
Computational Geometry 39 (2008) 78–90

www.elsevier.com/locate/comgeo

Query point visibility computation in polygons with holes ✩

Alireza Zarei a,1, Mohammad Ghodsi a,b,∗,2

a Computer Engineering Department, Sharif University of Technology, Tehran, Iran
b IPM School of Computer Science, Niavaran, Tehran, Iran

Received 11 July 2005; received in revised form 1 October 2006; accepted 2 February 2007

Available online 29 April 2007

Communicated by P.G. Spirakis

Abstract

In this paper, we consider the problem of computing the visibility of a query point inside polygons with holes. The goal is to
perform this computation efficiently per query considering the cost of the preprocessing phase. Our algorithm is based on solutions
in [A.L.P. Bose, J.I. Munro, Efficient visibility queries in simple polygons, Computational Geometry: Theory and Applications 23
(3) (2002) 313–335] and [M.T.B. Aronov, L. Guibas, L. Zhang, Visibility queries and maintenance in simple polygons, Discrete
and Computational Geometry 27 (4) (2002) 461–483] proposed for simple polygons. In our solution, the preprocessing is done in
time O(n3 logn) to construct a data structure of size O(n3). It is then possible to report the visibility polygon of any query point q

in time O((1 + h′) logn + |V (q)|), in which n and h are the number of the vertices and holes of the polygon respectively, |V (q)|
is the size of the visibility polygon of q, and h′ is an output and preprocessing sensitive parameter of at most min(h, |V (q)|). This
is claimed to be the best query-time result on this problem so far.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Visibility polygon; Visibility decomposition; Polygon with holes

1. Introduction

Two points inside a polygon are visible from each other if their connecting segment remains completely inside
the polygon. The visibility polygon of a point q , called V (q), in a polygon P is defined as the set of points in P
that are visible from q . The problem of finding V (q) of a point q has been considered for two decades. For simple
polygons, linear time optimal algorithms have been proposed [4,5,8,10]. For polygons with holes, the worst case
optimal algorithms in O(n logn) time were presented in [1] and [17]. This was later improved to O(n+h logh) in [6].

✩ A preliminary version of this paper appeared in proceedings of the 21st Annual Symposium on Computational Geometry, Pisa, Italy, 2005
[A. Zarei, M. Ghodsi, Efficient computation of query point visibility in polygons with holes, in: Proc. 21st Annual Symposium on Computational
Geometry, ACM, 2005, pp. 314–320].

* Corresponding author at: Computer Engineering Department, Sharif University of Technology, Tehran, Iran.
E-mail addresses: zarei@mehr.sharif.edu (A. Zarei), ghodsi@sharif.edu (M. Ghodsi).

1 This author’s work has been partly supported by Iran Telecommunication and Research Center (ITRC).
2 This work has been partly supported by a grant from IPM school of CS (No. CS1385-2-01).
0925-7721/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.comgeo.2007.02.005

A. Zarei, M. Ghodsi / Computational Geometry 39 (2008) 78–90 79
The query version of this problem in polygons with holes has been considered by few. The visibility complex
and visibility decomposition are two methods of performing the preprocessing step. The visibility complex was first
presented in [14], in which V (q) of any query point q can be reported in time O(|V (q)| logn) with O(n logn) pre-
processing time and O(n) space. This is the best result so far for polygon with holes. In comparison, our method uses
more preprocessing time and space, but the query is performed more efficiently in most cases.

The notion of visibility decomposition is to decompose the polygon into “visibility regions” so that all points
in a single such region have equivalent visibility polygons. Two visibility polygons are equivalent if they both are
composed of the same sequence of vertices and edges from the underlying polygon. In the visibility decomposition, the
visibility regions are determined in the preprocessing phase and their visibility polygons are computed and maintained
in a proper data structure. For any query point q , V (q) can then be obtained by refining the visibility polygon of the
region that contains q .

Using visibility decomposition in a simple polygon with n vertices, V (q) can be reported in time O(logn+|V (q)|)
by O(n3 logn) of preprocessing time and O(n3) space [9,13]. Another improvement to this result was done in [2]
where the preprocessing time and space were reduced to O(n2 logn) and O(n2) respectively, at the expense of more
query time of O(log2 n + |V (q)|).

In this paper, we apply the visibility decomposition to polygons with holes with some extensions. In an overall view,
our algorithm adds some new diagonals to our polygon (called cut-diagonals) so that the polygon can be unfolded
along these diagonals and converted into a simple polygon. Then, we use an existing algorithm on the simple polygons
(one of [9] or [13]) to compute a preliminary version of the V (q), denoted as Vs(q). Vs(q) is then refined to find the
final V (q). Performing this refinement step efficiently is the main contribution of this paper.

The preprocessing needed for the refinement step is done by constructing a data structure for each cut-diagonal
so that the visible portions of the polygon, from an arbitrary query point, through that cut-diagonal can be obtained
efficiently. Having these structures, any segment of the cut-diagonals which appears in Vs(q) is replaced by the
portions of the polygon that are visible through that segment. This process continues until no cut-diagonal is remained
unrefined in Vs(q).

