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This paper presents a new balanced, distributed data structure for storing data with multidimensional
keys in a peer-to-peer network. It supports range queries as well as single point queries which are routed
in Oðlog nÞ hops. Our structure, called SkipTree, is fully decentralized with each node being connected to
Oðlog nÞ other nodes. We propose modifications to the structures, so that the memory usage for maintain-
ing the link structure at each node is reduced from the worst case of OðnÞ to Oðlog n log log nÞ on the aver-
age and Oðlog2nÞ in the worst case. It is also shown that the load balancing is guaranteed to be within a
constant factor. Our experimental results verify our theoretical proofs.

� 2009 Published by Elsevier B.V.
T 31
55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78
U
N

C
O

R
R

E
C1. Introduction and related work

Over the past few years, there has been a trend to move from
centralized server based network architectures toward decentral-
ized and distributed architectures and peer to peer networks. The
term Scalable Distributed Data Structure (SDDS) first introduced by
Litwin et al. in LH* [16] refers to this class of data structures which
hold the following properties:

– There is no central directory.
– Client images (i.e. client information on where data is located)

may be outdated, and is only adjusted in response to read
queries.

– A client may send a request to an incorrect server, which will be
forwarded to the correct one and the client image will be updated.

Litwin et al. modified the original hash-based LH* [16] structure
to support range queries in RP* [15,16]. Based on the previous
work of distributed data structures like LH* [16], RP* [15] and Dis-
tributed Random Tree (DRT) [12], new data structures based on
either hashing or key comparison have been proposed like Chord
[23], Viceroy [18], Koorde [10], Tapestry [25], Pastry [22], PeerDB
[20], and P-Grid [1]. Most existing peer-to-peer (or P2P) overlays
require Hðlog nÞ links per node in order to achieve Oðlog nÞ hops
79

80

81

82
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for routing. Viceroy [18], Koorde [10], D2b [6], FissionE [17], and
MOORE [7] which are based on DHTs, are the remarkable excep-
tions in that they achieve Oðlog nÞ hops with only Oð1Þ links per
node at the cost of restricted or no load balancing. Family Tree
[24] is the first overlay network which does not use hashing but
supports routing in Oðlog nÞ hops with only Oð1Þ links per node.

Typically, the systems which are based on DHTs and hashing
lack the range-query operation, locality properties and control over
distribution of keys, due to hashing. In contrast, those based on key
comparison, although requiring more complicated load balancing
techniques, do better in these respects. P-Grid [1] by Aberer et al.
is one of the systems based on key comparison which uses a dis-
tributed binary tree to partition a single dimensional space with
network nodes representing the leaves of the tree and each node
having a link to some node in every sibling subtree along the path
from the root to that node. Gridella [2] a P2P system based on P-
Grid working on GNutella has also been developed. Other systems
like P-Tree [5] have been proposed that provide range queries in
single dimensional space. Besides, some data structures like dB-
Trees [9] based on B-Trees have been developed for distributed
environments.

SkipNet [8] on which our new system relies heavily, is another
system for single dimensional spaces based on an extension to skip
lists. We basically extend SkipNet to handel multi-dimensional
spaces.

G-Grid [21] is a solution proposed for the multidimensional case
which is also based on partitioning the space into regions. However,
regions in G-Grid are restricted in that they can only be split to two
ibuted data structure on multidimensional data supporting range-queries,
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regions of equal size. So, their boundaries cannot take arbitrary val-
ues and are restricted to multiples of their size. Their size are also re-
stricted to negative powers of 2.

RAQ [19] is also another solution for the multidimensional case
which incorporates a distributed partition tree structure to partition
the space. Its network model is similar to that of the P-Grid [1].
Therefore, it requires OðhÞ links at each node and routes in OðhÞ hops
where h is the height of the partition tree which can be of OðnÞ for an
unbalanced tree. Although it has been shown [3] that even for such
unbalanced trees the number of messages required to resolve a
query still remains of Oðlog nÞ on the average, if the links are chosen
randomly, the number of links a node should maintain and the mem-
ory requirement at each node for storing information about the path
from that node to the root still remain of OðhÞwhich is as bad as OðnÞ
for unbalanced trees.

