1}$ into \mathcal{S}_{c} (we indeed erase $r^{\prime} \widehat{p}_{i}, \widehat{p}_{i} q$, and $q q^{\prime}$). We also push $r^{\prime} q^{\prime}$ into \mathcal{S}_{u} as a new U-turn. Because \mathcal{S}_{u} is not empty, we do not update \mathcal{T}.
(iii) Not $\left(Q_{1}\right)$, not $\left(Q_{2}\right)$, but Q_{3} : let $r r^{\prime}$ be the vertical segment hanging from r, which can be obtained by popping \mathcal{S}_{c} one more time. We glue $r^{\prime} r$ and $r q^{\prime}$ and push $r^{\prime} q^{\prime}$ into \mathcal{S}_{c} as well as $q^{\prime} \widehat{p}_{i+1}$. Moreover, if the top of \mathcal{S}_{u} is $r^{\prime} r$, we pop $r^{\prime} r$ from \mathcal{S}_{u}. If \mathcal{S}_{u} is empty, we update tree \mathcal{T} by inserting new nodes $\eta\left(r^{\prime}\right)$ (if it does not exist), $\eta\left(q^{\prime}\right)$ and $\eta\left(p_{i+1}\right)$ as well as the new directed edges $\left(\eta\left(r^{\prime}\right), \eta\left(q^{\prime}\right)\right.$), and $\left(\eta\left(q^{\prime}\right), \eta\left(p_{i+1}\right)\right)$ to tree \mathcal{T}. If $\eta\left(r^{\prime}\right)$ does not exist, we split the edge $(\eta(z), \eta(w))$ of \mathcal{T}, whose embedding in the plane (i.e., segment $z w$) contains point r^{\prime}, into the new directed edges $\left(\eta(z), \eta\left(r^{\prime}\right)\right)$ and $\left(\eta\left(r^{\prime}\right), \eta(w)\right)$. We can test in constant time whether $r^{\prime} q^{\prime}$ can still be moved to the left, by considering the last three segments of \mathcal{S}_{c}. If it can, we pop $q^{\prime} \hat{p}_{i+1}$ and consider it as a new horizontal segment to be inserted, and then repeat step (iii).
(iv) Not $\left(Q_{1}\right)$, not $\left(Q_{2}\right)$, and not $\left(Q_{3}\right)$: we push $r r^{\prime}$ and $r^{\prime} \widehat{p}_{i+1}$ into \mathcal{S}_{c}. Moreover, if \mathcal{S}_{u} is empty, we update \mathcal{T} by adding new nodes $\eta\left(r^{\prime}\right)$ and $\eta\left(p_{i+1}\right)$, removing the edge $\left(\eta\left(p_{i}\right), \eta(r)\right)$ and adding new directed edges $\left(\eta(r), \eta\left(r^{\prime}\right)\right)$, $\left(\eta\left(r^{\prime}\right), \eta\left(p_{i}\right)\right)$ and $\left(\eta\left(r^{\prime}\right), \eta\left(p_{i+1}\right)\right)$.

Because in each of the n iterations, a constant number of edges are added to \mathcal{T}, the size of \mathcal{T} is $O(n)$. Note that, in some iterations, step (iii) may be processed recursively several times, but it is only for the last recurrence that we may have to update \mathcal{T}. Furthermore, the number of such recurrences in total is $O(n)$, as each recurrence can be charged to a horizontal segment of the path and each horizontal segment can be charged at most twice. Therefore, we have the following lemma:

Lemma 4. All x-monotone $\operatorname{CRP}(i)$ can be encoded in $O(n \log m)$ time into a geometric tree \mathcal{T} of size $O(n)$, where each x-monotone CRP(i) corresponds to a path from the root to a node or leaf in tree \mathcal{T}.

Rectifying shortcuts. Let \mathcal{I} be the set of indices i such that $\operatorname{CRP}(i)$ is x-monotone. In fact, \mathcal{I} presents all remaining shortcut candidates to be homotopic shortcuts after computing all CRP (i) 's. Consider all shortcuts $p_{1} p_{i}$ and m obstacles in \mathcal{S}, where $i \in \mathcal{I}$. They induce an aboveness relation defining a partial order, which can be simply extended to a total order. Let $\operatorname{rank}_{s}(\mathcal{O})$ be the rank of an object \mathcal{O} (obstacle or shortcut) in this total order. We set the y-coordinate of any point of object \mathcal{O} to be $\operatorname{rank}_{s}(\mathcal{O})$. This rectifies all shortcuts. We denote the rectified shortcut $p_{1} p_{i}$ by $\tilde{p}_{1} \tilde{p}_{i}$, see Fig. 5(iv). Note that, to reduce the confusion, \tilde{p}_{1} is not illustrated in this figure. Also, in this figure, there is no relation between $\operatorname{rank}_{p}\left(s_{i}\right)$ and $\operatorname{rank}_{s}\left(s_{i}\right)$ for obstacle s_{i}, as they come from two different total orders. For instance, the y-coordinates of obstacle B in Fig. 5(iii) and Fig. 5(iv) are different.