For a polygon of total n vertices and h holes, our algorithm needs the preprocessing time of O(n3 logn) and space
of O(n3). Any query can be handled in time O((1 + h′) log(n) + |V (q)|) in which h′ is an output and preprocessing
sensitive parameter of at most min(h, |V (g)|).

In the rest of this paper and in Section 2, the visibility decomposition will be applied to polygons with holes and its
time and space complexities are analyzed. In Section 3, the new algorithm will be presented. This algorithm is later
improved in Section 4.

2. Visibility decomposition

Let P be a polygon with h holes H1,H2, . . . ,Hh. Also let q be the query point for which the visibility polygon
V (q) is to be computed. A visibility decomposition of P (or v-decomposition(P)), is to partition P into a set of
smaller visibility regions R, called v-regions, such that for each region A ∈ R, the same sequence of vertices and
edges of P , called A’s visibility sequence (or v-sequence(A)), are visible from any point in A.

To construct a v-decomposition(P), we first identify the boundary segments of its regions R and then construct
a subdivision from these segments. The boundary segments are either the edges of P , or segments that are called
windows. As shown in Fig. 1, a window uu′ is an extension of the segment between two mutually visible vertices u

and v. The points below the window uu′ are not visible from v, while the upper points are. It is easy to prove that no
other kinds of segments are involved in construction of the v-decomposition. More details on the properties of such a
decomposition can be found in [13] and [2]. In these papers, the v-decomposition is only defined on simple polygons.
However, it is straightforward to apply this notion on polygons with holes too.

Furthermore, some proved properties are also valid for the general polygons. The main properties of this decom-
position are as follows: the v-regions are convex, v-sequences of two adjacent v-regions differ in only one vertex, and
all points of a v-region have equivalent visibility polygons.

Lemma 1. The number of the v-regions of a polygon with holes P is O(n4) and this bound is tight.

80 A. Zarei, M. Ghodsi / Computational Geometry 39 (2008) 78–90
Fig. 1. uu′ is a window of the polygon.

Fig. 2. A polygon with O(n4) v-regions and sinks.

Proof. Each vertex of P can be an endpoint of at most n different windows. Hence, the number of all windows is
O(n2). Any two windows can intersect which will lead to at most O(n4) v-regions. This bound is tight as shown in
Fig. 2. �

It is easy to see that the v-sequences of two adjacent v-regions in a simple polygon differ only in a single vertex
which is visible from the points of one region and is invisible from the other. This fact helps reduce the space com-
plexity of maintaining the v-sequences of the v-regions in simple polygons. This is done by defining the sink regions.
A region is sink if the size of its v-sequence is smaller than that for any of its adjacent regions. It is therefore sufficient
to only maintain the v-sequences of the sinks, from which the v-sequences of all other regions can be computed. This
is done by constructing a directed dual graph over the v-regions and maintaining the difference between v-sequences
of adjacent v-regions as the label of the edges of this graph [9,13].

In a simple polygon, there are O(n2) sinks. This reduces the space requirement of v-decomposition of a simple
polygon to O(n3). Unfortunately, the above property does not hold for polygons with holes.

Lemma 2. The space complexity of maintaining the v-sequences of the regions in a polygon with holes is O(n5).

Proof. This bound is trivially true, because the number of v-regions is O(n4) and any one of these regions can have a
v-sequence of size O(n). On the other hand, Fig. 2 shows a polygon with O(n4) sink regions each with v-sequences of
size O(n). Along each edge of a region, like abcd in this figure, a vertex is visible which is invisible inside that region.
Hence, getting out of this region from each side, increases the v-sequence. Therefore, any one of the v-regions, like
abcd, contains at least one sink. This leads to the space complexity of O(n5), since there are O(n4) sink regions. �

By computing the v-regions R of P and maintaining their v-sequences, V (q) of an arbitrary point q inside P can
be computed as follows: A point location structure is built over the v-regions. From this, the region r(q) containing
q can be found in time O(logn). The v-sequence (r(q)) is then traced and refined to exactly compute V (q). This
refinement takes a linear time in terms of the size of V (q) [13]. Therefore,

A. Zarei, M. Ghodsi / Computational Geometry 39 (2008) 78–90 81
Fig. 3. Computing V (q) inside a polygon with holes: (A) The original polygon P , (B) the cut-diagonals to produce a simple polygon Ps , (C) the
visibility polygon Vs(q) targeted at Ps , (D) extra segments of P viewed from q through the cut-diagonals, and (E) the final V (q) in P .

Theorem 1. Using O(n5 logn) time to preprocess a polygon P and maintaining a data structure of size O(n5), it is
possible to report V (q) in time O(logn + |V (q)|).

Proof. We first compute the V (r) for each vertex r of P [17]. All windows can then be found in time O(n2 logn).
The v-decomposition and its dual graph can be constructed in time O(n4 logn) [3]. The point location structure on
the v-decomposition can be constructed in time O(n4 logn) [7,11,15,16]. Since, there can be O(n4) sinks, computing
the v-sequences takes O(n5 logn) time and the size of any one of these v-sequences can be O(n). Hence, the total
preprocessing time is O(n5 logn) and the size of the required data structure is O(n5). V (q) can be found in time
O(logn + |V (q)|) as described above. �
3. The proposed algorithm

Clearly, the time and space complexities of the previous algorithm is too high and it is not acceptable in all appli-
cations. In this section we present a new algorithm that needs less preprocessing time and space at expense of more
cost of query time.