In this paper, we propose a new efficient scalable distributed data
structure called the SkipTree for storing the keys in multidimensional
spaces. Our system uses a distributed partition tree to partition the
space into smaller subregions with each network node being a leaf
node of that tree and responsible for one of the subregions. In contrast
to similar tree-based solutions, the partition tree here is used only to
define an ordering between the regions. The routing mechanism and
link maintenance is similar to that of SkipNet and is independent of
the shape of the partition tree, so in general our system does not need
to balance the partition tree (in fact, it has been shown [13] that such a
tree cannot be efficiently balanced by means of rotation). Our system,
maintains a SkipNet by the leaves of the tree in which the sequence of
nodes in the SkipNet is the same sequence defined by the leaves of the
partition tree from left to right. Handling a single key query is almost
similar to that of an ordinary SkipNet while range queries are quite
different due to the multidimensional nature of the SkipTree.

Briefly, our proposed structure supports point and range queries
for n nodes holding k-dimensional data, in Oðlog nÞ hops, with high
probability. For each node, we use Oðlog nÞ links to other nodes
which may lead to OðnÞmemory per node in the worst case. We pro-
pose modifications to the structures, so that the memory usage for
maintaining the link structure at each node is reduced to
Oðlog n log log nÞ on the average and Oðlog2nÞ in the worst case.

In Section 2 we explain the basic structure of the SkipTree
including the structure of the partition tree, its associated SkipNet
and the additional information to be stored in each node. In Section
3, the algorithms for single and range queries are explained. In Sec-
tion 4, the procedure for joining and leaving the network is de-
scribed. Some techniques for load balancing in SkipTree are
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Fig. 1. A sample two dimensional partition tree, denoted by T, and its corresponding s
using the line labeled with the same number. Each leaf of T is a network node respons
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discussed in Section 5. We modify the SkipTree structure in Section
6 to reduce the amount of information that needs to be stored in
each node about the partition tree.

In Section 7, we present experimental results that verify our
theoretical proofs. We also experimentally compare the perfor-
mance of SkipTree and RAQ for point and range query operations.
And finally, Section 8 concludes the paper.

A preliminary version of this paper appears in [4].
O
F

2. Basic skiptree structure

The distributed data structure used in the SkipTree consists of
two parts. First, a Partition Tree is used to divide the search space
among the nodes. This is described in Section 2.1. Then, as is
shown in Section 2.2, nodes are linked together using a technique
similar to SkipNet.
E
D

P
R

O2.1. Space partitioning

We assume that each data element has a key which is a point in
our k-dimensional search space. This space is split into n regions
corresponding to the n network nodes. Let SðvÞ denote the region
assigned to node v, a node which is responsible for every data ele-
ment whose key is in SðvÞ.

We use Partition Tree, a binary tree, to perform this assignment,
and denote it by T throughout this paper. The tree consists of
internal nodes and leaves. Only leaves in T represent the actual
nodes in our overlay network. Each internal node of T has a corre-
sponding section in the search space. Thus, we extend the defini-
tion of SðvÞ to also denote the region assigned to an internal
node v in this tree.

Assuming r is the root of our T; SðrÞ is always the whole search
space. Each internal node then recursively splits its region into two
smaller regions using a ðk� 1Þ-dimension hyperplane equation.
That is, if an internal node v has two children, l and r, which are
its left and right children respectively, SðlÞ will be the portion of
SðvÞ located on one side of the hyperplane specified by v and Sðr
will be the space to the other side. A sample partition tree and
its corresponding space partitioning are depicted in Fig. 1.

For a network node u, which corresponds to a leaf in T, we call
the path connecting the root of the tree to u the Principal Path of u.
We refer to the hyperplane equations assigned to the internal
nodes of T, that are on the principal path of a node u (including
1
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pace partitioning. Each internal node in T, labeled with a number, divides a region
ible for the region labeled with the same letter.
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Fig. 3. The nodes in each i-level ring are split between two ðiþ 1Þ-level rings. Solid
arrows, representing i-level links, form the i-level ring. Dashed arrows are the next
level links that form two disjoint ðiþ 1Þ-level rings.
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information about on which side of those hyperplanes u resides) as
the Characteristic Plane Equations of u or CPE of u for short. Every
node in the SkipTree stores its own CPE as well as the CPE’s of each
of the Oðlog nÞ nodes (leaves) it has routing links to. Given a point p,
and using the CPE information, every node u can locally identify if
it holds p, or p belongs to a node to the left or the right of u or to the
left or right of any other nodes it has links to (this becomes more
clear when we explain the structure of link connections among
the nodes.) The latter is useful in routing queries as explained in
Section 3.