Testing homotopy for tree \mathcal{T} and the rectified shortcuts. For a horizontal edge e of \mathcal{T}, let above (e) be the set of the point obstacles above edge e. Precisely, above (e) is the set of obstacles s_{j}, thus satisfying (i) $\operatorname{rank}_{p}\left(s_{j}\right)>\operatorname{rank}_{p}(e)$, and (ii) the x-coordinate of s_{j} lies between the x-coordinates of the endpoints of e. In a similar way, we define below (e) to denote all obstacles below edge e. As every obstacle above (or below) CRP(i) is above (or below) exactly one edge of all edges appearing in $\operatorname{CRP}(i)$, the homotopy test of $p_{1} p_{i}$ and $\operatorname{CRP}(i)$ can be divided into some homotopy tests in which edges appearing on $\operatorname{CRP}(i)$ are involved. For any edge e appearing on $\operatorname{CRP}(i)$, every obstacle in above((e) must be above $\tilde{p}_{1} \tilde{p}_{i}$, and any obstacle in below (e) must be below $\widetilde{p}_{1} \widetilde{p}_{i}$; otherwise, $p_{1} p_{i}$ and CRP (i) cannot be homotopic. Therefore, for each edge e and any obstacle s_{j}, we have the following condition:

Condition 1. $\left(s_{j} \in \operatorname{above}(e) \wedge \operatorname{rank}_{s}\left(p_{1} p_{i}\right)<\operatorname{rank}_{s}\left(s_{j}\right)\right) \vee\left(s_{j} \in \operatorname{below}(e) \wedge \operatorname{rank}_{s}\left(p_{1} p_{i}\right)>\operatorname{rank}_{s}\left(s_{j}\right)\right)$.

The following simple lemma states the case where the rectified shortcut $\tilde{p}_{1} \widetilde{p}_{i}$ and $\operatorname{CRP}(i)$ are homotopic:
Lemma 5. For any $i \in \mathcal{I}$, the rectified shortcut $p_{1} p_{i}$ and $\operatorname{CRP}(i)$ are homotopic if and only if, for any horizontal edge e of \mathcal{T} appearing on $\operatorname{CRP}(i)$ and any obstacle $s_{j} \in \operatorname{above}(e) \cup$ below (e), Condition 1 holds.

This lemma implies that any edge e and any object $s_{j} \in \operatorname{above}(e) \cup \operatorname{below}(e)$ violating Condition 1 removes $p_{1} p_{i}$ of being a homotopic shortcut, and if there is no such pair e and s_{j}, the shortcut $p_{1} p_{i}$ is definitely a homotopic shortcut. However, testing Condition 1 for each edge e and any $s_{j} \in \operatorname{above}(e) \cup \operatorname{below}(e)$ is costly in total. We can reduce the total cost using the following lemma.

For an edge e, let $s_{j} \in \operatorname{above}(e)\left(s_{j} \in \operatorname{below}(e)\right)$ be the obstacle with the minimum (maximum) rank ${ }_{s}$. We define $\min (\operatorname{above}(e))=\operatorname{rank}_{s}\left(s_{j}\right)\left(\max (\operatorname{below}(e))=\operatorname{rank}_{s}\left(s_{j}\right)\right)$. The following lemma states that from among all obstacles, either above or below e, at most two obstacles together with e must be tested to determine whether they satisfy Condition 1 .

Lemma 6. It suffices to verify Condition 1 for each horizontal edge e of \mathcal{T} and the obstacles with ranks min(above(e)) and $\max (\operatorname{below}(e))$ in plane \mathcal{H}_{2}, if they exist.

Proof. We claim if there is an obstacle violating Condition 1 for an edge e, then the obstacle with the rank of either $\min (\operatorname{above}(e))$ or max(below(e)) also violates Condition 1 for the edge e. The lemma follows immediately from the claim. Next, we prove the claim.

Let \mathcal{O} be an obstacle violating Condition 1 for edge e. Assume \mathcal{O} is in above((e) (if \mathcal{O} is in below (e), the proof can be done similarly). Since \mathcal{O} is in above $(e), \operatorname{rank}_{s}(O) \geqslant \min (\operatorname{above}(e))$. On the other hand, since \mathcal{O} violates Condition 1 , we know $\operatorname{rank}_{s}(\mathcal{O})<\operatorname{rank}_{s}\left(p_{1} p_{i}\right)$ for some i. All this together implies min $(\operatorname{above}(e))<\operatorname{rank}_{s}\left(p_{1} p_{i}\right)$ which implies the object with the rank of $\min (\operatorname{above}(e))$ also violates Condition 1.

Knowing Lemma 6, the main question is how quickly we can perform the verification of Condition 1 for any horizontal edge e of \mathcal{T} to remove non-homotopic shortcuts. Note that above(e) or below (e) may contain many obstacles and that $\mathcal{I}(e)$ may contain several indices, where $\mathcal{I}(e)$ is the set of all indices $i \in \mathcal{I}$ for which e appears in $\operatorname{CRP}(i)$. Therefore, the size of $\mathcal{I}(e)$ can be $O(n)$ in the worst case, which requires $O\left(n^{2}\right)$ homotopy tests where each one takes $O(1)$ time. We show that this process can be performed in $O(n \log n)$ time. From this point forward, we direct our attention to above (e), as below (e) can be handled similarly.

Computing $\min (\operatorname{above}(e))$. One easy way to compute $\min (\operatorname{above}(e))$ for any horizontal edge e of \mathcal{T} is to build a rangesearch [4] query data structure $\mathcal{T}_{\text {obs }}$ over the obstacles in \mathcal{H}_{1}, which is a two-level tree. For each node v in the second level of $\mathcal{T}_{\text {obs }}$, we maintain extra information, that is, the minimum rank ${ }_{s}$ of the obstacles lying at the subtree rooted at ν. Hence, $\min (\operatorname{above}(e))$ can be computed in $O\left(\log ^{2} m\right)$ time. However, this can be performed more quickly as we know all edges in advance. We sweep the horizontal edges and the obstacles from top to bottom and maintain a binary tree over the swept obstacles based on their x-coordinates. When the sweep line reaches an edge e, above (e) is considered as the union of $O(\log m)$ subtrees in the binary tree, and consequently, $\min (\operatorname{above}(e))$ can be computed in $O(\log m)$ time.

