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Abstract Providing an efficient resource allocation mechanism is a challenge to
computational grid due to large-scale resource sharing and the fact that Grid Re-
source Owners (GROs) and Grid Resource Consumers (GRCs) may have different
goals, policies, and preferences. In a real world market, various economic models
exist for setting the price of grid resources, based on supply-and-demand and their
value to the consumers. In this paper, we discuss the use of multiagent-based negoti-
ation model for interaction between GROs and GRCs. For realizing this approach, we
designed the Market- and Behavior-driven Negotiation Agents (MBDNAs). Negotia-
tion strategies that adopt MBDNAs take into account the following factors: Competi-
tion, Opportunity, Deadline and Negotiator’s Trading Partner’s Previous Concession
Behavior. In our experiments, we compare MBDNAs with MDAs (Market-Driven
Agent), NDF (Negotiation Decision Function) and Kasbah in terms of the following
metrics: total tasks complementation and budget spent. The results show that by tak-
ing the proposed negotiation model into account, MBDNAs outperform MDAs, NDF
and Kasbah.
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1 Introduction

In the last decade, the resource sharing paradigm proposed by grid is gaining more
and more importance both in the academia and in the industry [1] and many large
corporations are currently using computational grids to improve their operations [2].
As grid resource owners (GROs) and grid resource consumers (GRCs) may have dif-
ferent goals, preferences and policies, which are characterized and specified through
a utility model (or utility function), an efficient resource management, is central to its
operations [3]. Resource management refers to the operations used to control how ca-
pabilities provided by grid resources and services are made available to other entities
such as users, applications, or services [4].

Utilization of grid resource is not for free [5], which means that the Grid Re-
source Owners (GROs) charge Grid Resource Consumers (GRCs) according to the
amount of resource they consume, so adapting some of the successful ideas of eco-
nomical models to resource allocation in large-scale computing systems is essential
for realizing the vision of grid computing environments [6]. In recent years, usage
of market-based methods (i.e., A market method is the overall algorithmic structure
within which a market mechanism or principle is embedded [7]) for grid resource
management is one of the solutions which has received much attention [8]. Numer-
ous economic models [9], including microeconomic and macroeconomic principles
for resource management, are surveyed in [10–15]. As a negotiation-like protocol
is found to be suitable when the participants cooperate to create value [16, p. 6],
adopting negotiation mechanism for successfully reconciling the differences between
GROs and GRCs seems to be more prudent rather than using other commonly ref-
erenced work (e.g., see [17–20]). Sim [21] pointed out some issues that should be
considered in building the negotiation mechanism for grid resource management:
(1) modeling devaluation of resources, (2) considering market dynamics, (3) relax-
ing bargaining criteria, and (4) resource co-allocation. To complete the issues of [21]
we present another issue that should be considered in building the efficient negoti-
ation mechanism for grid resource management: (5) modeling the decision criteria
that are used by negotiators of real-life trading market for selecting the pattern of
concession during negotiation process. The importance of such improved and ex-
tended negotiation model is when the designers of negotiation agents have to face
with two opposite concepts: time of acquiring grid resources (respectively, leasing
grid resources) and price of acquiring grid resources (respectively, price of leasing
grid resources). It means that GRCs (respectively, GROs) should achieve lower utili-
ties to avoid the risk of losing deals to other competitors (and vice versa). Like most of
the commonly previous work in the grid environment (e.g., see [22–27]), we propose
a new negotiation model for optimizing GROs’ and GRCs’ profit through providing
software components (Agent). The software agents that make adjustable amounts of
concession by considering Competition, Opportunity, Time and Previous Concession
Behavior of Negotiator’s Trading Partner factors are called MBDNAs (Market- and
Behavior-driven Negotiation Agents).
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The new features of this work are:

(a) Designing a new multiagent-based strategic negotiation model for both bilateral
and multilateral negotiations. This is so important that not only bilateral negotia-
tion (where resources are provided by one agent and thus an agent is negotiating
with one trading partner) but also multilateral negotiation (where resources are
provided by multiple agents and thus an agent is negotiating with multiple trading
partners) is considered in designing negotiation model. Multilateral negotiation is
more realistic in resource allocation process of computational grids where there
are more than one seller that sell special type of resource.

(b) Modeling concession behavior of negotiator’s trading partner which is inspired
by the real-life trading market. In real-life trading market the behavior of one
negotiator serves as a stimulus for the other negotiator who then screens it, se-
lects its key elements and tries to interpret them [28]. Negotiators should view
their trading partners’ behavior to select suitable tactics and strategies [28]. There
are few existing negotiation agents that consider behavior-dependent function to
determine the amount of concession during negotiation process (e.g., [29–31]).
Whereas these negotiation agents using complex techniques (like artificial intel-
ligence) that need more computational cost for modeling the behavior function,
our work proposes a simple and applicable approach to model the concession
behavior of negotiator’s trading partner. The importance of such an approach is
when the negotiation agents have short deadline and cannot tolerate extra com-
putational cost to make near optimal concession amount. In addition we present
two new criteria to classify the behavior of negotiator’s opponents: royalty and
hasty which are defined based on the number of successful negotiations between
a negotiator and its trading partner in all the GRNMs (grid resource negotiation
markets) they both participated and the average negotiation time between a nego-
tiator and its trading partner in all GRNMs which both participate, respectively.

(c) Determining the specific amount of concession to each negotiator’s trading part-
ner separately, instead of the same amount to all. Although there are many agent-
based systems for negotiation in e-commerce (e.g., just to name a few: NDF [32],
2-phase negotiation [33], service negotiation [34], Kasbah [35], Tete-a-Tete [36],
MDA and EMDA [37–40], Zhao and Li [41], SNAP [42–44] and An [45]), the
strategies of most of them make the same concession amount for all negotiators’
trading partners. In contrast, our work considers different concession amount for
different negotiator’s trading partners (by applying a multicriteria decision func-
tion) which provides more flexibility in keeping the chance of making deal (by
computing rational and sufficiently minimum price) with more than one oppo-
nent.

The remainder of the paper is structured as follows. In Sect. 2, some of the
most well known negotiation models for resource management are reviewed. In
Sect. 3, proposed four-phase scenario for resource allocation in computational
grid and the proposed multiagent-based strategic negotiation model as the heart of
the scenario is explained. The simulation configuration and experimental results
are analyzed in Sect. 4. Conclusions and information on future work are given in
Sect. 5.
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2 Related work

In this section we review and compare the existing state-of-the-art negotiation agents
from the issues for making a negotiation model in [21] and our extra proposed issue
for making appropriate negotiation model points of view.

Whereas the agents in NDF [32], 2-phase negotiation [33], service negotia-
tion [34], Kasbah [35], Tete-à-Tete (extended Kasbah, which focuses on multiple-
issue negotiation rather than single-issue negotiation) [36], MDA and EMDA
[37–40], Zhao and Li [41] and An [45] considered the issue of time constraint, the
agents in SNAP [42–44] and policy-driven negotiation [46] did not consider this issue
in designing the agents.

2-phase negotiation [33], MDA and EMDA [37–40] and [45] modeled market dy-
namics in their concession making strategies, but NDF [32], service negotiation [34],
Kasbah [35], Tete-à-Tete [36], SNAP [42–44] and policy-driven negotiation [46]
and [41] did not consider the market factors in making concession amount.

Among the reviewed negotiation models, just service negotiation model [34] con-
sidered the influence of behavior-dependent functions on the negotiation results.
Also, no other reviewed protocol, excepting SNAP [42–44], addresses the influence
of grid resource co-allocation factor on the negotiation results in the grid resource
allocation process.

While the protocol adopted by [32, 35, 46–48] is simply a bilateral exchange of
messages, the protocol adopted by 2-phase negotiation [33], service negotiation [34],
MDAs [39, 40], EMDAs [37, 38], Zhao and Li [41] and An [45] is concerned with
alternating offers. In comparison to alternating offers protocol, bilateral exchange of
messages protocol provides less flexibility in not allowing multiple messages from
both GROs and GRCs to be exchanged.

3 Proposed four-phased scenario for resource allocation in computational grid

This work considers grid environment as a collection of virtual organizations (VOs),
which is a group of GRCs and GROs collaborating to facilitate usage of high-
end computational resources. VO is formed dynamically while the members (e.g.,
GRCs | GROs) of grid domain join/leave it. As both GROs and GRCs want to max-
imize their profit (i.e., the GROs wish to increase their revenue and the GRCs to
solve their problems within a minimum possible cost), an economy-aware grid needs
to support this challenge. To realize this, a Multiagent-based Strategic Negotiation
Model for resource allocation and for regulation of supply and demand in grid com-
puting environments is proposed. The proposed Multiagent-based Strategic Negotia-
tion Model is at the heart of four-phase scenario for grid resource allocation.