Storing the CPEs, however, requires Oðh log nÞ memory at every
leaf node, where h is the height of the tree. While this is of Oðlog2nÞ
for a balanced tree, it may require as much as OðnÞ memory in the
worst case. We will provide a method for reducing the memory
requirement in Section 6.

2.2. Network links

We link the network nodes in the SkipTree together by con-
structing a SkipNet structure among the leaves of T described in
the previous subsection. However, using the SkipNet requires a to-
tal ordering to be defined on the nodes. We define this ordering to
be the order in which the nodes appear as the leaves of T from left
to right. We also make this sequence circular by considering the
rightmost leaf to be on the left of the leftmost leaf and visa versa.

In an SkipTree in its ideal form, a node v keeps 2log2n� 1 links
to other nodes. These are the 2ith nodes to the left and right of v for
every i from 0 to log2n as shown in Fig. 2. Unfortunately, maintain-
ing this structure is very inefficient when handling node arrivals
and departures. As a result, only an approximation to these ideal
links is maintained in SkipNet.

For a given i, if we start from any node and follow the links that
jump 2i nodes in a specific direction in the ideal form, we will find
a loop of length n=2i. Let us call this loop an i-level ring. There are
2ii-level rings. For example, there is only one 0-level ring, a circular
doubly-linked list that connects every node in the aforementioned
order. On the other hand, there are n last level rings consisting only
of individual nodes. As illustrated in Fig. 3, the nodes in each i-level
ring form exactly two disjoint ðiþ 1Þ-level rings. This is the prop-
erty that will be conserved when nodes are inserted into or deleted
from the SkipTree in Section 4.

Finally, we note that a real number pv is assigned to each node v.
pv is randomly generated when v joins the SkipTree so that
pa < pv < pb where a and b are respectively v’s predecessor and
U
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Fig. 2. The links maintained by node A in the ideal SkipTree. The target nodes are indepen
ith link in each direction skips over 2i�1 � 1 nodes in that direction.
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E
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Psuccessor nodes in the total ordering. This number is used in Sec-
tion 3.2 to handle range queries more efficiently.

3. Handling queries

Queries in a SkipTree can take two forms, either a single point
query or a range query. We will discuss them separately on the fol-
lowing subsections.

3.1. Single point query

Whenever a node in the network receives a single point query,
it must route it to the node which is responsible for the region con-
taining that point. The routing algorithm is essentially the same as
that used in the SkipNet. That is, every node receiving the query
along the path, sends it through its farthest link that does not point
past the destination node. This is shown in Fig. 4 where node S is
about to route a single point query to some unknown node X which
lies somewhere between node A and node B. Here, A and B are two
consecutive nodes in the list of nodes to which A has direct links to
B D YC E

i2

6 7 8

5

dent of the tree structure. The tree only helps us to put an ordering on the nodes. The

ibuted data structure on multidimensional data supporting range-queries,
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query to A. The distance to the destination node is at least halved at each hop.
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and are respectively at distances 2i and 2iþ1 from A for some i. S
routes the query to A and then A routes the query again in the same
way until the it reaches its destination node. Note that the distance
from A to the destination node is less than 2i, so the next hop is at
most 2i�1 nodes away from A. In fact, the distance of a query to the
destination node is at least halved at each hop. This implies that
the query reaches the destination after at most log2n hops. How-
ever, because SkipNet uses a probabilistic method for selecting
and maintaining the links in the network, it guarantees routing
in Oðlog nÞ hops w.h.p.1 A formal proof of this can be found in [8].