Verification of Condition 1. To collectively verify Condition 1 in which an edge e is involved, we define a new ordering of elements in \mathcal{I} such that elements in $\mathcal{I}(e)$ become consecutive. This ordering is obtained by an in-order traversal of \mathcal{T}-note that for any $i \in \mathcal{I}$, there is a node in \mathcal{T} labeled $\eta\left(p_{i}\right)$. Let $\sigma(i)$ be the rank of $i \in \mathcal{I}$ in this ordering. As an example, $\langle 3,2,4,8,9,10,6,7\rangle$ is the new ordering of the indices in \mathcal{T} of Fig. 5(iii). For the edge e specified in this figure, $\mathcal{I}(e)$ is $\{8,9,10\}$ in which indices in $\mathcal{I}(e)$ are consecutive in the new ordering, i.e., they are not fragmented into chunks. This property reduces the verification time of Condition 1 in which an edge e is involved in a 3 -sided range query over new points. With each $i \in \mathcal{I}$, we associate point $\check{p_{i}}=\left(\sigma(i), \operatorname{rank}_{s}\left(p_{1} p_{i}\right)\right)$ in a new plane \mathcal{H}-see Fig. 7. Each edge e defines a segment on the x-coordinate, precisely, σ-coordinate of plane \mathcal{H}, which includes all indices in $\mathcal{I}(e)$. Note that the segment corresponding to e can be computed in the in-order traversal of \mathcal{T}. Also, min(above (e)) defines a half-segment in the y-coordinate. Both the segment corresponding to e and the half segment corresponding to min(above (e)) define a 3 -sided range that identifies all indices that violate Condition 1. Fig. 7 illustrates the 3 -sided range for edge e specified in Fig. 5(iii). Therefore, every $i \in \mathcal{I}$ whose corresponding point lies in this range violates Condition 1 and, consequently, must be removed from \mathcal{I}. As these range-searches are available in advance, we can sweep points and ranges in \mathcal{H} from top to bottom and maintain a binary tree $\mathcal{T}_{\text {bin }}$ over the points based on their x-coordinates, i.e., their σ-coordinate, such as the one described in the previous paragraph. Upon processing a three-sided range, we simply remove $O(\log n)$ subtrees from the binary tree $\mathcal{T}_{\text {bin }}$. Therefore, the sweeping takes $O(n \log n)$ time in total. After handling below (e) for horizontal edges e of \mathcal{T} in a similar manner, any remaining shortcut is a homotopic shortcut. Putting this together, we obtain the following result:

Lemma 7. Let $\mathcal{P}=p_{1}, \ldots, p_{n}$ be a non-self-intersecting polygonal path, and let \mathcal{S} be a set of m point obstacles in a plane. All homotopic shortcuts $p_{i} p_{j}$ can be computed in $O(n(m+n) \log (n+m))$ time and $O(n+m+k)$ space where k is the number of homotopic shortcuts.

Fig. 7. The new points $\left(\sigma(i), \operatorname{rank}_{s}\left(p_{1} p_{i}\right)\right)$ in plane \mathcal{H} for the indices appear in Fig. 5 (iii). The gray area is the 3 -sided range corresponding to $\mathcal{I}(e)=$ $\{8,9,10\}$. As points \check{p}_{9} and \check{p}_{10} lie in the gray area, they violate Condition 1 . Thus, $p_{1} p_{9}$ and $p_{1} p_{10}$ cannot be homotopic shortcuts. Note that, in the new ordering, the segment corresponding to e in \mathcal{H} is [4, 6]. Also, the $\min (\operatorname{above}(e))$ is 4 , which is $\operatorname{rank}_{s}(\widetilde{C})$.

Remark 1. The running time can be improved to $O\left(m \log m+n m+n^{2} \log (n+m)\right.$), if we are allowed to use extra $O(m \log m)$ space. To obtain this improvement, at the beginning, we compute the aboveness relation between the obstacles and edges of \mathcal{P} as well as the aboveness relation between the obstacles and all shortcuts, and we exploit these relations in each iteration, where we fix i to be $1, \ldots, n$. Moreover, we maintain a persistent binary tree [17] over the obstacles to compute all min(above $(e))$ in total time $O(n \log m)$ rather than $O(m \log m+n \log m)$ in each iteration. This persistent binary tree occupies $O(m \log m)$ space.

4. Optimal homotopic simplification

In this section, we present the first algorithm that computes the optimal simplification for general paths (the path can be self-intersecting). Our method exploits the observation that the path \mathcal{P} and every simplification of \mathcal{P} can be thought of as strings, namely, their canonical sequence. Therefore, the goal is to find a simplification $\mathcal{Q}=q_{1}, q_{2}, \ldots, q_{k}$ ($q_{1}=p_{1}$ and $q_{k}=p_{n}$) with the minimum number of links satisfying $\operatorname{CS}(\mathcal{Q})=\operatorname{CS}(\mathcal{P})$. We use the dynamic-programming paradigm to find such a simplification. The sub-problem is defined as finding $\mathcal{Q}_{i j}$ to be the optimal simplification for $\mathcal{P}(i, j)$, the path that begins at p_{i} and ends at p_{j}. Obviously, $\mathcal{Q}_{1 n}$ is the final answer, and each sub-problem should also be solved optimally.