The first step of this algorithm is to convert the initial polygon P into a simple polygon Ps . This is done by inserting
some diagonals, known as cut-diagonals, with an unfold process over these cuts. Vs(q) in Ps is computed using an
algorithm in [9,13]. After a refinement process, the final V (q) is computed from Vs(q). A SEE-THROUGH procedure,
to be described in Section 3.2, performs this refinement process.

Fig. 3 depicts an example of the algorithm. The original polygon P and its simple version Ps are shown in parts
(A) and (B) respectively. V (q) in Ps , denoted by Vs(q) is computed as shown in part (C). There are portions in P
that are visible from q through the cut-diagonals of Vs(q) which are shown in part (D). These portions are computed
(recursively) by the SEE-THROUGH algorithm to replace the cut-diagonals of Vs(q) which leads to the final V (q), as
shown in part (E).

The details of the algorithm is described in the following subsections.

3.1. Creating a simple polygon from P

We produce a simple polygon Ps from P by eliminating its holes. One hole, say H , in P can be eliminated by
adding a cut-diagonals connecting a vertex of H to a vertex of P in its outer boundary. Cutting P along these diagonals
produces another polygon in which H is no longer a hole. We continue this process on this new polygon to eliminate
all holes. A cut-diagonal should lie completely inside P and should not intersect any other holes. This can be enforced
if we eliminate the leftmost hole first; i.e., the hole with the smallest x-coordinate of its leftmost corner.

For P with total of n vertices and h holes, Ps will have n + 2h vertices. We know that the upper bound of h is
�n−3�. Hence, the number of the vertices of Ps is also O(n).
3

82 A. Zarei, M. Ghodsi / Computational Geometry 39 (2008) 78–90
Fig. 4. The imaginary replacement of u1u2 by v1v2 in SEE-THROUGH(H).

The conversion algorithm described above can be done by first triangulating the polygon and then selecting the
proper cut-diagonals, which can be done in O(n logn) [12].

3.2. The visibility through cut-diagonals

As mentioned before, an important step in our approach is the SEE-THROUGH algorithm that updates the Vs(q) on
Ps . This step finds new segments of edges in P which are visible from q through the cut-diagonals. We use the idea
presented in [2], which shows that in a simple polygon P of size n and a diagonal that cuts P into two parts, L and
R, one can use an O(n2 logn) preprocessing time algorithm to construct a data structure of size O(n2) so that, for any
query point q ∈ R, the partial visibility VL(q) through the diagonal can be reported in O(logn + |VL(q)|) time. This
is also true when a portion of the diagonal is visible to q and that portion is known.

This result can also be used for our purpose with a simple justification. Assume that P has only one hole Hi which
has been eliminated by one cut-diagonal u1u2, as shown in Fig. 4. For any query point q , we intend to find the set
of segments of edges in P that are visible from q through u1u2. Continuing u1u2 through Hi will lead to another
segment v1v2 such that v1 is on Hi and v2 is the first encounter of this segment with the boundary of P . Now, suppose
that the cut-diagonal u1u2 is replaced by v1v2. Obviously, cutting P along v1v2 (instead of along u1u2) will produce
another simple polygon, called P ′

Hi
, for which u1u2 is an internal diagonal. We can now use the method in [2] to

preprocess P ′
Hi

and build an appropriate data structure so that for any query point q , we can find the segments of P ′
Hi

that are visible from q through u1u2. These segments are denoted as VHi
(q). Since, no parts of v1v2 is visible from q

through u1u2, VHi
(q) is the set of segments we are looking for. We denote this method by SEE-THROUGH(Hi).

This algorithm can be extended to more holes by performing SEE-THROUGH(Hi) once for each Hi assuming
that P has effectively been cut along the cut-diagonals of other holes, which leads to a polygon with only one hole
Hi . Therefore, we have h data structures resulted from these preprocessing steps. Given the query point, the extra
segments of P visible from q through all the cut-diagonals is found by recursively using SEE-THROUGH for each
cut-diagonal appearing somewhere in Vs(q).

3.3. The algorithm

The preprocessing phase of the algorithm is done as follows:

(a) Add all cut-diagonals to produce the simple polygon Ps , as described in Section 3.1.
(b) Preprocess Ps and create the data structure so that Vs(q) of any arbitrary query point q in Ps can efficiently be

reported. This step is done as [13]; a simple polygon P can be preprocessed in O(n3 logn) time and O(n3) space
such that given an arbitrary query point q inside the polygon, O(logn+|V (q)|) time is sufficient to recover V (q).

(c) For each hole, Hi perform SEE-THROUGH(Hi) to preprocess the polygon, so that for any query point q , VHi
(q)

can be computed efficiently.