The scenario of resource allocation in the economy-aware grid environment in-
cludes the following four major phases:

1. Registering GRCs and GROs
2. Creating MBDNAs and providing the required information (that is, necessary for

starting negotiation)
3. Starting negotiation based on proposed strategy
4. Terminating Negotiation process and executing task (if negotiation is successful)
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Fig. 1 Event diagram showing message-flow in the proposed four-phase scenario (for grid resource allo-
cation)

The proposed scenario is based on synchronous and asynchronous message ex-
change systems. A general overview of the event diagram is shown in Fig. 1.

3.1 Registering GRCs and GROs

Each GRC that is represented by a GRC agent (e.g., GRCA) can have one or more jobs
{job1, . . . , jobp}. Jobs submitted by GRCs into a cluster have varying requirements
depending on GRC-specific needs and expectations. The GRCi ’s pth job characteris-
tics (e.g., GRC_ job_ prof i

p) include the following: unique identifier, job length mea-
sured in MI (millions of instructions), length of input and output data, earliest start
time (i.e., the job cannot start before its earliest start time), the period of resource us-
age, job’s negotiation deadline (i.e., the latest start time of the job. Obviously, a job’s
finish time ∈ [earliest start time + period of resource usage, negotiation deadline +
period of resource usage]), initial price, reservation price, and the originator of the
job [39].

Also, it is assumed that each GRO, which is represented by a GRO agent (e.g.,
GROA), may possess k computing machines (which is denoted by {Mj1, . . . ,Mjk})
for the grid environment. As noted in [39, p. 1384], “Each computing machine Mjk

can be a single processor, a shared memory multiprocessor, or a distributed mem-
ory cluster of computers. Mjk can be formed by one or more processing elements
{PE1, . . . ,PEl}, and each PEi can have different speeds measured in terms of MIPS
(millions of instructions per second).” The GROj ’s r th resource characteristics (e.g.,

GRO_resource_ prof j
r ) include unique identifier, the architecture of computing re-

source (e.g., HPalpha server), list of computing machines (e.g., {Mj1, . . . ,Mjk}), re-
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quired bandwidth length, required memory capacity, and expected and reserve prices
of leasing a computing machine.

The GRCAi (respectively, GROAj ) should register each of its GRC_ job_ prof i
p(s)

(respectively, GRO_resource_ prof j
r [s]) in GRNM_ job requester_directory (respec-

tively, GRNM_ job requestee_directory).

3.2 Creating MBDNAs and providing their required information

It was noted in [21, p. 245] that “software agents, in particular, negotiation agents,
can play an essential role in realizing the grid vision”. Software Agent is a compo-
nent with the capability of accomplishing its tasks on behalf of its owner [49]. In
this work, MBDNAs (which are categorized into GRC_MBDNA and GRO_MBDNA
entities) are expected to realize the grid vision. A GRC_MBDNAi (respectively,
GRO_MBDNAj ) is generated according to GRCAi (respectively, GROAj ), which is
registered in GRNM to perform the negotiation process.

In the following sections, each GRC_MBDNA (respectively, GRO_MBDNA) is
represented by A symbol for ease of reading. Also let us assume that kth trading
partner of negotiator A is denoted by Bk .

Following are the functions performed by negotiator A of type GRC_MBDNA in
the second phase of resource allocation scenario:

1. Start the process of resource discovery (e.g., discovering appropriate GRO_
MBDNA(s) that match with the A’s requirements).

2. Query its local DB_behave database (which is considered to store the previous
concession behavior of negotiators’ trading partners who participated in GRNM
previously) to retrieve all records (if they exist) for which the value of their Bk_id
field is equal to the identifier of one of A’s trading partners. The retrieved records
are used to calculate the previous concession behavior of negotiators’ trading part-
ners (details are provided in Sect. 3.3.3).

3. Increase the #GRNMBk−A field of retrieved records by one.

And the functions that are performed by negotiator A of type GRO_MBDNA in
the second phase of resource allocation scenario are as same as the second and third
functions performed by negotiator A of type GRC_MBDNA.

3.3 Starting negotiation, based on the proposed strategic negotiation model

The negotiation model has three parts [50]: (1) the used utility models or preference
relationships for the negotiating parties, (2) the negotiation strategy applied during
the negotiation process and (3) the negotiation protocol. The negotiation model in this
work applies a new negotiation strategy which not only models the market conditions
and time but also models concession behavior of negotiator agent’s trading partner to
determine the appropriate amount of concession. The new multicriteria negotiation
strategy maximizes the negotiators’ achieved utility and improves their success rate
for both bilateral and multilateral negotiations.

The negotiation agents that adopt new proposed negotiation model are called
MBDNAs (Market- and Behavior-driven Negotiation Agents). The following three
sub-sections address the three parts of negotiation model in the proposed MBDNAs’
negotiation mechanism.
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3.3.1 Negotiation utility model

Utility functions are used to express grid user’s Quality of Service (QoS) require-
ment, resource provider’s benefit function and system’s objectives [51]. The grid
computational resource allocation mechanism in this paper is under budget and time
constraints which means that a negotiator A of type GRC_MBDNA (respectively,
GRO_MBDNA) makes computational resource acquiring (respectively, assigning) de-
cisions within the budget and time constraints. That is, the negotiation objectives are
the expected price that will be obtained via negotiation process and the negotiation
time that will be spent in the grid resource allocation market. So, the negotiator A

of type GRC_MBDNA tries to purchase as much computational resource as possi-
ble with the objectives of spending the least possible amount of money (minimiz-
ing its payment) and minimizing its negotiation time, also the negotiator A of type
GRO_MBDNA tries to sell as much computational resources as possible with the ob-
jectives of maximizing its revenue and minimizing its negotiation time.

Let us assume that number of negotiator agent A’s trading partners and competi-
tors at round t are no.trading_ partnerA

t and no.competitorA
t respectively. Negotiator

agent A duplicates itself according to no.trading_ partnerA
t and creates negotiator

agent instances A_CHILDt = {A_child1,A_child2, . . . ,A_childno.trading_partnerA
t
} to

conduct negotiation process on behalf of it in the GRNM1 area that are assigned
to. For understanding the meaning of GRNM area an example will be presented.
Let assume that negotiator agent A has no.trading_ partnerA

t = 3 trading partners
and no.competitorA

t = 6 competitors at round t . We consider that negotiator agent A

finds competitor1, competitor3, competitor4 and competitor6 as the potential com-
petitors against trading_ partner1, competitor1, competitor3 and competitor5 against
trading_ partner2 and competitor4 and competitor6 against trading_ partner3. The
GRNM area is composed of A_childk (i.e., kth instance of A), one of its trading part-
ner and competitors those are found against that trading partner. Therefore as shown
in Fig. 2, three GRNM areas are found in the described example.

The utility of A_childk if Bk (i.e., A_childk’s trading partner in that GRNM area
that A_childk is located) accepts A_childk’s proposal (i.e., P

A_childk
t ) and the util-

ity generated for A_childk if A_childk accepts the last counter-proposal of Bk (i.e.,
P

Bk

t−1) are U
A_childk
t [P A_childk

t → Bk] and U
A_childk
t [P Bk

t−1 → A_childk] respectively.
If the negotiation ends in disagreement, both negotiation sides (e.g., negotiator agent
of type GRC_MBDNA and negotiator agent of type GRO_MBDNA) receive the worst
possible utility (e.g., zero). We should highlight that by using Rubinstein’s sequen-
tial alternating offer protocol [52], negotiators in make alternate offers rather than
moving simultaneously (details are described in Sect. 3.3.3).

