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Abstract—The degree distribution is an important characteris-
tic in complex networks. In many applications, quantification of
degree distribution in the form of a fixed-length feature vector is a
necessary step. Additionally, we often need to compare the degree
distribution of two given networks and extract the amount of
similarity between the two distributions. In this paper, we propose
a novel method for quantification of the degree distributions in
complex networks. Based on this quantification method, a new
distance function is also proposed for degree distributions, which
captures the differences in the overall structure of the two given
distributions. The proposed method is able to effectively compare
networks even with different scales, and outperforms the state
of the art methods considerably, with respect to the accuracy of
the distance function.
The datasets and more detailed evaluations are available upon
request.

Index Terms—Social Network, Complex Network, Degree
Distribution, Feature Extraction, Distance Function, Power-law,
Kolmogorov-Smirnov Test.

I. INTRODUCTION

Real-world networks, such as social networks and com-
munication networks, display common topological features
that discriminate them from random graphs. Networks with
such non-trivial properties are often called complex networks.
Among the features, small path lengths (small-world property),
high clustering, community structure and heavy-tailed degree
distribution are well studied in the literature. Although the
degree distribution is an important network characteristic,
its quantification (feature extraction) is not a trivial task.
Representing the network as a fixed-size feature vector is
an important step in every data analysis process [1], [2]. In
order to employ the degree distribution in such applications,
a procedure is needed for extracting a feature vector from the
degree distribution. Additionally, the quantified feature vector
is useful in developing a distance function for comparing
two degree distributions because we often need to compare
complex networks according to their degree distribution. For
example, in evaluation of sampling algorithms, we usually
compare the given network instance with its sampled coun-
terpart to ensure that the structure of the degree distribution
is preserved [3]. Hence, quantification and comparison of
degree distributions is an important research problem with
many applications.

Currently, there exist three main approaches for comparing
degree distributions in the literature: Kolmogorov-Smirnov
(KS) test [4], [5], comparison based on fitted power-law expo-
nent [6], [7], and comparison based on distribution percentiles
[2]. The “power-law exponent” approach is based on the
assumption that the degree distributions obeys the power-law
model. This assumption is invalid for many complex networks
[8], [9]. KS-test is based on a point-to-point comparison of
the distributions, which is not a good approach for comparing
networks with different ranges of node degrees. Percentile
method is also too sensitive to the outlier values of node
degrees. As a result, the existing methods are actually inap-
propriate for comparing the degree distribution of networks,
particularly when the target networks have different sizes
and scales. We propose to consider the mean and standard
deviation of the degree distribution in the quantification phase
in order to make the comparison process more accurate and
more robust, particularly with respect to scale variation. In
our proposed “quantification process”, a feature vector of real
numbers is extracted from the degree distribution, which can
be used in data analysis applications, data-mining algorithms
and comparison of degree distributions. In “comparison task”,
we define a distance function that computes the distance
(amount of dissimilarity) between two given network degree
distributions. The proposed method offers an effective quanti-
fied representation of the degree distributions and outperforms
the baseline methods with respect to the accuracy of the dis-
tance function. Although our proposed approach is applicable
to other network types, in this paper we focus on simple
undirected networks.

The rest of this paper is organized as follows: In section
II, we briefly overview the related works. In section III, we
propose a new method for degree distribution quantification
and comparison. In section IV, we evaluate the proposed
method and we compare it with baseline methods. Finally,
we conclude the paper in section V.

II. RELATED WORKS

The degree distribution of many real-world networks follow
the power-law model [5]. In power-law degree distribution
the number of nodes with degree d is proportional to d−γ

(Nd ∝ d−γ) where γ is a positive number called “the
power-law exponent”. The exponents of the fitted power-law
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can be used to characterize graphs [7]. A possible approach
for quantifying the degree distribution is to fit a power-
law distribution on the network distribution and to find its
power-law exponent (γ). Although we can compare networks
according to their fitted power-law exponents, the power-law
exponent is too limited to represent a whole degree distribu-
tion. This approach also follows the assumption that the degree
distribution shows a power-law model, which is not always
valid, because many networks follow other degree distribution
models such as log-normal distribution [8], [9]. In addition,
the power-law exponent does not reflect the deviation of the
degree distribution from the fitted power-law distribution. As a
result, two completely different distributions may have similar
quantified value for fitted power-law exponent.