Doing the above preprocessing steps, V (q) of any query point q is computed as follows. The data structure built
at step (b) of the preprocessing phase is used to find Vs(q), the set of segments viewed by q in Ps . Suppose that a
segment u′v′ of a cut-diagonal uv associated with a hole Hi is a part of Vs(q). Since the endpoints of u′v′ are known,
the preprocessing of step (c) is used to find VHi

(q), the extra segments viewed through u′v′. The segment u′v′ in Vs(q)

A. Zarei, M. Ghodsi / Computational Geometry 39 (2008) 78–90 83
is then replaced by VHi
(q). This is continued for any such segments in Vs(q), and is finished without encountering

any loops, due to the nature of visibility. What remains at the end is V (q), and this is easy to prove. The reason is that
any visible segment is either visible directly or through some cut-diagonals which is found in both cases.

Lemma 3. The preprocessing time and space complexities of the algorithm are O(n3 logn) and O(n3), respectively.

Proof. Time complexity of the preprocessing of step (a), as described in Section 3.1, is O(n logn). Also, the resulting
polygon Ps has O(n) vertices. The time and space complexities of step (b) are O(n3 logn) and O(n3), respectively
[13].

As described in Section 3.2, the preprocessing time for any cut-diagonal is of size O(n2 logn) and the size of its
data structure is O(n2). There are at most O(n) such diagonals in P , one for each hole. Thus, the total preprocessing
time to construct the cut-diagonal data structures is O(n3 logn) and they require O(n3) space. Therefore, the total
preprocessing time of the algorithm is O(n3 logn) and the prepared data structures require O(n3) space. �
Lemma 4. The query time to report V (q) is O(logn+h′ logn+h′ + |V (q)|) where h′ is the number of cut-diagonals
appearing in Vs(q) during the algorithm.

Proof. A point location of time O(logn) is done to find the location of q in Ps and Vs(q) can be built in O(|V (g)|)
time. For any one of the h′ cut-diagonals appearing in Vs(q), a point location of size O(logn) is required to run the
SEE-THROUGH algorithm to find VHi

(q). The cut-diagonal is then substituted in Vs(q) by VHi
(q) in O(|VHi

(q)|)
time. The number of the edges that appear in the initial Vs(q) and all VH−i (q)’s is the size of the final visibility
polygon V (q) plus the number of the cut-diagonals appeared in Vs(q) and then removed, which is h′. �
Lemma 5. The upper bound of h′ is O(h2) and this bound is tight.

Proof. The cut-diagonals do not intersect each other except at their end-points. Therefore, if a query point q sees
a cut-diagonal l through another cut-diagonal l′, then it is impossible for q to see l′ through l. Also, only a single
segment of another cut-diagonal can directly be seen from a query point through another cut-diagonal. By directly we
mean that there is no other intermediary cut-diagonals between them. Hence, the upper bound of h′ is O(h2). Fig. 5
shows a sample with tight bound of h′. �

The value of h′ for a query point depends on the position of the point and the cut-diagonals, and the upper bound of
h′ is reached in special cases. However, h is O(n) and therefore, the upper bound of h′ is O(n2), which theoretically is
too weak. In the next section, we will improve the algorithm and overcome this weakness. This improvement reduces
the upper bound of h′ to min(h, |V (q)|) without increasing the preprocessing time and space complexities.

4. Improving the algorithm

As shown in Fig. 5, in some cases, the process of a cut-diagonal e1 (i.e., SEE-THROUGH(e1)) does not directly
change the final visibility polygon; the algorithm takes useless action on e1 and moves one step further to another cut-
diagonal, like e2. It would have obtained the same result, if it had skipped e1 and started from e2. We will show that

Fig. 5. A polygon with a tight bound of h′.

84 A. Zarei, M. Ghodsi / Computational Geometry 39 (2008) 78–90
Fig. 6. The cut-diagonal e is q-ineffective for any q in the gray region shown.

the upper bound of h′ occurs only when there are many of these cases. If we preprocess to skip these ineffective cases,
the upper bound of h′ is shown to reduce effectively. For this purpose, we prepare another data structure by which
these ineffective intermediate cut-diagonals can be skipped. A cut-diagonal e is called q-ineffective if processing e

only replaces a segment of another cut-diagonal with that in e. Otherwise, e is q-effective. In Fig. 6, processing e is
equivalent to substituting it with another cut-diagonal l2 and therefore it is q-ineffective (for the shown q).

As shown in Fig. 6, a query point q , views a portion of a cut-diagonal l1 through an angle α, which is constrained
by two reflex vertices. These vertices may be the endpoints of l1 or reflex vertices of P that lie between q and l1. In
this figure, u and v are the reflex vertices associated with q and l1.

In our algorithm, l1 is in Vs(q) (actually, a segment of l1 is) which must be replaced by applying SEE-THROUGH.
This will replace l1 by another cut-diagonal e. Applying SEE-THROUGH on e will further replace e by another cut-
diagonal l2. Finally, SEE-THROUGH on l2 replaces l2 by l3 and an edge of P . Therefore, we could have started with
l2 as if l1 and e never existed. This is true for all points q in the polygon whose visibility angle is bounded by u and
v and the lines qu and qv extend within angles γ and θ , respectively. The region containing these points is shown in
gray in Fig. 6.