We first compute G_{ε} under a given distance function F in time $T_{F}(n)$ (see Section 2). We then compute $\operatorname{CS}(\mathcal{P})$ and $\operatorname{CS}\left(p_{i} p_{j}\right)$ for every edge $p_{i} p_{j}$ in $G_{\varepsilon} i l o n$. Because $p_{i} p_{j}$ is just a segment, $\operatorname{CS}\left(p_{i} p_{j}\right)$ can be easily computed in $O(m)$ time. In fact, for each obstacle, we only need to determine whether it is above or below the shortcut $p_{i} p_{j}$, and then sort the resulted sequence based on the x-coordinates of the obstacles. For ease of presentation, we denote the first b symbols of $\operatorname{CS}\left(p_{i} p_{j}\right)$ by $\operatorname{CS}\left(b, p_{i} p_{j}\right)$ and the last b symbols of $\operatorname{CS}\left(p_{i} p_{j}\right)$ by $\operatorname{CS}\left(p_{i} p_{j}, b\right)$. Moreover, we denote the k th symbol of $\operatorname{CS}(\alpha)$ by $\operatorname{CS}(\alpha)[k]$. When all $\operatorname{CS}\left(p_{i} p_{j}\right)$ s are available, the $\operatorname{CS}(\mathcal{Q})$ can be computed by concatenating the CSs of all links of \mathcal{Q} and then removing the adjacent repeated symbols. Accordingly, we have:

$$
\operatorname{CS}\left(\mathcal{Q}_{k}\right)= \begin{cases}\operatorname{RM}\left(\operatorname{CS}\left(\mathcal{Q}_{k-1}\right) \oplus \operatorname{CS}\left(q_{k-1} q_{k}\right)\right) & \text { if } k>2 \\ \operatorname{CS}\left(q_{1} q_{2}\right) & \text { if } k=2\end{cases}
$$

where $\mathcal{Q}_{i}=q_{1}, q_{2}, \ldots, q_{i}$ (the first $i-1$ links of \mathcal{Q}), RM is the operator that removes repeated adjacent symbols and \oplus is the concatenation operator.

Our dynamic programming is based on the observation that if $\operatorname{CS}(\mathcal{Q})=\operatorname{CS}(\mathcal{P})$, any prefix of $\operatorname{CS}(\mathcal{P})$ must be produced by concatenating the CS of the first i links of \mathcal{Q} and the first j symbols of the CS of $(i+1)$ th link of \mathcal{Q} for some i and j and then removing the repeated adjacent symbols. Indeed, the last symbol of the prefix of $\operatorname{CS}(\mathcal{P})$ must match a symbol in $\operatorname{CS}(\mathcal{Q})$, as we know $\operatorname{CS}(\mathcal{Q})=\operatorname{CS}(\mathcal{P})$. Therefore, this symbol must exist in the CS of a link $((i+1)$ th link for some $i)$ of \mathcal{Q}, as $\operatorname{CS}(\mathcal{Q})$ is initially obtained by concatenating the CSs of its links. If the position of this symbol in the CS of $(i+1)$ th link of \mathcal{Q} is j, then the prefix of $\operatorname{CS}(\mathcal{P})$ is equal to $\operatorname{RM}\left(\operatorname{CS}\left(\mathcal{Q}_{i+1}\right) \oplus \operatorname{CS}\left(j, q_{i+1} q_{i+2}\right)\right)$.

The above prefix property guides us to $\operatorname{define} \operatorname{seq}\left(\mathcal{Q}_{1 i}, b\right)$ as follows:

$$
\operatorname{seq}\left(\mathcal{Q}_{1 i}, b\right)=\operatorname{RM}\left(\operatorname{CS}\left(q_{1} q_{2}\right) \oplus \operatorname{CS}\left(q_{2} q_{3}\right) \oplus \cdots \oplus \operatorname{CS}\left(q_{r-2} q_{r-1}\right) \oplus \operatorname{CS}\left(b, q_{r-1} q_{r}\right)\right)
$$

where $q_{1}=p_{1}$ and $q_{r}=p_{i}$.
We define the main table of our dynamic programming, namely, OptHS[i, $j, b, l]$. Roughly speaking, OptHS $[i, j, b, l]$ specifies the minimum number of links needed to construct the first l symbols of $\operatorname{CS}(\mathcal{P})$ such that the last link is $p_{i} p_{j}$ and the first b symbols of $\operatorname{CS}\left(p_{i} p_{j}\right)$ are used to construct the first l symbols of $\operatorname{CS}(\mathcal{P})$. More precisely, for numbers l and b, let $p_{i} p_{j}$ be the last link of $\mathcal{Q}_{1 j}$ and let $\mathcal{Q}_{1, j}$ be a simplification of $\mathcal{P}(1, j)$ with the minimum number of links such that $\operatorname{seq}\left(\mathcal{Q}_{1 j}, b\right)$ is equal to exactly the first l symbols of $\operatorname{CS}(\mathcal{P})$. We then store the size of $\mathcal{Q}_{1 j}$ (i.e., the number of its links)

Fig. 8. Let $\Phi=\operatorname{CS}(\mathcal{P})$ and \mathcal{Q} specify $\operatorname{OptHS}[i, j, b, l]$. There must be a link $p_{i^{\prime}} p_{j^{\prime}}$ in \mathcal{Q} such that $\operatorname{CS}\left(p_{i^{\prime}} p_{j^{\prime}}\right)\left[b^{\prime}\right]=\operatorname{CS}(\mathcal{P})[l]$ for some b^{\prime} and seq $\left(i^{\prime}, j^{\prime}, i, j,\left|\operatorname{CS}\left(p_{i^{\prime}} p_{j^{\prime}}\right)\right|-b^{\prime}, b\right)$ is empty.
in OptHS $[i, j, b, l]$. It can easily be shown that $\min _{i=1}^{n} \operatorname{OptHS}\left[i, n,\left|\operatorname{CS}\left(p_{i} p_{n}\right)\right|,|\operatorname{CS}(\mathcal{P})|\right]$ is equal to the number of links of the optimal homotopic simplification where |.| denotes the size of the sequence.