For ease of analysis, the utility function of A_childk of type GRC_MBDNA con-
sidering P

A_childk
t to Bk and P

Bk

t−1 to A_childk at negotiation round t can be ex-
pressed as (1):

U
A_childk
t

[
P

A_childk
t → Bk

] = (
RPA − P

A_childk
t

)
/(RPA − IPA) and

U
A_childk
t

[
P

Bk

t−1 → A_childk

] = (
RPA − P

Bk

t−1

)
/(RPA − IPA)

(1)

1Grid resource negotiation market.
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Fig. 2 An example to show GRNM area concept

where RPA is A’s reserve price, IPA is A’s initial price, P
A_childk
t is A_childk’s po-

tential proposal at negotiation round t and P
Bk

t−1 is Bk’s proposal at negotiation round
t − 1. For example a GRC_MBDNA in name A considers 100$ to buy a special type
of resource (i.e., RPA = 100$) and starts the negotiation process with 20$ (i.e., IPA =
20$). From A’s perspective 20$ is the best price that can be paid to buy that type of re-
source (as 20$ generates the highest utility for A, [(100$ − 20$)/(100$ − 20$)] = 1)
and saves 80$ for him. Also from A’s perspective 100$ is the worst price that can
be paid to buy that type of resource (as 100$ generates the lowest utility for A,
[(100$−100$)/(100$−20$)] = 0) and saves nothing for him. Furthermore, let us as-
sume that the proposed price from Bk (i.e., kth trading partner of) at negotiation round
t − 1 is 62$. At negotiation round t the kth child of A (i.e., A_childk) makes its poten-
tial concession amount by considering current market situation. Let assume that the
potential concession amount of A_childk that can be proposed to Bk is equal to 50$.
Now A_childk should decide to accept 62$ or continue the negotiation process by
proposing 50$. This decision is made by computing the utilities generated from 62$
and 50$ as follows: U

A_childk
t [P Bk

t−1 → A_childk] = [(100$ − 62$)/(100$ − 20$)]
and U

A_childk
t [P A_childk

t → Bk] = [(100$ − 50$)/(100$ − 20$)]. By comparing the
generated utilities of 50$ and 62$, A_childk decides to continue the negotiation pro-
cess instead of accept the counter offer. Rationally, from GRC_MBDNA’s perspective
the price that saves more money is considered as more appropriate price.

Also the utility function of A_childk of type GRO_MBDNA considering P
A_childk
t

to Bk and P
Bk

t−1 to A_childk at negotiation round t can be expressed as (2):

U
A_childk
t

[
P

A_childk
t → Bk

] = (
P

A_childk
t − RPA

)
/(IPA − RPA) and

U
A_childk
t

[
P

Bk

t−1 → A_childk

] = (
P

Bk

t−1 − RPA

)
/(IPA − RPA)

(2)

where RPA is A’s reserve price, IPA is A’s initial price, P
A_childk
t is A_childk’s po-

tential proposal at negotiation round t and P
Bk

t−1 is Bk’s proposal at negotiation round
t − 1. For example a GRO_MBDNA in name A cannot sell its resource less than 20$
(i.e., RPA = 20$) and starts the negotiation process with 100$ (i.e., IPA = 100$).
From A’s perspective 100$ is the best price that can be achieved in trading process
(as 100$ generates the highest utility for A, [(100$ − 20$)/(100$ − 20$)] = 1) and
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makes maximum revenue (i.e., 80$) for him. Also from A’s perspective 20$ is the
worst price that can be achieved in trading process (as 20$ generates the lowest utility
for A, [(20$−20$)/(100$−20$)] = 0) and makes no profit for him. Furthermore, let
us assume that the proposed price from Bk (i.e., kth trading partner of) at negotiation
round t − 1 is 50$. At negotiation round t the kth child of A (i.e., A_childk) makes its
potential concession amount by considering current market situation. Let assume that
the potential concession amount of A_childk that can be proposed to Bk is equal to
62$. Now A_childk should decide to accept 50$ or continue the negotiation process
by proposing 62$. This decision is made by computing the utilities generated from
50$ and 62$ as follows: U

A_childk
t [P Bk

t−1 → A_childk] = [(50$ − 20$)/(100$ − 20$)]
and U

A_childk
t [P A_childk

t → Bk] = [(62$ − 20$)/(100$ − 20$)]. By comparing the
generated utilities of 50$ and 62$, A_childk decides to continue the negotiation pro-
cess instead of accept the counter offer. Rationally, from GRO_MBDNA’s perspective
the price that makes more profit is considered as more appropriate price.

If the proposed deal from A_childk of type GRC_MBDNA at round t (e.g.,
P

A_childk
t ) is not greater than the one at round t + 2 (e.g., P

A_childk

t+2 ), then

U
A_childk
t [P A_childk

t → Bk] > U
A_childk

t+2 [P A_childk

t+2 → Bk]. Also, If the proposed

deal from A_childk of type GRO_MBDNA at round t (e.g., P
A_childk
t ) is greater

than the one at round t + 2 (e.g., P
A_childk

t+2 ), then U
A_childk
t [P A_childk

t → Bk] >

U
A_childk

t+2 [P A_childk

t+2 → Bk].

3.3.2 Negotiation strategy

In each round of the negotiation, a negotiator agent A’s choice is called a strategy.
While some other negotiation mechanisms (like [53–55]) are focused on multi-issue
negotiation that aim to balance the QoS constraints, MBDNAs focus on single-issue
(e.g., price-only) negotiation (like [24, 39, 56–62]). This is because our first goal is to
design MBDNAs with price-oriented negotiation strategies by considering a new sim-
ple and applicable mechanism and second consider more complex techniques (like
fuzzy decision making approach) that extend the suitable proposed price-oriented
strategies of MBDNAs to handle more than one QoS parameter. The first goal is con-
sidered in this paper and the second goal will be considered in the future work. Hence,
the amount of concession determination, at negotiation round t , is a chosen strategy
by A. The following concession functions of proposed MBDNAs are described.

Sim [40] investigated the way to assess the probability of successfully reaching a
consensus in different market situations by considering the difference between the
payoffs generated by the proposal of negotiator A_childk and the proposal of its
trading partners at each round t . Coming to details, the proposal of A_childk to
its trading partner Bk at round t − 2 is P

A_childk

t−2 → Bk and the proposal of Bk to

A_childk at round t − 1 is P
Bk

t−1 → A_childk , also, U
A_childk
t [P A_childk

t−2 → Bk] and

U
A_childk
t [P Bk

t−1 → A_childk] be the utilities of A_childk at negotiation round t if Bk

accepted A_childk’s proposal which was proposed at negotiation round t − 2 and the
best utility generated for A_childk if A_childk accepts the last counter-proposal of
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Bk ∈ {B1, B2, . . . ,Bno.trading_partnerA
t−1

} respectively. The (best) spread in the current

cycle t (before making new proposal) is

kt = U
A_childk
t

[
P

A_childk

t−2 → Bk

] − U
A_childk
t

[
P

Bk

t−1 → A_childk

]
. (3)

Negotiation is described as a process where the parties attempt to narrow the
spread in (counter-) proposals between (or among) negotiators through concession;
therefore, for making a suitable concession the expected utility of each negotiator’s
next proposal is determined by itself as follows:

U
A_childk
t

[
P

A_childk
t → Bk

] = kt+1 + U
A_childk
t

[
P

Bk

t−1 → A_childk

]
. (4)

Finally, the amount of concession at round t (e.g., �t ) is

�t = kt − kt+1 (5)

where the appropriate value of kt+1 is defined thus:

kt+1 = FSTA_childk
t × kt (6)

FSTA_childk
t is a price-oriented strategy that is taken by A_childk to determine the

amount of concession at round t and is defined through (7):

FSTA_childk
t = 1 − ∣∣ISTA_childk

t − (
1 − PreBehave_DependBk

t

) × κ)
∣∣ (7)

where κ = 1/(1 − PreBehave_DependBk
t ) if ISTA_childk

t = 0, else κ = 1. Also
PreBehave_DependBk

t is Previous Concession Behavior of A_childk’s Trading Part-
ner factor and ISTA_childk

t is denoted by (8):

ISTA_childk
t = T

A_childk
t × O

A_childk
t × CCA_childk

t (8)

where T
A_childk
t ,O

A_childk
t and CCA_childk

t are Time, Opportunity, and Competition
functions of negotiator A_childk , respectively.

The following four sub-sections address Time, Opportunity, Competition and Be-
havior functions in detail.

(a) Time function (T A_childk
t )

As noted by Binmore and Dasgupta [60] “The passage of time has a cost in terms
of both dollars and the sacrifice of utility which stems from the postponement of
consumption, and it will be precisely this cost which motivates the whole bargaining
process. If it did not matter when the parties agreed, it would not matter whether they
agreed at all.” The effect of time discount factor in negotiator’s bargaining power
can be modeled via time-dependent function. The present work focuses on time-
dependent function that is given in [39] as follows:

T
A_childk
t

(
t, tAdeadline, λ

) = 1 −
(

t

tAdeadline

)λ

(9)

where A’s time preference is denoted by λ (e.g., concession rate with respect to time.
For instance, an agent may prefer to concede less rapidly in the early rounds of ne-
gotiation and more rapidly as its deadline approaches), A’s deadline (e.g., a time
frame by which A needs negotiation result-in other words it corresponds to the latest
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start time) by tAdeadline and current negotiation round by t . The two parameters λ and
tAdeadline are considered private information. The following are the three major classes
of concession-making strategies with respect to the remaining trading time (details
are discussed in [39, 40]):

(i) Conservative (1 < λ < ∞)—An agent A_childk makes smaller concession in
early rounds and larger concession in later rounds.