To ignore ineffective cut-diagonals, for any pair of reflex vertices, a data structure is maintained so that, for any
query point q , it efficiently determines the first q-effective cut-diagonal. For each reflex vertex v, we first compute
the different angular ranges around v through which an observer sees different segments of P . Parameters δ and θ are
examples of such ranges for reflex vertex v in Fig. 6. These ranges are produced by connecting v to the vertices of P
that are visible from it. These ranges produce a radial decomposition of P around v which is referred to as RDv . To
avoid degenerate cases, we assume that no three vertices of P are collinear.

For each pair of reflex vertices u and v, another data structure, denoted as VRu,v (for Visibility Ranges), is built
over these vertices’ radial decompositions. In this data structure, VRu,v(α,β) is the first effective cut-diagonal to all
points whose lines of sight lie within the ranges α of u and β of v. For each (α,β), so that α and β are two angular
ranges of RDu and RDv respectively, VRu,v(α,β) is computed and maintained.

These data structures are prepared in the preprocessing phase. For any query point q that sees a cut-diagonal
through the reflex vertices u and v, we compute the ranges α and β which respectively are the ranges in which the
extensions qu and qv lie. Having (α,β), its associated q-effective cut-diagonal, VRu,v(α,β), is found from VRu,v

and reported as the first q-effective cut-diagonal, which must be processed by the SEE-THROUGH procedure.
Clearly, P can have O(n) reflex vertices and the size of RDv for any reflex vertex v can be O(n). Hence, there can

be O(n2) pairs of reflex vertices u and v for which VRu,v must be maintained. Naively, according to the size of RD,
any one of the VR data structures can be of size O(n2), and thus, the total size of VR’s is O(n4).

In the next subsection, we prove that maintaining the O(n) entries of VRu,v is sufficient to find VRu,v(α,β) for
any values of α and β . So, the total space requirement of these structures is reduced to O(n3).

4.1. Space complexity of VRu,v

Assume that a query point q sees a cut-diagonal l whose visibility is limited by reflex vertices u and v and the
supporting lines of qu and qv cross through α and β ranges of RDu and RDv , respectively. According to the definition
of VRu,v , the value of VRu,v(α,β), for some values of α and β is equal to l itself and it is not necessary to store these
entries of VRu,v . In addition, qu and qv do not intersect each other and whenever they cross through the α and β

ranges, these ranges must be divergent. By divergent we means that the lower bounding line of the right angle does

A. Zarei, M. Ghodsi / Computational Geometry 39 (2008) 78–90 85
Fig. 7. Only O(n) entries of VRu,v are not empty.

not intersect the upper bounding line of the other. Two ranges are either divergent or convergent. Therefore, the entries
of VRu,v(α,β) for convergent values of α and β are not important and thus are not maintained. Moreover, the values
of some entries can be derived from the values of other entries and thus, it is not required to maintain them in VRu,v .
These entries are specified in the second option of the proof of the next lemma.

Lemma 6. It is sufficient to maintain O(n) entries of VRu,v . Other entries can be obtained from them. Therefore, the
size of VRu,v for any pair of reflex vertices is O(n).

Proof. Consider the reflex vertices u and v for which VRu,v is to be constructed. If the segment uv intersects P , then
it is impossible for u and v to be the bounding vertices for the vision of a query point. Therefore, it is not required
to maintain VRu,v in such situations. So, we assume that this segment is contained completely inside P . The RD
ranges of u and v are considered in counter clockwise order and are nominated according to Fig. 7. According to this
nomination, the range i of vertex u is bounded from above by segment ui, in which i is a vertex of P . However, RDu

has such ranges only for those vertices of P which are visible to u.
Assume that the entry VRu,v(i, j) is not empty and its value is l. This means that for any query point q , that qu

and qv extend within the i and j ranges of RDu and RDv , respectively, all of the cut-diagonals that lie between l and
uv are q-ineffective.

In addition, assume that i and j are the locally farthest apart so that there is no range i′ of RDu before i with non-
empty entry of VRu,v, (i, j

′) and no range j ′ of RDv after j with nonempty entry of VRu,v(i, j
′). These assumptions

lead to the following conclusions:

1. The region uu′v′v does not contain any vertex of P and has no intersection with edges of P . This is a trivial result
of the existence of l as the value of VRu,v(i, j).

2. For any range s of v lying before j and any range t ′ of u that exists after i such that s and t ′ are not convergent,
VRu,v(t

′, s) is equal to l or another cut-diagonal l′ that lies farther than l from uv. If the value of this entry of
VRu,v is equal to l, then there is no need to be maintained and can be induced from the value of VRu,v(i, j). We do
not maintain such unnecessary entries in VRu,v and leave them empty. When we search the value of VRu,v(α,β)

for nonconvergent α and β , the value of VRu,v(i, j) is returned in which i is the greatest range of u lying before
α, j is the smallest range of v lying after β , and VRu,v(i, j) exists.

3. For any range s before j and ranges t and t ′ before and after range i respectively, only one of the VRu,v(t, s) and
VRu,v(t

′, s) can be nonempty. The reason is that the entry VRu,v(t
′, s) can be nonempty only if s exists on the

right side of the range i (see Fig. 7). If the entry VRu,v(t, s) is also nonempty with value l′, which is distinct from
l, because of the maximality of l, then l and l′ must intersect or the right end-point of l, that is a vertex of P , must
exist between l′ and uv. However, none of these conditions is possible.