To complete the OptHS matrix, we often need to know whether the $\operatorname{CS}\left(\mathcal{Q}_{i j}\right)$ is empty for some i and j. Therefore, we define a new table OptNHS $\left[i_{1}, j_{1}, i_{2}, j_{2}, a, c\right]$ as follows. Consider $\mathcal{Q}_{i_{1} j_{2}}$, which is a simplification of $\mathcal{P}\left(p_{i_{1}}, p_{j_{2}}\right)$. Let $p_{i_{1}} p_{j_{1}}$ and $p_{i_{2}} p_{j_{2}}$ be the first and the last links of $\mathcal{Q}_{i_{1} j_{2}}$, respectively, and let $\ell_{1}, \ldots, \ell_{r}$ be the middle links of $\mathcal{Q}_{i_{1} j_{2}}$. We define

$$
\operatorname{seq}\left(i_{1}, j_{1}, i_{2}, j_{2}, a, c\right)=\operatorname{RM}\left(\operatorname{CS}\left(p_{i_{1}} p_{j_{1}}, a\right) \oplus \operatorname{CS}\left(\ell_{1}\right) \oplus \cdots \oplus \operatorname{CS}\left(\ell_{r}\right) \oplus \operatorname{CS}\left(c, p_{i_{2}} p_{j_{2}}\right)\right)
$$

If seq $\left(i_{1}, j_{1}, i_{2}, j_{2}, a, c\right)$ of $\mathcal{Q}_{i_{1} j_{2}}$ is empty and the number of its links is minimum, we store the number of its links in OptNHS $\left[i_{1}, j_{1}, i_{2}, j_{2}, a, c\right]$.

Now, we describe how to fill in the matrices OptHS and OptNHS. The process for computing OptHS[i,j,b,l] and $\operatorname{OptNHS}\left[i_{1}, j_{1}, i_{2}, j_{2}, a, c\right]$ is as follows. Let $\mathcal{Q}_{1 j}$ specify $\operatorname{OptHS}[i, j, b, l]$. There must be a link $p_{i^{\prime}} p_{j^{\prime}}$ in $\mathcal{Q}_{1 i}$ such that $\operatorname{CS}\left(p_{i^{\prime}} p_{j^{\prime}}\right)\left[b^{\prime}\right]=\operatorname{CS}(\mathcal{P})[l]$ for some b^{\prime} and $\left.\operatorname{seq}\left(i^{\prime}, j^{\prime}, i, j,\left|\operatorname{CS}\left(p_{i^{\prime}} p_{j^{\prime}}\right)\right|-b^{\prime}, b\right)\right)$ is empty-see Fig. 8. Thus,

$$
\begin{aligned}
\operatorname{OptHS}[i, j, b, l]= & \min _{i^{\prime}<j^{\prime} \leqslant i}\left(\operatorname{OptHS}\left[i^{\prime}, j^{\prime}, b^{\prime}-1, l-1\right]\right. \\
& \left.+\operatorname{OptNHS}\left[i^{\prime}, j^{\prime}, i, j,\left|\operatorname{CS}\left(p_{i^{\prime}} p_{j^{\prime}}\right)\right|-b^{\prime}, b\right]-1\right)
\end{aligned}
$$

where the minimum is taken over all links $p_{i^{\prime}} p_{j^{\prime}}$ where $\operatorname{CS}\left(p_{i^{\prime}} p_{j^{\prime}}\right)\left[b^{\prime}\right]=\operatorname{CS}(\mathcal{P})[l]$ for some b^{\prime}. In a similar way, if $\mathcal{Q}_{i_{1} j_{2}}$ specifies OptNHS $\left[i_{1}, j_{1}, i_{2}, j_{2}, a, c\right]$, there is a link $p_{i^{\prime}} p_{j^{\prime}}$ in $\mathcal{Q}_{i_{1} j_{2}}$ such that $\operatorname{CS}\left(p_{i^{\prime}} p_{j^{\prime}}\right)\left[a^{\prime}\right]=\operatorname{CS}\left(p_{i_{1}} p_{j_{1}}\right)\left[\left|\operatorname{CS}\left(p_{i_{1}} p_{j_{1}}\right)\right|-a+1\right]$ for some a^{\prime}. Indeed, $\operatorname{CS}\left(p_{i^{\prime}} p_{j^{\prime}}\right)\left[a^{\prime}\right]$ and $\operatorname{CS}\left(p_{i_{1}} p_{j_{1}}\right)\left[\left|\operatorname{CS}\left(p_{i_{1}} p_{j_{1}}\right)\right|-a+1\right]$ can eliminate each other if OptNHS $\left[i_{1}, j_{1}, i^{\prime}, j^{\prime}, a-\right.$ $\left.1, a^{\prime}-1\right]$ is empty-see Fig. 9. Thus,

$$
\begin{aligned}
\operatorname{OptNHS}\left[i_{1}, j_{1}, i_{2}, j_{2}, a, c\right]= & \min _{j_{1} \leqslant i^{\prime}<j^{\prime} \leqslant i_{2}}\left(\operatorname{OptNHS}\left[i_{1}, j_{1}, i^{\prime}, j^{\prime}, a, a^{\prime}-1\right]\right. \\
& \left.+\operatorname{OptNHS}\left[i^{\prime}, j^{\prime}, i_{2}, j_{2},\left|\operatorname{CS}\left(p_{i^{\prime}} p_{j^{\prime}}\right)\right|-a^{\prime}, c\right]-1\right) .
\end{aligned}
$$