(ii) Linear (λ = 1)—An agent A_childk makes a constant rate of concession.
(iii) Conciliatory (0 < λ < 1)—An agent A_childk makes larger concession in the

early trading rounds and smaller concessions in the later rounds.

According to (9), the concession rate that is made by A_childk should be increased
as T

A_childk
t tends to become zero (e.g., negotiator’s deadline is reached). Obviously

the value of Time function of all negotiator A’s children is the same.

(b) Opportunity Function (OA
t )

Opportunity is defined as the subjective probability that the agent will obtain a
certain expected utility with at least one of its trading partners. From Opportunity
factor’s perspective, the amount of concession is determined based on the number of
agent’s trading partner and differences in proposals and counter proposals thus [39]:

OA
t

(
no.trading_ partnerA

t ,
〈
UA

t

[
P A

t−2 → Bk

]〉
,
〈
UA

t

[
P

Bk

t−1 → A
]〉)

= 1 −
no.trading_partnerA

t∏

j=1

UA
t [P A

t−2 → Bk] − UA
t [P Bk

t−1 → A]
(UA

t [P A
t−2 → Bk] − cA)

(10)

where cA is the worst possible utility for A (e.g., if the negotiation ends in disagree-
ment) and UA

t [P A
t−2 → Bk] − UA

t [P Bk

t−1 → A] measures the cost of accepting the
trading partner’s last proposal. Obviously the value of opportunity function of all ne-
gotiator A’s children is the same. According to (10), the concession rate that is made
by A_childk should be increased as OA

t tends to become zero.

(c) Competition Function (CCA_childk
t )

As mentioned in [40, p. 714], “Since market-driven agents are utility maximizing
agents, an agent A is more likely to reach a consensus if its proposal is ranked the
highest by some other agent Bi”. Let an agent A_childk has no.competitorA_childk

t

competitors at round t . If the last proposal of A_childk’s competitor agent (e.g.,
ACl ∈ {AC1,AC2, . . . ,AC

no.competitor
A_childk
t

}) generates a utility U
Bk
t [P ACl

t−1 → Bk]
for Bk and the last proposal of A_childk generates a utility U

Bk
t [P A_childk

t−1 → Bk]
for Bk , by considering the mentioned concept, the proposal of A_childk is ranked
the highest by Bk if U

Bk
t

[
P

A_childk

t−1 → Bk

]
> ∀U

Bk
t

[
P

ACi

t−1 → Bk

] ∈ {
U

Bk
t

[
P

AC1
t−1 →

Bk

]
,U

Bk
t

[
P

AC2
t−1 → Bk

]
, . . . ,U

Bk
t

[
P

AC
no.competitor

A_childk
t

t−1 → Bk

]}
. So, the probability of

A_childk being considered the most preferred trading partner by Bk is calculated
thus:
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CCA_childk
t

(
no.competitorA_childk

t

)

= 1 − [
no.competitorA_childk

t

/(
no.competitorA_childk

t + 1
)]

. (11)

According to (11), the concession rate that is made by A_childk should be in-
creased as CCA_childk

t tends to become zero.

(d) Behavior Function (PreBehave_DependBk
t )

Recall that in real-life trading market the behavior of one negotiator serves as a
stimulus for the other negotiator who then screens it, selects its key elements and
tries to interpret them [28]. Negotiators should view their trading partners’ behavior
to select suitable tactics and strategies [28]. By considering this concept we model
the concession behavior of negotiator’s trading partners to determine the pattern of
concession in grid resource allocation problem. Behavior is meaningful when a pair
of grid’s resource allocators of the opposite type met each other previously in num-
bers of GRNMs, so first of all we analyze workload traces from [61] to investigate
this. By analyzing work load traces from [61], which are stored in Standard Work
load Format (SWF), one can observe that GROs and GRCs repeat their supplies and
demands, respectively, to the grid environment and in most instances, based on their
supplies and demands, GROs (respectively, GRCs) can find a number of their pre-
vious trading partners as the new trading partners in the current GRNM. To prove
this claim, it is assumed that (based on the existing SWF archives [61]) grid.name
represents the name of observed grid and also the maximum number of potential,
unique users of a grid in grid.name which is called max_ pot_usergrid.name corre-
sponds to the total number of requested jobs found in grid.name’s SWF archive.
Further, the set of observed unique users in that grid.name’s SWF archive are called
unique_user_setgrid.name and the number of unique_user_setgrid.name’s members is
called unique_user_set_memgrid.name. The percentage of grid.name’s users that are
observed previously in unique_user_setgrid.name is denoted by repeated_usergrid.name

and defined as (12). Hence, the variety of grid.name’s users increased as
repeated_usergrid.name tends to become zero percent. We have

repeated_usergrid.name =
(

1 − unique_user_set_memgrid.name

max_ pot_usergrid.name

)
× 100. (12)

The results of SWF archives’ observations [61] from repeated_usergrid.name per-
spective are illustrated in Fig. 3.

To model the concession behavior of kth trading partner of negotiator agent A

(i.e., Bk) a new factor in name PreBehave_DependBk
t which is defined based on

two following parameters is introduced: (1) the number of successful negotiations

between A and Bk in all the GRNMs they both participated (e.g.,
#Suc.negBk−A

#GRNMBk−A
)

and (2) the ratio of average negotiation time between A and Bk in #GRNMBk−A

(e.g., Ave.neg.timeBk

A ) to
∑no.trading_partnerA

t

k=1 Ave.neg.timeBk

A . This means that the Bk ,

whose ratio of
#Suc.negBk−A

#GRNMBk−A
is the lowest and its Ave.neg.timeBk

A is too far from zero
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Fig. 3 repeated_usergrid.name in observed grids (based on work load traces from [61])

(makes a longer negotiation) is a misbehaved trading partner and deserves to receive
more penalty.

PreBehave_DependBk
t = 1

η
[1 − μ ρ] (13)

• IF (
#Suc.negBk−A

#GRNMBk−A
= 1) AND (Ave.neg.timeBk

A <> 0) THEN (μ = 1 AND ρ = 1 −
Ave.neg.time

Bk
A

∑no.trading_partnerAt
k=1 Ave.neg.time

Bk
A

)

• IF (
#Suc.negBk−A

#GRNMBk−A
<> 1) AND (Ave.neg.timeBk

A = 0) THEN (μ = #Suc.negBk−A

#GRNMBk−A
AND

ρ = 1)

• IF (
#Suc.negBk−A

#GRNMBk−A
<> 1) AND (Ave.neg.timeBk

A <> 0) THEN (μ = #Suc.negBk−A

#GRNMBk−A

AND ρ = 1 − Ave.neg.time
Bk
A

∑no.trading_partnerAt
k=1 Ave.neg.time

Bk
A

)

• IF (
#Suc.negBk−A

#GRNMBk−A
= 1) AND (Ave.neg.timeBk

A = 0) THEN (μ = 1 AND ρ = 1)
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Table 1 The data fields of an agent A’s local DB_behave database’s record and their brief description

Field name Description

Bk_id The identifier of Bk

#GRNMBk−A Numbers of GRNMs that both Bk and A participate in

#Suc.negBk−A Numbers of successful negotiations between A and Bk in all GRNMs that both
of them participate in

Ave.neg.time
Bk
A

Average of negotiation time between A and Bk in all GRNMs that both of
them participate in

Experiment was made with η = 4 (by experiment, it is believed to be an appro-
priate value for tuning the amount of concession). The best value of PreBehave_

DependBk
t factor (i.e., zero) is achieved in case of

#Suc.negBk−A

#GRNMBk−A
= 1 and Ave.neg.timeBk

A

= 0. So, when the
#Suc.negBk−A

#GRNMBk−A
is equal to one the effectiveness of the first parameter

in PreBehave_DependBk
t factor is ignored (i.e., μ = 1) also when the Ave.neg.timeBk

A

is equal to zero the effectiveness of the second parameter in PreBehave_DependBk
t

factor is ignored (i.e., ρ = 1). Similarly, when the
#Suc.negBk−A

#GRNMBk−A
is equal to one

and the Ave.neg.timeBk

A is equal to zero the effectiveness of both parameters in

PreBehave_DependBk
t factor are ignored (i.e., μ = 1 and ρ = 1).

A negotiator agent A has local database in name DB_behave (see Table 1) to store
the parameters that make up the PreBehave_DependBk

t factor.