4. For any range t ′ after i and ranges s and s′ before and after range j respectively, only one of the VRu,v(t
′, s) and

VRu,v(t
′, s′) can be nonempty. The proof is the same as above.

5. For any pair of ranges i and i′ of u there is at most one range j of v such that both of VRu,v(i, j) and VRu,v(i
′, j)

are nonempty. This is a trivial result of the above two items.

86 A. Zarei, M. Ghodsi / Computational Geometry 39 (2008) 78–90
Fig. 8. VRu,v(α,β), VRu(α,α′) and VRv(β ′, β) are equal.

Fig. 9. ss′ and t t ′ segments cannot differ and must be a single cut-diagonal.

The last conclusion implies that there are at most 2n nonempty entries in VRu,v and thus the lemma is correct. �
Therefore, we can maintain the necessary entries of VRu,v in a data structure of size O(n) from which the values of

VRu,v(α,β) for any α and β can be obtained. In the next subsection, we will describe how to construct this structure
and how it can affect the efficiency of the proposed algorithm.

4.2. Building VRu,v

According to Fig. 8, assume that a view point lies on vertex u and its vision angle is limited from angle α to α′.
We define VRu(α,α′) to be the first effective cut-diagonal to this view point.

Consider a query point q (see Fig. 8) which sees within the reflex vertices u and v and therefore, its vision angle is
limited from angle α to angle β . Assume that β ′ is the greatest visibility range of vertex v with an endpoint i that lies
before the line l, so that there is no vertex in the vui′ region. Moreover, assume that α′ is the smallest visibility range
of u with an endpoint j that lies after the line l′, such that there is no vertex in the vuj ′ region (see Fig. 8).

Lemma 7. If none of VRu(α,α′) and VRv(β
′, β) intersect vu, VRu,v(α,β) is the same as VRu(α,α′) and VRv(β

′, β).

Proof. We first prove the equality of VRu(α,α′) and VRv(β
′, β). Definition of i and j in Section 4.1, forces the equal-

ity of VRu(α,α′) and VRv(β
′, β). If one is empty, then the other one must also be empty. Assume that VRu(α,α′) is

empty. This means that there is a vertex t which is directly (not through a cut-diagonal) visible to u within its defined
vision angle. This vertex is contained inside the region with luj ′l′ boundary or the region with l′j ′j boundary. The
latter is impossible due to the definition of j which is the smallest (in polar coordinate around u) visible vertex to u

existing after the line l′. So, the former case must be true.
On the other hand, according to the definition of i, this vertex cannot exist inside the i′uv region. Therefore, it must

be contained inside the region with li′vl′ boundary. This implies that VRv(β
′, β) must also be empty. If VRv(β

′, β) is
not empty, then the vertex t would not be further visible to u directly, but through this cut-diagonal. This contradicts
our assumption. So, either both VRu(α,α′) and VRv(β

′, β) are empty or none of them are.
Now, assume that both are nonempty and they are not equal. According to the definition of i and j as discussed

above, the endpoints of these cut-diagonals must lie under the chain jj ′vui′i in Fig. 8. While these cut-diagonals
do not intersect each other and the uv segment, they must be similar to the segments t t ′ and ss′ of Fig. 9. Trivially,
ss′, the closer one to vu, is either effective to both u and v or ineffective to both of them, which means that these
cut-diagonals must be unique.

A. Zarei, M. Ghodsi / Computational Geometry 39 (2008) 78–90 87
Fig. 10. Building VRu and RDu.

Since, VRu,v(α,β), if it is not empty, must be existed above the line uv, a similar argument implies equality of
VRu,v(α,β) with VRu(α,α′), and VRu,v(α,β) with VRv(β

′, β). �
If both VRu(α,α′) and VRv(β

′, β) intersect vu, they must intersect each other or at least one of them has an end
point in vuq region. The cut-diagonals cannot intersect; so the latter option must happen. For this case, VRu,v(α,β)

is trivially empty. Without loss of generality, assume that only VRu(α,α′) intersects vu. This implies that VRv(β
′, β)

is empty and thus VRu,v(α,β) is also empty.
Knowing this relation between VRu,v and VRu, we can think of VRu,v as the composition of VRu and the α′

ranges. These α′ ranges which are computed with respect to v, are maintained in a data structure called VR′
u,v . Then,

for any query point q that sees within the reflex vertices u and v with visibility ranges of α and β respectively, to
find VRu,v(α,β), we first find α′ from VR′

u,v associated with the range β . If VRu(α,α′) is not empty and it does
not intersect vu, it will be reported as the value of VRu,v(α,β) (first q-effective cut-diagonal) and empty is reported
otherwise. We can also use VRu,v and VR′

v instead of VR′
u,v and VRu, in the same manner.

Therefore, for our purpose, building VRu,v is equivalent to building VRu,v , and VR′
u,v .