In order that above procedure is effective, node S receiving a
query point q must be able to identify whether the unknown node
responsible for q lies to its left or to its right side. This is where T

helps: S compares q against the planes in its CPE in the order they
appear, starting from the root until it finds the first plane where
the current node (u) and q lie on different sides of the plane. This
is where we know that q is contained in a region belonging to
the sibling subtree of u. If that subtree is a left (right) subtree, all
of its nodes as well as the node containing q must also be to the left
(right) of u. That is why every node in the network must also store
the CPE of its link nodes in addition to its own CPE to be able to
compare queries against its links too.

This procedure leads to Oðminðh log n;nÞÞmemory usage at each
node for storing the CPE, where h is the height of the tree. This may
be as bad as OðnÞ memory for an unbalanced tree. We will modify
the tree structure in Section 6 to overcome this problem and guar-
antee Oðlog h log nÞ memory usage at each node for the storage of
CPE, which means Oðlog n log log nÞ on the average and Oðlog2nÞ
memory usage in the worst case for an unbalanced tree.
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R3.2. Range query

A range query in the SkipTree is a 3-tuple of the form ðR; f s; lsÞ
where R is the query range and fs and ls are two real numbers
which define the range of nodes in the sequence of nodes to be
searched. That is, only the network nodes whose sequence num-
bers reside in the interval ½fs; ls� are searched. Using this form of
queries, one can perform a complete range query for a region R
using the 3-tuple ðR; �1; þ1Þ, so that all of the nodes are included
in the search regardless of their sequence number. Note that the
region defined by R can be of any shape as long as every node
can locally identify whether R intersects with its given assigned
region.

Handling a range query is very similar to that of a single point
query with some minor differences. Suppose that a node S receives
a range query ðR; f s; lsÞ. To handle this query, S breaks the range
query to several (at most Oðlog nÞ) new queries each targeting few-
er number of nodes. A range query is propagated to each of the
links maintained by S if there is node between that link and the
1 An event is said to be occurring with high probability (w.h.p) if for any constant
value of a the event occurs with a probability of at least 1� O 1

na

� �
.
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next link that intersects with R. In other words, assume that A
and B shown in Fig. 5 are two nodes corresponding to two consec-
utive links maintained by S. S sends a copy of the query to A if there
is a node between A and B that intersects R. Every such node, if any,
must reside in one of the crosshatched subtrees illustrated in the
figure. In fact, such a node must be to the right of the nodes marked
with + in T and to the left of the node marked with �. Because S
has all of CPEs corresponding to its links, it also has the plane equa-
tions corresponding to the internal nodes marked with a + or �
sign. So, it can easily identify from those equations the regions in
the multidimensional space associated with each of the subtrees
between A and B. From this information, it can determine whether
there is any subtree between A and B whose region intersects with
R. If there exits such a subtree, it must also contain a node whose
region intersects with R. In this way, a query is broken up by S to
several queries and is propagated until it reaches its targets.

Note that the fs and ls fields of the query can be modified appro-
priately before a copy of the query is sent through a link. The rea-
son is to restrict the sequence of nodes to be searched to prevent
duplicate queries. For example in Fig. 5, suppose that a copy of
the form ðR; f s; lsÞ is to be sent from S to A. Also assume that
A:seq and B:seq are the sequence numbers of A and B respectively.
Then, S computes the interval f 0s ; l0s

� �
as the intersection of ½fs; ls� and

½A:seq; B:seq� and it sends the query R; f 0s ; l0s
� �

to A. This will ensure
that no nodes in the network receives the query more than once.

For the above procedure, note that the length of the path that a
query travels through is of Oðlog nÞ regardless of the width of prop-
agation at each hop. The proof is basically the same as in the single
point query.

It is worth mentioning that this is the only place where se-
quence numbers are actually used. Sequence numbers make it pos-
sible to determine the relative ordering of two nodes of the
network without knowing their corresponding plane equations or
the regions they represent.
4. Node join and departure

Join and Departure operations are described in the following
subsections. For each operation the node has to perform two rela-
tively independent actions. Update T and update the network
connections.
329

330

331
4.1. Joins

To join the SkipTree, a new node v has to be able to contact an
existing node u in the SkipTree. v then splits the space assigned to u
using a new plane. This allows u to transfer the control of one of
the new regions along with its stored data items to v.