3.3.3 Negotiation protocol

Type of Negotiation Protocol specifies the mechanism and the specific negotiation
rules it uses for a particular negotiation. In designing both types of MBDNA (i.e.,
GRO_MBDNA and GRC_MBDNA), Rubinstein’s sequential alternating offer pro-
tocol [52] is used. The negotiation procedure of Rubinstein’s sequential alternating
offer protocol is as follows: The players (negotiators) can take actions only at certain
times in the (infinite) set T = {1;2;3; . . . ; t}. In each period t ∈ T , one of the players,
say A, proposes an agreement, and the other player B either accepts it or rejects it. If
the offer is accepted, then the negotiation ends, and the agreement is implemented. If
the offer is rejected, then the process passes to period t + 1; in this period, player B

proposes an agreement, which player A may accept or reject.
In setting the stage for specifying negotiation protocol and negotiation strategy,

the following assumptions and rules apply:

1. Time is discrete and is indexed by {0,1,2, . . .}—it is a logical and believable
assumption, which is made in other models also [40, p. 713] and [62, p. 152].

2. Grid resource negotiation progresses in a series of rounds.
3. Multiple pairs of negotiators can negotiate deals simultaneously.
4. Negotiators do not form coalitions; the assumption is logical, because the type

of game is non-cooperative (negotiators make decisions independently) with an
arbitrary, finite number of negotiators.
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5. Negotiation focuses on a single-issue (e.g., price-only).
6. Typically, a negotiator proposes its most preferred deal initially [63].
7. Whenever it is the A’s turn to move (e.g. determine the amount of concession),

it proposes a deal from its possible negotiation set (e.g., [IPA, RPA], where IPA

and RPA are, respectively, the initial and reserve prices of A).
8. If no agreement is reached, grid resource negotiation proceeds to the next round.

At every round, the negotiator offers appropriate concession using the proposed
multifactors function (see Sect. 3.3.2).

9. Negotiation between two negotiators terminates (i) when an agreement is
reached, or (ii) with a conflict when one of the negotiators’ deadline is
reached [63].

10. When the negotiation ends, the history of negotiation is stored—this may be a
good augmentation of database for future work (see Sect. 5).

11. Negotiation begins with negotiators having private information (e.g. deadline,
reserve price, time preferences, strategies and payoffs according to them). So, no
negotiator knows the private information of the opponent.

12. For strategic reasons, negotiators have information of only the index of the time
period, and the then existing number of competitors and trading partners in grid
resource negotiation market (GRNM) [40].

13. Without loss of generality, A of type GRC_MBDNA makes the concession
first [40].

14. If the initial price of A of type GRC_MBDNA is not equal to or greater than the
reserve price of Bk of type GRO_MBDNA, the negotiation process terminates
with conflict.

15. Negotiation process in GRNM begins if only there are at least two negotiators
of the opposite type (i.e., one negotiator of type GRC_MBDNA and the other of
type GRO_MBDNA).

3.4 Terminating negotiation process and executing task (if negotiation is successful)

When the negotiation process between negotiator agent A of type GRC_MBDNA
or GRO_MBDNA and its trading partner Bk of each pair reaches an agreement, the
following steps are performed:

(a) If A is the negotiator agent who firstly accepts its trading partner’s proposal,
Then A stores the information of negotiation’s transactions between itself and its
opponents in DB_game history database.

(b) If a record of which its Bk_id field is corresponding to the identifier of Bk exists
(among retrieved records), Then A effects the following changes in the retrieved
record from DB_behave database:
(1) Update the Ave.neg.timeBk

A field value using previous value+new negotiation time
2 .

(2) Increase the #Suc.negBk−A field value by one.
Otherwise:

(1) Create a new record based on the template described in Table 1 and insert it
into the DB_behave database.

(c) A sends negotiation results (e.g., the price for leasing the resource and the period
of utilization) to corresponding GRCA or GROA.
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Also successful GRCA and GROA commence executing the task of completing
the resource allocation process. The GRCA entity submits the consumer’s task(s) to
GROA, which in turn submits the task(s) to GRO, which services the task(s). The
sequence of messages involved in task execution is shown in Fig. 1. The GROA, on
completing the execution of task(s), sends the result back to the GRCA(s). Finally,
the results are announced to GRC.

When the negotiation process between negotiator agent A of type GRC_MBDNA
or GRO_MBDNA and its trading partner Bk of each pair does not reach an agreement,
the following step is performed:

(a) If A is the negotiator agent who firstly accepts its trading partner’s proposal,
Then A stores the information of negotiation’s transactions between itself and its
opponents in DB_game history database.

4 Simulation and experimental results

Simulation is used extensively for modeling and evaluation of real world sys-
tems. Consequently, modeling-and-simulation has emerged as an important discipline
around which many standard and application-specific tools and technologies have
been built. To evaluate the performance of MBDNAs against MDAs [39, 40], Kasbah
agents [35] and NDFs [32], GridSim [64] is developed. The simulation environment
consists of: (1) a virtual e-market; (2) a society of negotiation agents comprising
MBDNAs, MDAs, Kasbah agents and NDFs; and (3) a controller agent.

(1) Virtual e-market
In a virtual e-market, negotiation agents have one of the following roles: grid
resource consumer (GRC) or grid resource owner (GRO). In each negotiation
round t , each negotiator of type GRC or GRO which its turn to move (make
decision), decides to whether accept the counter-proposal or generate the next
proposal according to its negotiation’s model.

(2) Society of negotiation agents
Four kinds of negotiation agent, MBDNAs, MDAs, Kasbah and NDFs, are sim-
ulated. For each negotiation agent of type GRC_MBDNA or GRO_MBDNA
a local database in name DB_behave is considered. At first entrance of each
GRC_MBDNA or GRO_MBDNA to the e-market, the contents of data fields
of its DB_behave are set to null.

(3) Controller agent
The controller agent generates negotiation agents, randomly determines their pa-
rameters (e.g., their roles as either GRC or GRO, initial prices (IP), reserve prices
(RP), negotiation strategies (λ), deadlines, their competitors and trading part-
ners), and simulate the entrance of agents to the GRNM following a uniform
distribution.

4.1 Objectives

We consider that MDAs and EMDAs [37–40] are appropriate tools for comparing
our proposed MBDNAs with them as: (1) MDAs and EMDAs take into considera-
tion the issue of time constraint (by using time-dependent function which is similar
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to our proposed MBDNAs’ time-dependent function) and market dynamics (which
are also considered in designing our proposed MBDNAs) in constructing negotia-
tion strategy, (2) a large number of commonly previous researches in the field of
negotiation-based grid resource allocation reviewed, referenced or enhanced the idea
of MDAs [39, 40] and/or EMDAs [37, 38] besides compared their achieved results
with them (e.g., see [21, 31, 45] and [65–70]) and (3) according to [65] and [66] they
can be modified to support negotiation activities in cloud computing environment.
As augmenting MBDNA with additional capability of relaxing bargaining terms in
face of intense market pressure to achieve both suitable utilities and suitable success
rate under different market conditions (e.g., given different supplies and demands)
for both GROs and GRCs is planned to be our near future research work, we do not
compare the current research to EMDAs [37, 38] (which relax their bargaining terms
in the face of intense market pressure), and instead leave it for future research. The
focus is, therefore, on MDAs [39, 40] and on those state-of-the-art negotiation mod-
els for grid resource management, whose performance was compared by [39] with
that of the MDAs (e.g., Kasbah [35] and NDF [32]).

To better understand the similarity and difference between MBDNAs, MDAs,
Kasbah agents, and NDFs, the negotiation strategies of MDAs, Kasbah agents, and
NDFs are discussed.

Market-Driven Agents (MDAs): An MDA determines the amounts of concessions
using three negotiation decision functions: Time (T A

t ), Opportunity (OA
t ) and

Competition (CCA
t ).

Time function: MDAs model devaluation of resources with passing time by using the
same function as (9).

Opportunity function: Opportunity function of MDAs is as same as the opportunity
function of MBDNAs (see (10)).