We use the original version of our algorithm (before the improvement) to compute VRu. For a vertex u, V (u)

is computed and during this computation, when an effective cut-diagonal appears in V (u), its VRu, is updated ac-
cordingly. Moreover, RDu is also constructed as a byproduct of this process. As shown in Fig. 10, RDu entries are
maintained in a circular sorted list. Entries of VRu which are of the form (α, β , cut-diagonal) are maintained in two
sorted lists L1 and L2. The entries in L1 are sorted in ascending order of their start ranges (α) and if two entries have
equal start ranges, they will be sorted by their end ranges (β) in ascending order. The entries in list L2 are sorted
in ascending order of their end ranges (β) and if two entries have equal end ranges they will be sorted by their start
ranges (α) in descending order. These lists are shown in Fig. 10 for vertex u.

The value of VRu(α,β) is found as follow. The entries (i, j, c) and (i′, j ′, c′) of VRu are found where (i, j, c) is
the greatest item in L1 so that range i contains α and (i′, j ′, c′) is the smallest item in L2 so that range j ′ contains β .
There are four possibilities:

• β lies after the range j and α lies before the range i′. This case happens for VRu(α,β) in Fig. 11. In such cases,
the value of VRu(α,β) is empty, which means that there is no cut-diagonal (effective or ineffective) for such
vision ranges.

88 A. Zarei, M. Ghodsi / Computational Geometry 39 (2008) 78–90
Fig. 11. Computing the values of VRu from L1 and L2.

Fig. 12. Finding the entries of VR′
u,v .

• β and α lie after the ranges j and i′, respectively. This case happens for VRu(θ,α) in Fig. 11. In such cases, c′ is
the value of VRu(α,β).

• β and α lie before the ranges j and i′, respectively. This case happens for VRu(δ, γ) in Fig. 11. In such cases, c

is the value of VRu(α,β).
• β lies before the range j and α lies after the range i′. This case happens for VRu(β, γ) in Fig. 11. In such cases,

c is equal to c′ and it is the value of VRu(α,β).

Now we describe how to build VR′
u,v for any pair of reflex vertices. Be reminded that VR′

u,v associates a range α′
of RDu for any range β of RDv . This association must satisfy a constraint: α′ is the smallest range of u whose endpoint
lies after the supporting line of the range β and no vertex exists in the vuj ′ region in which j ′ is the intersection of
the supporting lines of the α′ and β ranges. As shown in Fig. 12, for range i of v its associated range of u is j if
the region vuj ′ does not contain any vertex. If a vertex like k exists, the associated range will be l which satisfies the
above constraint.

To build VR′
u,v , the entries of RDv are considered according to their counter-clockwise order starting from the line

vu. According to Fig. 12, when a range i is considered, the smallest range j in RDu which contains the vertex i is
found. Note that the endpoints of these ranges can be the same (the vertex i is the same as the vertex j). If the region
vuj ′ does not contain any vertex, the range j is associated with the range i and is maintained in VR′

u,v . Otherwise,
assume that k is a vertex in region vuj ′ with the smallest � vuk angle. In this state, the range l is associated with the
range i which satisfies the mentioned constraint. Notice that the vertex l may be the same as the vertex v in some
situations. Since we are considering the ranges of RDv according to their order, we do not need to search for the
vertex k and we have already considered it before. Therefore, it is enough to maintain this vertex and update it as we
consider the ranges of RDv accordingly.

A. Zarei, M. Ghodsi / Computational Geometry 39 (2008) 78–90 89
4.3. Efficiency of the improved algorithm

Cost and benefit of this improvement are as follows:

Lemma 8. Maintaining a data structure of size O(n3) which can be constructed in O(n3 logn) time makes it possible
to skip ineffective cut-diagonals and find the first effective one in O(logn) time.

Proof. The size of VRu for any reflex vertex u is O(n) by the same argument presented for VRu,v . This structure can
pessimistically be constructed by using our visibility algorithm in time O(n2 logn). Also, RDu, whose size is O(n),
can be built as a byproduct of this process. Computing VR′

u,v for any pair of reflex vertices u and v can be done in
O(n logn) time by a radial sweep on RDv and a binary search on RDu ranges. The size of VR′

u,v is also O(n). There
are O(n2) pairs of reflex vertices. Hence, the total time and space required to build and maintain VR′

u,v structures are
O(n3 logn) and O(n3) respectively.

To find the first effective cut-diagonal of a query point, VR′
u,v and VRu data structures are searched each requires

O(logn) time. Therefore, the query time of reporting the first effective cut-diagonal is O(logn). �
Lemma 9. The number of effective cut-diagonals that will be processed by the algorithm for a query point q is
O(|V (q)|). Thus, h′ = O(|V (q)|).

Proof. Any effective cut-diagonal adds at least one edge or vertex to the visibility polygon of the query point and no
one of these changes are repeated twice. Therefore, an upper bound of the number of these cut-diagonals is the size
of the final visibility polygon. �
Lemma 10. The number of effective cut-diagonals that will be processed by the algorithm for a query point q is O(h).
Thus, h′ = O(h).