The algorithm is shown in function v:joinðuÞ of Fig. 6. In lines 1
and 2, the new node copies the CPE of the existing node. Then, a
new plane equation is generated to split the region formerly as-
signed to u. This plane can be arbitrarily chosen as our load balanc-
ing protocol will gradually change the partitioning to a more
balanced configuration. Each of the two nodes then selects one of
the two newly created regions. This is done in lines 3–5 by extend-
ing the principal paths using the add_to_cpe () function.

The provided algorithm inserts v immediately after u and
chooses the side of the plane containing the origin (ORIGIN_SIDE)
for u and the other side (OTHER_SIDE) for v. This will help us in
performing memory optimization in Section 6.

After updating T; v has to establish its network connections.
This is done by inserting v into approximately log n rings men-
tioned in Section 2.2. Starting with the level 0 ring, v randomly se-
lects one of the two level iþ 1 rings derived from the selected level
i ring until it reaches a ring in which there is no node except the
ibuted data structure on multidimensional data supporting range-queries,
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Fig. 6. Joining the SkipTree.
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new node itself. v then moves backward, inserting itself in each of
these rings with regard to the total ordering defined in Section 2.2
which is the same as using pv. The exact algorithm is described in
[8] and involves only Oðlog nÞ steps w.h.p.

Finally, u transfers the data items which are no longer in its as-
signed region to v in line 8. It also needs to send its new CPE to the
nodes that have links to u. This is done in line 9 using the doubly
connected links from u.

4.2. Departures

When node v is leaving the SkipTree, it has to follow three
steps. First, update the poartition tree; second, transfer its data
items to the appropriate nodes; and third, leave the SkipNet.

Suppose that v is responsible for region R and that the nodes
in its sibling subtree are collectively responsible for the region S.
Please cite this article in press as: S. Alaei et al., Skiptree: A new scalable distr
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In other words, the last plane in the node v’s CPE, called P, splits
its parent’s region into regions R and S. To update T, node v
sends a special range query to the nodes in region S and in-
structs them to remove the plane P from their CPE. This will
effectively remove v from T and shift every node in S one level
closer to the root by removing their common parent.

To transfer the data items, v can simply find the node responsible
for each item using a single point query and transfer the item accord-
ingly. However, a more efficient method is to create a collection of
the regions associated with every possible target node for v’s data
items and perform the single point queries for these items locally.
This collection can be created by asking every node (as part of the
previous special range query) in S to send its newly associated region
to v if this region intersects with R.

In the last step, v has to close its Oðlog nÞ connections. As [8] points
out, all pointers except the ones forming the level 0 ring can be re-
ibuted data structure on multidimensional data supporting range-queries,
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garded as redundant routing optimization hints and can be updated
using a background repair process similar to Chord and Pastry.
Therefore, v only needs to cleanly remove itself from the level 0 ring
before leaving the SkipTree.
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5. Load balancing

Many distributed lookup protocols use hashing to distribute
keys uniformly in the search space and achieve some degree of
load balance. Hashing cannot be used in the SkipTree as it makes
range queries impossible. As a result, a load balancing mechanism
is necessary to deal with the non-uniform key distribution.

Our load balancing protocol is derived from the Item Balancing
technique in [11]. Load balancing is achieved using a randomized
algorithm that requires a node to be able to contact random nodes
in the network. This can implemented either using the existing
network connections in SkipNet or using the underlying P2P rout-
ing framework. The second approach is preferred because of its
higher speed and lower network traffic.

Let li, the load on node i, be the number of data items stored on i
and a be a constant number so that a > 1. We will prove that the
SkipTree’s load will be balanced w.h.p. if each node performs a
minimum number of load balancing tests as per system half-life.2

Load Balancing Test: In a load balancing test, node i asks a ran-
domly chosen node j for lj. If lj P ali or li P alj; i performs a
load balancing operation.
Load Balancing Operation: Assume w.l.o.g that li < lj. First,
node i normally leaves the SkipTree using the algorithm given
in Section 4.2. Then, i joins the network once again at node j
and selects a hyperplane for the newly created internal node
in T in a way that the number of data elements is halved at
both sides of the hyperplane. This makes both li and lj to
become equal to half the old value of lj.