Competition function: the probability of negotiator agent A being considered the
most preferred trading partner by at least one of Bk ∈ B is calculated thus (we
should highlight that Sim [39, 40] did not consider GRNM area concept):

CCA
t

(
no.competitorA

t ,no.trading_ partnerA
t

)

= 1 − [(
no.competitorA

t

)/
no.competitorA

t + 1
]no.trading_partnerA

t . (14)

More details can be found in [39, 40].
Negotiation Decision Function (NDF): NDF uses time-dependent function to model

devaluation of resource with respect to passing time. The time-dependent negoti-
ation function of an NDF agent is given thus:

f A(t) = KA + (
1 − KA

)(
min

(
t, tAdeadline

)/
tAdeadline

)1/ψ (15)

where t is the current discrete trading time, tAdeadline is negotiation agent A’s dead-
line, ψ is A’s time preference and kA is a constant that determines the price to be
offered in the first proposal of A. The strategies of NDF agents can be classified
into three classes as follows: Boulware (ψ < 1), Conceder (ψ > 1) and Linear
(ψ = 1). These strategies correspond, respectively, to the Conservative, Concilia-
tory and Linear strategies of MDA agents. The offer p(t) of a GRO (respectively,
GRC) NDF agent at t is
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p(t) =
⎧
⎨

⎩

IPB + (RPB − IPB)( t

tAdeadline
)

1
ψ for GRC

IPS − (IPS − RPS)( t

tAdeadline
)

1
ψ for GRO

(16)

where IPB and RPB are the initial and reserve prices of agent B . Similarly, IPS

and RPS are the initial and reserve prices of agent S.
Kasbah: Chavez and Maes describe the architecture of Kasbah electronic market-

place (implemented at the MIT Media Laboratory) where is the most significant
example of e-commerce negotiation system. This market place simulates an en-
vironment where a user can create an autonomous agent to buy or sell a product,
negotiating product price on his/her behalf. The agent configuration includes some
behavior rules, such as the maximum time to reach a deal, the desired price interval
and the price suggestion function. Kasbah provides a small number of facilities to
the user’s negotiation process. It was noted in [35] that “Users wishing to buy and
users wishing to sell certain products in that marketplace can initialize agents by
specifying what they want to buy or sell, the desired price, the highest acceptable
price (for buying agents) or the lowest acceptable price (for selling agents), the
date they want the transaction to be completed and a negotiation strategy.” A seller
(respectively, buyer) Kasbah agent can specify the “Decay” function which is used
by the agent to lower (respectively, raiser) the asking price after expiration of the
fixed time. A seller (respectively, buyer) agent adopts “Anxious”, “Cool-headed”
and “Greedy” strategies which follow a Linear curve, an Inverse-Quadratic (re-
spectively, Quadratic) curve and an Inverse-Cubic (respectively, Cubic) curve,
respectively. Kasbah agent’s “Anxious” strategy corresponds to the MDAs’ Linear
strategy (respectively, NDF’s Linear strategy) and “Cool-headed” and “Greedy”
strategies correspond to the MDAs’ Conservative strategy with some values of λ

(respectively, NDFs’ Boulware strategy with some values of Ψ ).

By comparing MBDNAs against MDAs one can understand that MDAs do not
employ any mechanism for classifying the negotiator’s opponents from their behav-
ior point of view and make penalties for misbehaved opponents to put them under
pressure to refine their behavior and make reward for well-behaved opponents to
encourage them in continuing their good behavior. In addition MDAs do not make
GRNM areas which can be helpful in determining the specific amount of concession
to each negotiator’s trading partner based on the situations of the GRNM area. Also,
by comparing NDFs (respectively, Kasbah agents) and MBDNAs, one can understand
that NDFs (respectively, Kasbah agents) do not consider market dynamicity, market
competition and any mechanism for classifying the negotiator’s opponents from their
behavior point of view to put misbehaved opponents under pressure to refine their
behavior. In addition NDFs (respectively, Kasbah agents) do not make GRNM areas
which can be helpful in determining the specific amount of concession to each nego-
tiator’s trading partner based on the situations of the GRNM area. Also, while NDFs
and Kasbah agents adopt bilateral negotiation protocol MBDNAs and MDAs adopt
alternating offers protocol to provide more flexibility in allowing multiple messages
from both GROs and GRCs to be exchanged.

The similarity between MBDNAs, MDAs, NDFs and Kasbah agents is that they all
have quite similar time-dependent negotiation strategies. Intuitively, for every time-
dependent negotiation strategy in MDA, NDF and Kasbah, there is a corresponding
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Table 2 Summary and comparison

References MBDNAs MDAs NDF Kasbah

Negotiation protocol

Bilateral negotiation Yes Yes Yes Yes

Multilateral negotiation Yes Yes No No

Determine the specific amount of concession to each
negotiator’s trading partner instead of the same amount to all

Yes No No No

Negotiation strategies

Behavior of the negotiator’s trading partner_dependent Yes No No No

Change in the number of negotiator’s competitors_dependent Yes Yes No No

Change in the number of negotiator’s trading
partners_dependent

Yes Yes No No

Remaining time to deadline_ dependent Yes Yes Yes Yes

Fixed rate adjustment_oriented No No No Yes

strategy in MBDNA, so MDAs, Kasbah agents and NDFs are good choices for com-
paring MBDNAs against them.

In order to complete the comparison procedure of MBDNA against other men-
tioned negotiator agents another issue in name time consumption of the negotiation
process should be considered. With respect to this issue we should highlight that
in comparison to MDA, Kasbah and NDF, MBDNA has the following extra step in
each decision making round: extract previous concession behavior of its opponents
from the local DB_behave database. According to the study of real workload traces
from [61], which are stored in Standard Work load Format (SWF), we investigate
that the maximum number of negotiator opponents is limited to 300. Hence, with
respect to time, using any kind of search algorithm is logical. In spite of this, we con-
sider a scenario in which a negotiator agent faces with large number of opponents.
This scenario can be occurred when the MBDNA is use to negotiate in the forests
of interconnected grids in different parts of the world (i.e., InterGrids). In the men-
tioned scenario we propose to perform hash searches on the DB_behave database.
Well-designed hash searches are more efficient that any other kinds of search and the
behavior record of an opponent can be found in constant time (i.e., O(1) time) [75].
Also, remember that parallel negotiation activities are performed in A’s GRNM areas
that cause no extra time complexity.

For the benefit of readers, Table 2 summarizes and compares the main features of
the proposed negotiation model against the MDAs, NDFs and Kasbah agents in terms
of their negotiation protocol and negotiation strategies.

Although both GRC and GRO agents are simulated, but without loss of generality
it is sufficient to demonstrate the properties of MBDNAs from the perspective of
GRC agents. So we conduct four types of experiment: (1) GRC agents are MDAs
and GRO agents are MBDNAs, (2) GRC agents are Kasbah and GRO agents are
MBDNAs, (3) GRC agents are NDFs and GRO agents are MBDNAs and (4) both
GRC agents and GRO agents are MBDNAs.

The reason that in the first three experiments just GRO agents are considered as
MBDNAs while GRC agents are considered as one of MDA, Kasbah or NDF is based
on a common assumption in microeconomics, namely ceteris paribus [71]. As men-
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tioned in [72]: “the effect of a particular factor can be analyzed by holding all other
factors constant.” The purpose of the first three experiments is to compare the per-
formance of negotiation agents that are not designed with the proposed multicriteria
negotiation strategy (i.e., MDA, Kasbah and NDF) against negotiation agents that are
designed with the proposed multicriteria negotiation strategy from GRC perspective,
so it seems prudent to avoid any possible influence on the negotiation outcomes when
negotiator agents of type GRO make concession amount. Hence in our experiment
GRO agents are programmed as MBDNA because MBDNAs are designed with the
proposed multicriteria negotiation strategy that is believed to be the best one. Also, in
the fourth experiment we programmed both GRC and GRO agents as MBDNA to in-
vestigate the performance of MBDNAs of type GRC against MBDNAs of type GRO
when both of them are programmed with the same proposed multicriteria negotiation
strategy.

4.2 Experimental setting

All the following input parameters are required for setting grid simulation testbed:
(a) the grid load (which is represented by Grid_load symbol), (b) the e_market type,
(c) job size (measured in (MI)), (d) deadline for agents to complete their negotiation
process, (e) the total resource capacity of a GROA (measured in (MIPS)), (f) Market
density, (g) negotiation strategy and (h) time-dependent factor. The values of the most
mentioned parameters that are used to conduct simulation are derived from [37–40]
and [45]. The input parameters and their possible values are presented in Table 3.

(a) Grid load

Grid load refers to the utilization status of computing resources. As the load varies
continuously with time, the simulation should be carried out by considering various
grid loads. Sim [39] proposes two parameters Rp and Cc to represent grid load, where
Rp is defined as the expected amount of processing requested per time interval (which
is measured in MI) and Cc as the total computing capacity of the grid (which is
measured in MI). It was noted in [39] that “Rp depends on both the requests (tasks)
from the GRCs which depend on Pm (i.e., the probability of a GRC generating a
task that needs computing resources at each negotiation round. This parameter is
used to simulate the arrival of a task to the grid at each negotiation round) and the
average size of each task. It is assumed that the arrival rate of tasks follows a Poisson
distribution, and the average task size approximates the range between 50–400 MIs.
Different levels of system utilization (different grid loads) are simulated by varying
the time interval between the possible arrivals of two tasks”. As grid load tends to
become one (respectively, to zero), fewer (respectively, more) computing resources
in the grid are available for lease.