We refer readers to Appendix A for the precise computations of $\operatorname{OptHS}[i, j, b, l]$ and $\operatorname{OptNHS}\left[i_{1}, j_{1}, i_{2}, j_{2}, a, c\right]$.
Reporting. OptHS stores the size of the optimal homotopic simplification. Therefore, to report the optimal homotopic simplification, we may need to spend more space and time. As we only need to report the optimal homotopic simplification specifying $\min _{i=1}^{n} \operatorname{OptHS}\left[i, n,\left|\operatorname{CS}\left(p_{i} p_{n}\right)\right|,|\operatorname{CS}(\mathcal{P})|\right]$, we find it by passing over the matrices once more, without asymptotically increasing the time and space complexities.

Time and space complexity. In matrix $\operatorname{OptNHS}\left[i_{1}, j_{1}, i_{2}, j_{2}, a, c\right]$, we have $1 \leqslant i_{1}, i_{2}, j_{1}, j_{2} \leqslant n$ and $0 \leqslant a, c \leqslant m$. Furthermore, in matrix OptHS $[i, j, b, l]$, we have $1 \leqslant i, j \leqslant n$, and $0 \leqslant b \leqslant m$, and $0 \leqslant l \leqslant n m$. Therefore, OptNHS and OptHS occupy $O\left(n^{3} m^{2}\right)$ and $O\left(n^{4} m^{2}\right)$ space, respectively. Note that the size of $\operatorname{CS}\left(p_{i} p_{j}\right)$ is, at most m, and $|\operatorname{CS}(\mathcal{P})|$ can be, at most, $m n$ as the number of the edges of \mathcal{P} is, at most, $n-1$. To fill one entry of OptNHS, we take min operation over, at most, $O\left(n^{2}\right)$ links $p_{i^{\prime}} p_{j^{\prime}}$. As OptNHS has $O\left(n^{4} m^{2}\right)$ entries, it takes $O\left(n^{6} m^{2}\right)$ time to fill the whole matrix. Similarly, it takes $O\left(n^{5} m^{2}\right)$ time to fill the OptHS matrix. Note that finding the symbol of $\operatorname{CS}\left(p_{i^{\prime}} p_{j^{\prime}}\right)$ that matches the l th symbol of \mathcal{P} takes $O(m)$ time, but we can perform it in $O(1)$ time by constructing an auxiliary 2-dimensional array of size $O\left(n^{2} m\right)$ to store the position of each symbol in CS of each link. After computing the matrices, $\min _{i=1}^{n} \operatorname{OptHS}\left[i, n,\left|\operatorname{CS}\left(p_{i} p_{n}\right)\right|,|\operatorname{CS}(\mathcal{P})|\right]$ can be computed in $O(n)$ time, which does not asymptotically increase the time complexity of our algorithm. Accordingly, we have the following theorem.

Fig. 9. If $\mathcal{Q}_{i_{1} j_{2}}$ specifies OptNHS $\left[i_{1}, j_{1}, i_{2}, j_{2}, a, c\right]$, there exists a link $p_{i^{\prime}} p_{j^{\prime}}$ in $\mathcal{Q}_{i_{1} j_{2}}$ such that $\operatorname{CS}\left(p_{i^{\prime}} p_{j^{\prime}}\right)\left[a^{\prime}\right]=\operatorname{CS}\left(p_{i_{1}} p_{j_{1}}\right)\left[\left|p_{i_{1}} p_{j_{1}}\right|-a+1\right]$ for $\operatorname{some} a^{\prime}-$ where a^{\prime} is the index of \bar{A} in $\operatorname{CS}\left(p_{i^{\prime}} p_{j^{\prime}}\right)$. Hence, the CS of both gray areas should be empty.

Theorem 8. Suppose that \mathcal{P} is a polygonal path with size n in a plane containing the m point obstacles and that $T_{F}(n)$ is the time needed to compute G_{ε} under the distance function F in the absence of the obstacles. The optimal homotopic simplification can be computed in $O\left(n^{6} m^{2}\right)+T_{F}(n)$ time and $O\left(n^{4} m^{2}\right)$ space.

5. Conclusions

We have proposed the first polynomial-time algorithm to compute the optimal simplification \mathcal{Q} of a polygonal path \mathcal{P} homotopic to \mathcal{P} with respect to some point obstacles in a plane. We have also presented algorithms to compute the optimal strongly homotopic simplification of an x-monotone and a simple polygonal path \mathcal{P} in $T_{F}(n)+O(m \log (n+m)+$ $n \log n \log (n+m)+k)$ and $T_{F}(n)+O(n(m+n) \log (n+m)$) time, respectively, where n is the size of \mathcal{P}, m is the number of point obstacles and $T_{F}(n)$ is the time needed to compute G_{ε} under the distance function F.

Our algorithms, except for the one proposed for x-monotone paths, are not guaranteed to produce a simple simplification, which can be an important requirement in many areas. We leave this problem for future research.

Appendix A. Computing OptHS and OptNHS

We describe the precise method of computing matrices OptHS and OptNHS. Note that the matrices OptHS and OptNHS maintain the number of links of the minimum subsequence.