Theorem 1. [11] If each node performs Xðlog nÞ load balancing
operations per half-life as well as whenever its own load doubles, then
the above protocol has the following properties where N is the total
number of stored data items.

– With high probability, the load of all nodes is between N
8an and

16aN
n .

– The amortized number of items moved due to load balancing is
Oð1Þ per insertion or deletion, and OðN=nÞ per node insertion or
deletion.

The proof of this theorem using potential functions can be
found in [11].

6. Memory optimization

Throughout the previous sections we assumed that every node
in the network must store the CPE of each of Oðlog nÞ node to which
it maintains a link to, as well as its own CPE. As we mentioned ear-
lier, in a SkipTree of height h, this requires Oðh log nÞ memory for
each node. So, in an unbalanced SkipTree, a node may require
OðnÞ memory in the worst case. In this section, we enforce some
constraints on the plane equations that a node may choose when
joining the network and splitting another node, so that for a Skip-
Tree of height h only Oðlog hÞ of the plane equations of any CPE will
be needed.
2 A half-life is the time it takes for half the nodes or half the items in the system to
arrive or depart [14].

Please cite this article in press as: S. Alaei et al., Skiptree: A new scalable distr
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The constraints that we enforce are the following, We assume that
our search space is k-dimensional represented by ðx1; x2; . . . ; xkÞ.

1. Each plane must be perpendicular to a principal axis. That is, it
must take the form of xi ¼ c for some 1 6 i 6 k and some
value of c. This effectively means that every such plane parti-
tions the keys in the a subspace based on the value of xi for
some i. We put further constraints that a plane xi ¼ c associated
with an internal node of u partitions a SðuÞ into two smaller
region such that the region containing the points with xi 6 c
is assigned to the left subtree of u and the region containing
the points with c < xi is assigned to the right subtree of u.

2. In this constraint, we precisely define the plane equation that is
assigned to an internal node depending on the depth of that
node. To do this, we first introduce the following notations for
a node A in the SkipTree. Fig. 7 depicts some examples of these
notations for k ¼ 2.
ibuted
D
P
R

OdA: depth of A: the length of the principal path corresponding
to A plus one.

lA: level of A: lA ¼ log2
dA
k þ 1

� �l m
. This means that all nodes

with depths in the interval ½kð2i � 1Þ þ 1; kð2iþ1 � 1Þ� belong
to level iþ 1. This implies that on any principal path, the first
k nodes are in level 1, the next 2k nodes are in level 2, the
next 4k are on the next level and so on.
d0A: relative depth of A: is defined so that d0A ¼ dA � dB þ 1
where B is the highest node which has the same level as A,
or alternatively we can define d0A ¼ dA � kð2lA�1 � 1Þ.
sA: section number of A: sA ¼ d0A

2lA�1

l m
. This imply that nodes at

each level are partitioned to k sections: on the ith level of

any principal path, the first 2i�1 nodes have section number

1, the next 2i�1 nodes are in Section 2 and so on.
We are now ready to state the second constraint:If A is an internal
node, the plane equation assigned to A must be of form xsA ¼ c for
an arbitrary value of c. That is, for any given i, all of the nodes with
section numbers of i are assigned plane equations of the form
xi ¼ c. This implies that whenever a new node joins the SkipTree
and splits the region of another node, which leads to a new inter-
nal node of say u, the plane equation u must obey the above
schema. The only parameter that the new node can define to bal-
ance the load, when it splits a region, is the value of the constant c
which should be enough for that purpose.A typical 2-dimensional
space partitioned under the above constraints and its associated
tree are shown in Fig. 8.
474

475

476
Lemma 1. In any principal path of length h, nodes are partitioned to
at most k log2

h
k þ 1
� �� 	

different sections.

Proof. Since we defined the level of a node at depth d to be
log2

d
kþ 1
� �� 	

, nodes in any principal cannot be partitioned to more
than log2

h
k þ 1
� �� 	

levels. Nodes at each level are further parti-
tioned to k sections so there can be at most k log2

h
kþ 1
� �� 	

sections
in any principal path. h

Lemma 2. For any leaf node A in a SkipTree, A needs to store only two
plane equations for each section of its principal path.