Grid_load = Rp

Cc

where 0 < Grid_load ≤ 1. (17)

(b) E_market types

As the availability of grid resources varies continuously with time, the simula-
tion should be carried out by considering different GRC-to-GRO ratios. These ra-
tios characterize three types of e-market: GRC_favorable, GRO_favorable and Bal-
anced. The GRC-favorable e-market addresses more GRO agents and consequently
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more opportunity for acquiring resources; the GRO-favorable market addresses more
GRC agents and consequently more opportunity for leasing out resources; the Bal-
anced market addresses normal competition among GRO agents and GRC agents.
GRC_to_GRO ratio is controlled by the probability PGRC of an agent being GRC
agent (or GRO agent). PGRC follows a uniform distribution. We conduct two types of
experiment to investigate the benefit of MBDNAs from e-market type’s perspective:
(1) a moderate difference between the number of GRCs and GROs and (2) a large dif-
ference between the number of GRCs and GROs. The goal of having these two kinds
of experiment is to show the better impact of the proposed factors by increasing the
difference between the number of GRCs and GROs.

(c) Job size

The GRC agent’s job size is measured in millions of instructions (MI).

(d) GRC agent’s deadline

As described before, agent’s deadline constraint plays a major role in choosing
the appropriate strategy. According to [39], three categories can be described for the
agent’s deadline constraint: Short, Moderate and Long. Space limitation precludes all
possible values of GRC agent’s deadline from being included in depicting figures,
and Table 3 only contains GRCA’s job deadline values equal to 100, 1600 and 3100
which represent Short, Moderate and Long deadline, respectively.

(e) GRO agent’s resource capacity

The GRO agent’s total resource capacity is measured in millions of instructions
per second (MIPS).

(f) Market density

Market density depends on the number of GRC agents and GRO agents partic-
ipating in the GRNM. Market density is controlled by the probability Pgen that an
agent will enter the GRNM in each round of negotiation. Pgen Follows a uniform dis-
tribution. Market density can be categorized into three categories: Dense, Moderate
and Sparce. Space limitations preclude all the categories of market density from be-
ing included in depicting figures, hence, only results comparing the performance of
MBDNAs with MDAs, NDFs and Kasbah agents in Dense markets are presented.

(g) Negotiation strategy

The proposed multicriteria negotiation strategy of MBDNAs is described in
Sect. 3. Also the negotiation strategies of MDAs, Kasbah agents and NDFs are in-
spired by [35, 39, 40] and [32], respectively.

(h) Time-dependent factor

As mentioned before the rationale for comparing MBDNAs with MDAs, Kasbah
agents and NDFs is that all these agents take into consideration the issue of time
constraint, and their time-dependent strategies have quite similar to each other. Space
limitation precludes all possible values of negotiator’s time preference from being
included in depicting figures, and Table 3 only contains some values for negotiator’s
time preference.
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4.3 Performance measure

Because Grids are dynamic in their nature, it is difficult to benchmark and evaluate
them. Moreover, there is no general consensus on which metrics to use [73, 74]. The
common metrics to be studied are as follows [39]:

• Task completion: Task completion is defined as the percentage (Ptc) of a GRC’s
set of tasks that is accomplished by successfully negotiating and leasing grid re-
sources; let Ntot denote the total number of tasks requested by a GRC and Nsuc the
number of tasks that are successfully scheduled and executed. Ptc is given as

Ptc = Nsuc

Ntot
(18)

• Budget spent: Budget spent defines how efficiently the available budget was spent
(Budeff). Let Budinit denote the initial budget allocated to a GRC and Budspent the
amount of budget spent in leasing computing resource(s) for processing tasks that
are successfully scheduled and executed. Budeff is given as

Budeff = Nsuc/Budspent

Ntot/Budinit
(19)

As described in [39], “ Nsuc
Budspent

represents the actual number of tasks processed

per currency unit measured in “Grid dollars” or “G$” [17], and Ntot
Budinit

represents the
expected number of tasks processed per currency unit before they are successfully
scheduled (and executed).”

4.4 Evaluation and discussion

Following are the two most important observations from the results:

Observation 1 Figures 4 and 5 are illustrated according to the two kinds of exper-
iment (i.e., a moderate difference between the number of GRCs and GROs and a
large difference between the number of GRCs and GROs). Figure 4 shows the first
type of experiment while Fig. 5 shows the second type of experiment. According to
a common concept in the social sciences: “having more individuals (big human soci-
ety) leads to better analyzing of human kind’s behavior, better decision making about
goodness of their behavior in the chosen society and determining more appropriate
reactions against different human behavior types” one can understand that by increas-
ing in the difference between the number of GRCs and GROs from Fig. 4 to Fig. 5
(i.e., having bigger society of opponents) the better performance is achieved. In other
words, by having more opponents the decision maker negotiator can have more ap-
propriate and better evaluation of the goodness of its opponent’s behavior among the
other members of the society and tunes the concession amount based on the evalua-
tion result. For example if a negotiator has one opponent it thinks that its opponent’s
behavior is the best (which it may be not) while having more opponents can tune and
correct the negotiator’s view about its opponents’ behavior by comparing one against
the others. Following the common observations in Figs. 4 and 5 are discussed. The
experimental results in Figs. 4 and 5 show the following.
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Fig. 4 Performance under different market types considering a moderate difference between the number
of GRCs and GROs
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Fig. 4 (Continued)
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Fig. 4 (Continued)
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Fig. 4 (Continued)

(1) Given the same GRC-to-GRO ratio MBDNAs achieve higher budget efficiencies
(except for GRO-favorable markets where the bargaining power of GRC negotia-
tors is weak due to low probability of creating GRO agents) by using new nego-
tiation strategy. From negotiation strategy point of view, MBDNAs’ negotiation
strategy is composed of an extra factor in name Previous Concession Behavior
of Negotiator’s Trading Partner in comparison to MDAs and three extra factors
in names Competition, Opportunity and Previous Concession Behavior of Ne-
gotiator’s Trading Partner in comparison to NDFs and Kasbah agents. Previous
Concession Behavior of Negotiator’s Trading Partner factor which is considered
to make penalties for misbehaved trading partners not only increases the chance
of reaching a consensus with well-behaved trading partners in different market
types but also puts misbehaved trading partners under pressure to have better be-
havior in next meeting (to avoid achieving low success rate and/or losing utility).
This idea is inspired from real-life trading market where the negotiators analyze
their opponents’ behavior and classified them into misbehaved and well-behaved
opponents. Then, during the negotiation process, the negotiators consider penal-
ties for misbehaved opponents to put them under pressure to refine their behav-
ior and rewards for well-behaved opponents to encourage them in continuing
their good behavior. Consequently, with respect to this factor the negotiators’
achieved utility will be bettered by participating in more numbers of trading mar-
kets. Also negotiation strategy must takes into consideration the dynamics of a
grid-computing environment because it is expected that resources and services
are constantly being added/removed from a grid. This concept is modeled via
two factors: Competition and Opportunity.

(2) Negotiation results become more unfavorable with the increase of the GRC-to-
GRO ratio for all types of negotiator (i.e., MBDNAs, MDAs, NDFs and Kasbah
agents). This is because with small number of trading alternatives (partners), a
negotiator agent generally has a lower chance of reaching a consensus at its own
term.



S. Adabi et al.

Fig. 5 Performance under different market types considering a large difference between the number of
GRCs and GROs
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Fig. 5 (Continued)
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Fig. 5 (Continued)
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Fig. 5 (Continued)

(3) When the type of market tends to be GRO-favorable (e.g., where the GRC’s com-
petition degree is very high and probability that a GRO agent enters the market
at any time is <0.5), the budget efficiency of the all types of agent (i.e., MBD-
NAs, MDAs, NDFs and Kasbah agents) are close especially in the short deadline
case since under very extreme competition conditions (i.e., GRO-favorable mar-
ket type where GRC-to-GRO ratio = {2 : 1,5 : 1,10 : 1,30 : 1,50 : 1,100 : 1}),
the bargaining power of GRCs decreases and it may be extremely difficult for all
types of GRC-negotiator to reach any consensus so they have to concede more to
avoid the risk of losing grid resources (which leads to lower average utility) and
also with short deadline (in comparison to moderate and long) due to not having
plenty of time to complete a deal the bargaining positions of all types of GRC
agent are weaker and if final agreement is reached, all of them are likely to make
relatively more concessions (which leads to lower average utility).