OptHS. To compute OptHS $[i, j, b, l]$, where $1 \leqslant i<j \leqslant n, 0 \leqslant b \leqslant\left|\operatorname{CS}\left(p_{i} p_{j}\right)\right|$, and $0 \leqslant l \leqslant|\operatorname{CS}(\mathcal{P})|$, we distinguish three cases:

- $b=0$:
$\operatorname{OptHS}[i, j, 0, l]=\min _{i^{\prime}} \operatorname{OptHS}\left[i^{\prime}, i,\left|\operatorname{CS}\left(p_{i^{\prime}} p_{i}\right)\right|, l\right]+1 \quad$ where $\left(i^{\prime}<i\right)$.
- $l=0$:
$\operatorname{OptHS}[i, j, b, 0]=\min _{i^{\prime}} \operatorname{OptNHS}\left[1, i^{\prime}, i, j,\left|\operatorname{CS}\left(p_{1} p_{i^{\prime}}\right)\right|, b\right] \quad$ where $\left(i^{\prime} \leqslant i\right)$.
- $b, l>0$:
$\operatorname{OptHS}[i, j, b, l]=\min _{i^{\prime}, j^{\prime}, b^{\prime}} \operatorname{OptHS}\left[i^{\prime}, j^{\prime}, b^{\prime}-1, l-1\right]$
+ OptNHS $\left[i^{\prime}, j^{\prime}, i, j,\left|\operatorname{CS}\left(p_{i^{\prime}} p_{j^{\prime}}\right)\right|-b^{\prime}+1, b\right]-1$
where $\left(\left(i^{\prime}=i, j^{\prime}=j, b^{\prime}=b-1\right)\right.$ or $\left.\left(i^{\prime}<j^{\prime} \leqslant i\right)\right)$
and $\operatorname{CS}(\mathcal{P})[l]=\operatorname{CS}\left(p_{i^{\prime}} p_{j^{\prime}}\right)\left[b^{\prime}\right]$.
OptNHS. To fill OptNHS[$\left.i_{1}, j_{1}, i_{2}, j_{2}, a, c\right]$, where $1 \leqslant i_{1}<j_{1} \leqslant i_{2}<j_{2} \leqslant n, 0 \leqslant a \leqslant\left|\operatorname{CS}\left(p_{i_{1}} p_{j_{1}}\right)\right|$, and $0 \leqslant c \leqslant\left|\operatorname{CS}\left(p_{i_{2}} p_{j_{2}}\right)\right|$, we distinguish the following four cases:
- $c>0$:

$$
\begin{aligned}
\operatorname{OptNHS}\left[i_{1}, j_{1}, i_{2}, j_{2}, a, c\right]= & \min _{i^{\prime}, j^{\prime}, a^{\prime}} \operatorname{OptNHS}\left[i_{1}, j_{1}, i^{\prime}, j^{\prime}, a, a^{\prime}-1\right] \\
& +\operatorname{OptNHS}\left[i^{\prime}, j^{\prime}, i_{2}, j_{2},\left|\operatorname{CS}\left(p_{i^{\prime}} p_{j^{\prime}}\right)\right|-a^{\prime}, c-1\right]-1 \\
& \text { where }\left(j_{1} \leqslant i^{\prime}<j^{\prime} \leqslant i_{2}\right) \text { and }\left(0<a^{\prime} \leqslant\left|\operatorname{CS}\left(p_{i^{\prime}} p_{j^{\prime}}\right)\right|\right) \\
& \text { and } \operatorname{CS}\left(p_{i^{\prime}} p_{j^{\prime}}\right)\left[a^{\prime}\right]=\operatorname{CS}\left(p_{i_{2}} p_{j_{2}}\right)[c] .
\end{aligned}
$$

- $a>0$ and $c=0$:

$$
\begin{aligned}
\operatorname{OptNHS}\left[i_{1}, j_{1}, i_{2}, j_{2}, a, 0\right]= & \min _{i^{\prime}, j^{\prime}, a^{\prime}} \operatorname{OptNHS}\left[i_{1}, j_{1}, i^{\prime}, j^{\prime}, a-1, a^{\prime}-1\right] \\
& +\operatorname{OptNHS}\left[i^{\prime}, j^{\prime}, i_{2}, j_{2},\left|\operatorname{CS}\left(p_{i^{\prime}} p_{j^{\prime}}\right)\right|-a^{\prime}, 0\right]-1 \\
& \text { where }\left(j_{1} \leqslant i^{\prime}<j^{\prime} \leqslant i_{2}\right) \text { and }\left(0<l^{\prime} \leqslant\left|\operatorname{CS}\left(p_{i^{\prime}} p_{j^{\prime}}\right)\right|\right) \\
& \quad \text { and } \operatorname{CS}\left(p_{i^{\prime}} p_{j^{\prime}}\right)\left[a^{\prime}\right]=\operatorname{CS}\left(p_{i_{1}} p_{j_{1}}\right)\left[\left|\operatorname{CS}\left(p_{i_{1}} p_{j_{1}}\right)\right|-a+1\right] .
\end{aligned}
$$

- $a, c=0$ and $j_{1} \neq i_{2}$: OptNHS $\left[i_{1}, j_{1}, i_{2}, j_{2}, 0,0\right]=3$ if $\operatorname{CS}\left(p_{j_{1}} p_{i_{2}}\right)=$ NULL and otherwise $+\infty$.
- $a, c=0$ and $j_{1}=i_{2}$: OptNHS $\left[i_{1}, j_{1}, i_{2}, j_{2}, 0,0\right]=2$ if $\operatorname{CS}\left(p_{j_{1}} p_{i_{2}}\right)=$ NULL and otherwise $+\infty$.