We call the sequence of the pairs of plane equations that node A
stores, the Reduced-Characteristic Plane Equations of node A or for
short the RCPE of node A.

Proof. All of the planes on the same section partition the space
based on the value of the same field xi. For example in Fig. 8, in
Section 1 in the 3rd level of principal path of A, all of the internal
data structure on multidimensional data supporting range-queries,
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nodes are assigned a plane equation of the form y ¼ c for different
values of c and the region associated with node A or any other leaf
for that matter is between at most two of the planes of that section.
That is, for every section in the principal path for any node A, there
are at most two planes which best represent the region in which
SðAÞ lies. So for each of the sections, A needs to store an inequality
of the form a 6 xi < b. Therefore, an RCPE can be stored as an
ordered sequence of inequalities of the form a 6 xi < b, one for
each section in the principal path. h

When a node like A receives a point query, it finds the first inequal-
ity in the RCPE sequence that does not hold for the queried point.
Then, the first constraint introduced above, ensures that the destina-
tion node which is responsible for the queried point will be to the left
of the current node, if the point is to the left of the interval repre-
sented by the first unsatisfied inequality, or to the right of the current
node otherwise. The situation with range queries is quite similar.

The sequence of inequalities in the RCPE for the node A in Fig. 8
is shown bellow:
Please cite this article in press as: S. Alaei et al., Skiptree: A new scalable distr
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– level = 1, section = 1: c0 6 y < þ1
– level = 1, section = 2: c1 6 x < þ1
– level = 2, section = 1: c0 6 y < c3

– level = 2, section = 2: c4 6 x < c5

– level = 3, section = 1: c8 6 y < c9
6.1. Node join and departure

Joining mechanism is the same as what we described before, ex-
cept that a new node must obey the above mentioned constraints.
However leaving is a bit tricky since when some node A is about to
leave, it must remove the internal node v which is its direct parent.
This causes the plane associated with v to be removed from the
RCPE of all nodes in its sibling subtree as well. This causes a prob-
lem only when v does not belong to the last level in the principal
path of some node B in its subtree. In such case, removing v will
contradict the second constraint of memory optimization we men-
tioned above.
ibuted data structure on multidimensional data supporting range-queries,
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To overcome this problem, A sends a special form of range query
containing the region associated with its sibling (u) subtree (refer to
Fig. 9.) By this special query it tries to find some node X in u’s subtree
such that the sibling subtree of X does not contain a node whose level
is greater than that of X. Such a node X must always exist. For exam-
ple the lowest node in the u’s subtree of A always has the desired
property. A will choose the left-most node with such property.
Now, A and X swap their roles. That is, they swap their associated re-
gions as well as the keys that they store and their position in the
SkipTree. After this swapping, A will be in place of the X in the Skip-
Tree so it can then leave the network with no problem, using the pro-
cedure described in the previous sections.

6.2. Complexity

The memory requirement of any node A for storing its RCPE as
well as the RCPE of its links as described earlier is of Oðlog h log nÞ
where h is the height of the tree which is a major improvement over
the Oðminðh log n;nÞÞmemory requirement in the default case.

In addition to the memory requirement guarantee, the con-
straints that we enforced in Section 6, guarantee the following
strong invariant on the distribution of planes in each direction
for every principal path:

Theorem 2. For every principal path in a SkipTree if mi is the number
of plane equations of the form xi ¼ c and mj is the number of plane
equations of the form xj ¼ c for possibly different values of c, then the
inequality mi 6 2mj þ 1 must always hold.

Proof. For every principal path in a SkipTree, there are equal num-
ber of plane in each direction at each level except possibly for the
last level (the level with highest number, that is the level of the
lowest part of the path), because every level except the last level
consists of exactly k different sections of equal size with all of
the plane of each section being in the same direction. Besides,
the number of planes in a single section at the ith level is 2i�1, so
if a principal path consists of r levels, for each direction, the total
number of planes in that direction at all levels except the last level
is 20 þ 21 þ 22 þ � � � þ 2l�2 which is 2l�1 � 1. Also, for each direction,
the number of planes in that direction at the last level is between 0
to 2l�1. So, in any principal path, for each direction, the total num-
ber of planes in that direction at all levels is between 2l�1 � 1 to
2l � 1 and the above inequality obviously results. h
U
N

C
O

R 571

A

v

u

X

B

Fig. 9. Departure of A may cause a problem, if v is not in the last level of some node
B in its subtree. To overcome, A and X are swaped where X is the left-most of a node
that does not have this problem, then the new A is removed.
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most uniformly in each direction which is an advantage over the
default case where the plane equations are chosen randomly.