(4) Adopting more patient strategies can increase a negotiator’s budget efficiency
because a negotiator agent puts its opponent under pressure to concede more
for narrowing the differences between the proposals and counter-proposals. This
means that a more patient negotiator agent is less likely to reach earlier agreement
and instead prefer to keep its budget efficiency at the highest acceptable level
while its opponent should adopt impatient strategies in negotiation process to
avoid the risk of losing deals.

Observation 2 The experimental results in Fig. 6 show the following.

(1) Given the same Grid-load, MBDNAs achieve slightly higher success rate (espe-
cially for moderate and long deadline) by using new negotiation strategy. From
negotiation strategy point of view, since MBDNAs are more likely to adopt and
relax their bargaining criteria in face of following pressures: (a) come close to
their negotiation deadline, (b) decrease in number of negotiator’s trading alter-
native and/or increase in differences in proposals and counter-proposals, (c) in-
crease in number of negotiator’s competitors and (d) decrease in number of well-
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Fig. 6 Performance under different grid work loadings
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Fig. 6 (Continued)
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Fig. 6 (Continued)

behaved opponents, they are more likely than MDAs, NDFs and Kasbah agents to
reach agreement with their trading partners. While the punishment strategy (i.e.,
make small concession amount in front of misbehaved opponents and slightly
narrow the difference between proposal and counter proposal) of MBDNA in-
creases the budget efficiency but it may increase the risk of losing a deal (i.e.,
lower success rate) specially in stiff competition. So we should investigate if the
MBDNA’s strategies have any bad side effect on success rate. As illustrated in
Fig. 6 one can understand that the new negotiation do not have any bad side
effect on success rate and even in some cases improve it. Hence, according to
the combination of two performance metrics (i.e., budget efficiency and success
rate), MBDNAs outperform other negotiations agents.

(2) Negotiation results become more unfavorable with the increase of the Grid_load
for all types of negotiator (i.e., MBDNAs, MDAs, NDFs and Kasbah agents).
With the increase of Grid_load, there were fewer available resources in the grid,
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and it became increasingly difficult for all types of agent to successfully negotiate
for resources.

(3) Given the same Grid_load and time preference, GRCs of all types who have
long deadline achieved higher success rate. With long deadline (in comparison to
moderate and short) due to have plenty of time for trading the bargaining posi-
tions of all types of negotiator are stronger and they both likely to complete deals
successfully (i.e., have higher success rate). However, as MBDNAs are designed
with more appropriate negotiation strategy, they are more likely to achieve same
or higher success rate than other types of negotiator especially under intense grid
market pressure.

(4) Adopting more patient strategies can decrease a negotiator’s success rate. This
means that a more patient negotiator agent is more likely to face the risk of losing
deals especially in the case of stiff competition.

5 Conclusion

This paper presents an approach to allocate resources in grid environment via ne-
gotiation between GRC_MBDNA (Grid Resource Consumer Market- and Behavior-
driven Negotiation Agent) and GRO-MBDNA (Grid Resource Owner Market- and
Behavior-driven Negotiation Agent) to enhance the success rate and utility of negoti-
ation agents. The scenario of resource allocation proposed here in the economy-aware
grid environment includes the following four major phases:

(1) Registering GRCs and GROs
(2) Creating MBDNAs and providing the required information (that is, necessary for

starting negotiation)
(3) Starting negotiation based on proposed strategy
(4) Terminating negotiation process and executing task (if negotiation is successful)

In this approach, the authors investigated the benefit of the proposed Behavior
factor in designing the negotiation agents (e.g., MBDNAs) so as to handle resource
allocation in a computational grid environment, as also in a simulated environment.
Simulation results show that MBDNAs perform better than do the MDAs [39, 40],
Kasbah [35] and NDFs [32] by taking the function of the proposed negotiation factor
into consideration. For our future work we will extend MBDNA to have more suit-
able factors (e.g., flexibility in negotiator’s trading partner’s proposal and negotiator’s
proposal deviation of the average of its trading partners’ proposals) in designing ne-
gotiation agent besides considering to relax bargaining terms to achieve both suitable
utilities and suitable success rate under different market conditions for both GRO
group and GRC group.

Although there is good opportunity for grid applications to benefit from MBDNAs
in regulating the supply (grid resources which are provided by resource owners) and
demand (grid resource consumers’ requirements) in grid computing environments,
there are still many challenges that need to be overcome before designing more ef-
fective negotiation agents. Some of these challenges are: (1) designing negotiation
agents that not only applying near optimal negotiation strategies but also have the ap-
propriate flexibility of relaxing their bargaining criteria to quickly complete a deal in
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the face of intense grid market pressure and (2) designing negotiation agents that not
only react to current market situations but also to future market situations. One way
to deal with the first challenge is to design negotiation agents that have the flexibility
of relaxing bargaining criteria using fuzzy rules and a way to deal with the second
challenge is to design negotiation agents with learning and predicting capabilities
by analyzing DB_game history database that contains information of negotiation’s
transactions between negotiation agent and its opponents.

Acknowledgements We want to express our gratitude to Dr. Hui Li who graciously provided us with
the Standard Workload Format (http://www.cs.huji.ac.il/labs/parallel/workload/logs.html) through which
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Appendix

For the benefit of readers, the authors summarize in Table 4 the key symbols and their
definitions used in this paper.

Table 4 Notation and basic terms used in the paper (alphabetic sort)

Symbol Basic definition

A_childk kth instance of negotiator A

AS Action space

Ave.neg.time
Bk
A

The average negotiation time between A and Bk in all GRNMs which
both participate

Bk kth trading partner of negotiator A

Budeff How efficiently the available budget was spent

Budinit Initial budget allocated to a GRC

Budspent The amount of budget spent in leasing computing resource(s) for
processing tasks that are successfully scheduled and executed

Cc The total computing capacity of the grid

cA The worst possible utility for A (e.g., if the negotiation ends in
disagreement)

CCA
t Competition function of negotiator A at negotiation round t

FST
A_childk
t Final price-oriented strategy that is taken by A_childk

GRC Grid resource consumer

GRC_MBDNA Grid resource consumer of type MBDNA

GRC_ job_ prof i
p GRCi ’s pth job characteristics

Grid_load Utilization status of computing resources

grid.name Name of observed grids in work load traces

GRNM Grid resource negotiation market

GRO Grid resource owner

GRO_MBDNA Grid resource owner of type MBDNA

http://www.cs.huji.ac.il/labs/parallel/workload/logs.html
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Table 4 (Continued)

Symbol Basic definition

GRO_resource_ prof j
r GROj ’s rth resource characteristics

IPA Initial price of negotiator A

IST
A_childk
t Initial price-oriented strategy that is taken by A_childk

KA The constant that determines the price to be offered in the first
proposal of negotiator A of type NDF

max_ pot_usergrid.name Maximum number of potential unique users of a grid in grid.name

Nsuc The number of tasks that are successfully scheduled and executed

no.competitorAt Number of negotiator A’s competitors at round t

no.trading_ partnerAt Number of negotiator A’s trading partners at round t

OA
t Opportunity function of negotiator A at negotiation round t

P
A_childk
t A_childk’s proposal at round t

P
Bk
t−1 Proposal of Bk at round t − 1

Pgen The probability that an agent enter the GRNM in each round of
negotiation

PGRC The probability of an agent being GRC agent

Pm The probability of a GRC generating a task that needs computing
resources at each negotiation round

Ptc Percentage of a GRC’s set of tasks that is accomplished by successful
negotiation and leasing grid resources

P consensus
t The consensus price

PreBehave_Depend
Bk
t MBDNAs’ behavior function (e.g., previous behavior of Bk)

Rp The expected amount of processing requested per time interval

repeated_usergrid.name Represents percentage of grid.name’s users that are observed
previously in unique_user_setgrid.name

RPA Reserve price of A

t Negotiation round

tAdeadline A’s deadline (e.g., a time frame by which A needs negotiation result)

T A
t Time preference function of negotiator A at negotiation round t

umin The amount that is considered to distinguish the utilities between
deals and no deals

U
A_childk
t [PA_childk

t → Bk] Utility of A_childk’s at round t if its proposal is accepted by Bk

U
A_childk
t [PBk

t−1 → A_childk] Utility that is generated for A_childk by accepting the opponent’s

proposal P
Bk
t−1

unique_user_set_memgrid.name The set of observed unique users in the grid.name’s SWF archive

#GRNMBk−A Total number of GRNMs in which both Bk and A participate

#Suc.negBk−A Total number of successful negotiations between A and Bk in all
GRNMs which both participate

λ Negotiator A (of type MBDNA/MDA)’s time preference

ψ Negotiator A (of type NDF)’s time preference

�t The amount of concession at negotiation round t
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