References

[1] M.A. Abam, M. de Berg, P. Hachenberger, A. Zarei, Streaming algorithms for line simplification, Discrete Comput. Geom. 43 (3) (2010) 497-515.
[2] P.K. Agarwal, S. Har-Peled, N.H. Mustafa, Y. Wang, Near-linear time approximation algorithms for curve simplification, Algorithmica 42 (3-4) (2005) 203-219.
[3] B. Ben-Moshe, O. Hall-Holt, M.J. Katz, J.S.B. Mitchell, Computing the visibility graph of points within a polygon, in: Proc. Annual Symposium on Computational Geometry, 2004, pp. 27-35.
[4] M. de Berg, O. Cheong, M. van Kreveld, M. Overmars, Computational Geometry: Algorithms and Applications, third edition, Springer-Verlag, 2008.
[5] M. de Berg, M. van Kreveld, S. Schirra, A new approach to subdivision simplification, in: Proc. ACSM/ASPRS Annual Convention, Auto-Carto 124 (1995) 79-88.
[6] M. de Berg, M. van Kreveld, S. Schirra, Topologically correct subdivision simplification using the bandwidth criterion, Cartogr. Geogr. Inf. Sci. 25 (4) (1998) 243-257.
[7] S. Bespamyatnikh, An optimal morphing between polylines, Int. J. Comput. Geom. Appl. 12 (3) (2002) 217-228.
[8] S. Bespamyatnikh, Computing homotopic shortest paths in the plane, J. Algorithms 49 (2) (2003) 284-303.
[9] L. Buzer, Optimal simplification of polygonal chains for subpixel-accurate rendering, Comput. Geom. 42 (1) (2009) 45-59.
[10] S. Cabello, Y. Liu, A. Mantler, J. Snoeyink, Testing homotopy for paths in the plane, Discrete Comput. Geom. 31 (1) (2004) 61-68.
[11] W.S. Chan, F. Chin, Approximation of polygonal curves with minimum number of line segments, in: Proc. International Symposium on Algorithms and Computation, 650, 1992, pp. 378-387.
[12] B. Chazelle, An algorithm for segment-dragging and its implementation, Algorithmica 3 (1-4) (1988) 205-221.
[13] S. Daneshpajouh, M. Ghodsi, A. Zarei, Computing polygonal path simplification under area measures, Graph. Models 74 (5) (2012) $283-289$.
[14] D. Eu, G.T. Toussaint, On approximating polygonal curves in two and three dimensions, CVGIP, Graph. Models Image Process. 56 (3) (1994) $231-246$.
[15] D.H. Douglas, T.K. Peucker, Algorithms for the reduction of the number of points required to represent a digitized line or its caricature, Cartogr. Int. J. Geogr. Inf. Geovis. 10 (2) (1973) 112-122.
[16] A. Driemel, S. Har-Peled, C. Wenk, Approximating the Fréchet distance for realistic curves in near linear time, Discrete Comput. Geom. 48 (1) (2012) 94-127.
[17] J.R. Driscoll, N. Sarnak, D.D. Sleator, R.E. Tarjan, Making data structures persistent, J. Comput. Syst. Sci. 38 (1) (1989) 86-124.
[18] A. Efrat, L.J. Guibas, S. Har-Peled, J.S.B. Mitchell, T.M. Murali, New similarity measures between polylines with applications to morphing and polygon sweeping, Discrete Comput. Geom. 28 (4) (2002) 535-569.
[19] R. Estkowski, J.S.B. Mitchell, Simplifying a polygonal subdivision while keeping it simple, in: Proc. Annual Symposium on Computational Geometry, 2001, pp. 40-49.
[20] M.T. Goodrich, Efficient piecewise-linear function approximation using the uniform metric, Discrete Comput. Geom. 14 (4) (1995) 445-462.
[21] L.J. Guibas, J. Hershberger, J.S.B. Mitchell, J. Snoeyink, Approximating polygons and subdivisions with minimum-link paths, Int. J. Comput. Geom. Appl. 3 (4) (1993) 383-415.
[22] J. Hershberger, J. Snoeyink, An $O(n \log n)$ implementation of the Douglas-Peucker algorithm for line simplification, in: Proc. Annual Symposium on Computational Geometry, 1994, pp. 383-384.
[23] H. Imai, M. Iri, An optimal algorithm for approximating a piecewise linear function, J. Inf. Process. 9 (3) (1986) 159-162.
[24] H. Imai, M. Iri, Polygonal approximations of a curve - formulations and algorithms, in: G.T. Toussaint (Ed.), Computational Morphology, North-Holland, Amsterdam, Netherlands, 1988, pp. 71-86.
[25] M.W. Krentel, The complexity of optimization problem, J. Comput. Syst. Sci. 36 (3) (1988) 490-509.
[26] A. Melkman, J. O'Rourke, On polygonal chain approximation, in: G.T. Toussaint (Ed.), Computational Morphology, North-Holland, Amsterdam, Netherlands, 1988, pp. 87-95.
[27] L. Palazzi, J. Snoeyink, Counting and reporting red/blue segment intersections, CVGIP, Graph. Models Image Process. 56 (4) (1994) 304-310.

[^0]: ${ }^{2}$ Object p (point, segment or x-monotone path) is above object q if there exists a vertical line intersecting both p and q, satisfying that p is above q with respect to this vertical line.

[^1]: ${ }^{3}$ It is known that any MIN PB-complete problem cannot be approximated within $n^{1-\varepsilon}$ for some $\varepsilon>0$. See [25] for the precise definition of MIN PB-complete problems.

[^2]: ${ }^{4}$ For simple paths, $T_{F}(n)$ (the time needed to compute $\left.G_{\varepsilon}\right)$ is $O\left(n^{2}\right)$ [11] and $O\left(n^{3}\right)$ [2], where F is a Hausdorff or Fréchet, respectively.