7. Simulation results

For experimentation, we used a simulated case with 25 to 217

nodes. The network started with one node and extended as the
new nodes were inserted. We used a 64-dimensional vector of real
numbers as our data space (in reality the fields of a database record
could be of some other type like integer, string, etc. however as
long as we can define a total ordering on the values of a field we
do not care about its actual type, so we have used real numbers
for all the 64 fields.) We note that the complexity and the depth
of the query propagation is not dependent on the dimension of
the data, neither is it dependent on the number of records (points)
in our database. They will however affect the performance of the
system but that is only proportional to the size of the result of
the query.

As shown in Fig. 10, the number of links for each node is loga-
rithmic in the size of the network. Also, Fig. 11 shows the maxi-
mum size of CPE for each node which is clearly Oðlog nÞ.
Fig. 11. Maximum CPE size per node for networks of different sizes.

ibuted data structure on multidimensional data supporting range-queries,
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Figs. 12 and 13 respectively show the average depths of point
and range queries which match our claims. For range queries, we
have used ranges of approximately one third of the dimension
size that were randomly spread throughout each dimension. This
size and the randomness were the same for different network
sizes. Also the total space size for different networks was as-
sumed to be equal. Therefore, the number of nodes involved in
a range query is increased for larger network sizes as shown in
Fig. 14.

In another experimentation, we chose RAQ [19], a multidimen-
sional non-DHT based P2P structure that efficiently supports point
and range queries which is comparable to SkipTree. There are
many DHT-based P2P systems that do not support range queries,
and we thus found not suitable to compare. We compared the
average number of hops needed for point and range queries of
SkipTree and RAQ for different network sizes. The results are
shown in Figs. 15 and 16 in logscale plots. Although these two sys-
tems perform logarithmically in terms of network size, as claimed
by both works, we found out SkipTree is much faster as shown in
the figures.
U
N

C
O

R

Fig. 13. Average depths of range queries.
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8. Conclusion and future work

In this paper we introduced SkipTree which is designed to han-
dle point and range queries over a multidimensional space in a dis-
tributed environment. Our data structure maintains Oðlog nÞ links
for each node and guarantees an upper bound of Oðlog nÞmessages
w.h.p for point queries and also guarantees range queries with
depth of Oðlog nÞ message w.h.p. It improves the previously pro-
posed data structures for multidimensional space which were
based on binary trees in the following aspects:

– Links: every node in a SkipTree keeps track of Oðlog nÞ links
regardless of the shape of the tree in contrast to other tree based
structures where each node should keep track of OðhÞ links, where
h (the height of the tree) can be of OðnÞ for an unbalanced tree.

– Query depth: the maximum depth of a point and range query in a
SkipTree is of Oðlog nÞ regardless of the shape of the tree, in con-
trast to other tree based structures where a query may travel
OðhÞ hops in the worst case where h can be of OðnÞ for an unbal-
anced tree.
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– Memory requirement: using the memory optimization of Section
6, each node needs only to store the RCPE of itself and its links
that requires Oðlog h log nÞ which is quite an improvement over
memory requirement of similar tree-based structures in which
each node maintains information for every node along its prin-
cipal path which requires OðhÞ memory that can be as bad as
OðnÞ for unbalanced trees.

In addition to the above improvements, we also adapted some
load balancing techniques to improve our data structure. However
it seems that the load balancing procedure and the memory optimi-
zation technique may be conflicting. In fact in some situation the
node swapping method described in Section 6.1 may cancel out
the effect of the load balancing method. This is one important area
which needs further investigation. Another important area which
needs further improvement is on the fault tolerance of the structure
in presence of node failures. Also, as mentioned above load balanc-
ing and memory optimization need more improvements.

We presented some experimental results that verify our theo-
retical proofs. We also compared the performances of SkipTree
and RAQ for point and range queries.
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