Proof. A cut-diagonal can be q-effective from its both ends. If a diagonal like l in Fig. 13, has another q-effective
u′v′ portion, there must exist two holes, H1 and H2, between q and l. Since u′v′ is q-effective, there must be some
vertices and edges of P which are visible from q through u′v′. Hence, at least one of the L or R chains of Fig. 13
must exist. Without loss of generality, assume that L exists. Assume that a middle portion of another cut-diagonal l′
is also q-effective and it is visible from q through u′v′. Then, the chain L cannot be a part of the outer boundary of
P and must be a portion of a hole like H3. If H3 does not completely contained inside � α then H1 cannot further do
its role for another q-effective segment as what it did for u′v′ segment from its right side. Therefore, each hole can
produce at most two such q-effective segments each from one side. For the case in which H3 lies completely inside
� α, the new effective cut-diagonals of l′ are assigned to H3 instead of H1 and H2.

Thus, an upper bound for the number of the q-effective cut-diagonals which must be processed for a query point q

is O(h). �
Fig. 13. A hole can produce only two q-effective cut-diagonals.

90 A. Zarei, M. Ghodsi / Computational Geometry 39 (2008) 78–90
So, the efficiency of our algorithm can be rephrased as:

Theorem 2. A polygon P with a total of n vertices and h holes inside P , can be preprocessed in time O(n3 logn)

to build data structures of size O(n3), so that the visibility polygon of an arbitrary query point q within P can
be reported in time O((1 + h′) logn + |V (q)|) in which |V (q)| is the size of the output and h′ is an output and
preprocessing sensitive parameter of size at most min(h, |V (g)|).

5. Conclusion

In this paper, we have considered the problem of computing the visibility polygon V (q) of a point q inside a
polygon with holes. This problem has been solved efficiently before, but in the nonquery version. Here, we proposed
an efficient algorithm for the query version of the problem where we preprocess the polygon and build data structures
by which the V (q) of any query point q can be reported rapidly.

We first applied and analyzed the notion of visibility decomposition on this type of polygons. We then presented an
algorithm to report V (q) of any q in time O((1 + h′) logn + |V (q)|) by spending O(n3 logn) time to preprocess the
polygon and maintaining a data structure of size O(n3). The factor h′ is an output and preprocess sensitive parameter
of size at most min(h, |V (g)|).

It is interesting to know if this method can be used to solve other similar problems such as finding the visibility
polygon of a moving point and a line segment, or the visibility graph of a point set especially in dynamic environments.
Another question is whether we can omit the factor h′ or reduce it to O(logn).

References

[1] T. Asano, Efficient algorithms for finding the visibility polygons for a polygonal region with holes, Manuscript, Department of Electrical
Engineering and Computer Science, University of California at Berkeley, 1984.

[2] M.T.B. Aronov, L. Guibas, L. Zhang, Visibility queries and maintenance in simple polygons, Discrete and Computational Geometry 27 (4)
(2002) 461–483.

[3] J. Bentley, T. Ottmann, Algorithms for reporting and counting geometric intersections, IEEE Transactions on Computers 28 (1979) 643–647.
[4] B. Chazelle, L. Guibas, Visibility and intersection problems in plane geometry, in: Proc. 1st Annu. ACM Sympos. Comput. Geom., 1985,

pp. 135–156.
[5] H. Gindy, D. Avis, A linear algorithm for computing the visibility polygon from a point, Journal of Algorithms 2 (1981) 186–197.
[6] P.J. Heffernan, J.S.B. Mitchell, An optimal algorithm for computing visibility in the plane, SIAM Journal of Computing 24 (1) (1995) 184–201.
[7] D. Kirkpatrick, Optimal search in planar subdivisions, SIAM Journal of Computing 12 (1) (1983) 28–35.
[8] D.L.M.S.L. Guibas, J. Hershberger, R. Tarjan, Linear time algorithms for visibility and shortest path problems inside simple polygons, in:

Proc. Second Annual ACM Symp. on Computational Geometry, 1986, pp. 1–13.
[9] R.M.L. Guibas, P. Raghavan, The robot localization problem in two dimensions, SIAM Journal of Computing 26 (4) (1997) 1120–1138.

[10] D. Lee, Visibility of a simple polygon, Computer Vision, Graphics, and Image Processing 22 (1) (1983) 207–221.
[11] D. Lee, F. Preparata, Location of a point in a planar subdivision and its applications, SIAM Journal of Computing 6 (3) (1977) 594–606.
[12] M.O. Mark de Berg, M. van Kreveld, O. Schwarzkopf, Computational Geometry: Algorithms and Applications, Springer, 2000.
[13] A.L.P. Bose, J.I. Munro, Efficient visibility queries in simple polygons, Computational Geometry: Theory and Applications 23 (3) (2002)

313–335.
[14] M. Pocchiola, G. Vegter, The visibility complex, Internal. J. Comput. Geom. Appl. 6 (3) (1996) 279–308.
[15] F. Preparata, A new approach to planar point location, SIAM Journal of Computing 10 (3) (1981) 473–482.
[16] N. Sarnak, R. Tarjan, Planar point location using persistent search trees, Communications of the ACM 29 (7) (1986) 669–679.
[17] S. Suri, J. O’Rourke, Worst-case optimal algorithms for constructing visibility polygons with holes, in: Proc. of the Second Annual Symposium

on Computational Geometry, 1986, pp. 14–23.