Degree distribution is a kind of probability distribution
and there are a variety of measures for calculating the dis-
tance between two probability distributions. In this context,
the most common method is the Kolmogorov-Smirnov (KS)
test, which is equal to the maximum distance between the
cumulative distribution functions (CDF) of the two probability
distributions [4]. KS-test is frequently used for comparing two
degree distributions [3]. The KS distance of two distributions is
calculated according to Equation 1, in which S1(d) and S2(d)
are the CDFs of the two degree distributions, and d indicates
the node degree. KS-test is a method for comparing the
degree distributions and calculating their distance, and it does
not provide a quantification or feature extraction mechanism.
Hence, we should maintain the CDF of the degree distributions
so that we can compare them according to KS-test. KS-test is
also sensitive to the scale and size of the networks, since it
performs a point-to-point comparison of CDFs. KS-test does
not provide a quantification mechanism and hence can not
help in feature extraction and feature-based data analysis tasks.
However, we include this method in the baseline methods as
a distance function for degree distributions.

distanceKS(S1, S2) = max
d
|S1(d)− S2(d)| (1)

Janssen et. al., [2] propose another method for quantification
of degree distributions. In this method, the degree distribution
is divided into eight equal-sized regions and the sum of
degree probabilities in each region is extracted as distribution
percentiles. This method is sensitive to the range of node
degrees and also to outlier values of degrees. We recall this
technique as “Percentiles” and we include it in baseline
methods, along with “KS-test” and “Power-law” (the power-
law exponent) to evaluate our proposed method. The proposed
method is called “Degree Distribution Quantification and
Comparison (DDQC)”.

III. PROPOSED METHOD

We propose a new method for quantifying and comparing
the degree distribution of networks. In this method, a vector of
at least four real numbers is extracted from the degree distribu-
tion. A distance function is also suggested for comparing the
quantified vectors. An appropriate distance metric for degree

distributions should be able to effectively compare networks,
even if they have different range of node degrees. To eliminate
impact of the network size from the quantification of its degree
distribution, we consider the mean and standard deviation of
the degree distribution in the quantification procedure. The
following two subsections show our proposed method for
quantification and comparison of degree distributions.

A. Quantification of Degree Distribution

The degree distribution of a network is described in Equa-
tion 2 as a probability distribution function. In this equation,
D(v) shows the degree (number of connected edges) of node
v. The aim of “quantification” task is to extract a fixed-
length vector of real numbers as the representative of the
degree distribution. We can use the quantified feature vector
in network analysis and network comparison tasks. In the first
step of quantification, we define four regions (RG) in the
degree distribution of a given network according to Equation
3. In this equation, min(D(v)) shows the minimum of all the
existing degrees in the degree distribution, µG is the mean of
degrees according to their probabilities, σG is the standard
deviation of the degrees, α is a configurable parameter (it
specifies the width of the regions), and max(D(v)) is the
maximum existing node degree in the network. The smallest
possible feature vector in our proposed method is a vector
of four numbers, each of which showing the sum of the
probability of degrees in one of the four specified regions.
For finer comparison of distributions, we can further divide
each region into L equal-size intervals. In our experiments,
L is set to 2β , where β is a positive integer value (β > 0)
and the second configurable parameter of our method. Larger
values of β results in a more fine-tuned quantification and
also more elements in the feature vector. While even small
values for β (e.g., β = 1) brings a more accurate distance
metric compared to the baseline methods, larger values of
β improves the accuracy of the distance function. Therefore,
tuning β parameter is a tradeoff between the accuracy of the
algorithm and the size of the quantified feature vector.

Equation 4 shows the length of each region (|RG(r)|), which
is equal to the absolute difference between the region end-
points. Each region is then divided into L = 2β equal-length
intervals. Equation 5 shows the interval points (IPG(b, L)) and
Equation 6 shows the defined ranges for intervals (IG(i, L)), in
which b is the interval point counter, L = 2β is the split factor
of each region, and i is the interval identifier. The “interval
degree probability (IDPG)” is defined in Equation 7 as the
sum of degree probabilities in a specified interval. Equation
8 shows the final quantified feature vector, which contains
4L = 4 × 2β elements, each of which is the IDP for one
of the defined intervals. In this equation, Qβ(G) shows the
quantified representation of the degree distribution as a fixed-
length feature vector with 4× 2β elements.

PG(d) = P (D(v) = d); v ∈ V (G) (2)



RG(r) =


[minG(D(v)), µG − ασG] if r = 1

[µG − ασG, µG] if r = 2

[µG, µG + ασG] if r = 3

[µG + ασG,maxG(D(v))] if r = 4.

(3)

|RG(r)| = max(max(RG(r))−min(RG(r)), 0) (4)

IPG(b, L) =


minG(D(v)) +

(b−1)×|RG(1)|
L 1 ≤ b ≤ L

µG − ασG +
(b−L−1)×|RG(2)|

L L+ 1 ≤ b ≤ 2L

µG +
(b−2L−1)×|RG(3)|

L 2L+ 1 ≤ b ≤ 3L

µG + ασG +
(b−3L−1)×|RG(4)|

L 3L+ 1 ≤ b ≤ 4L+ 1.
(5)

IG(i, L) = [IPG(i, L), IPG(i+ 1, L)] ; i = 1..4L (6)

IDPG(I) = P (min(I) ≤ D(v) < max(I)); v ∈ V (G) (7)

Qβ(G) =
〈
IDPG(IG(i, 2

β))
〉
i=1..4×2β

(8)

B. Comparison of Degree Distributions
Now, we can compare the degree distribution of two net-

works G1 and G2 according to their quantified feature vectors.
We assume that the two degree distributions are quantified with
the same configuration parameters of α and β. As a result,
the size of the quantified vectors Qβ(G) will be equal for
the two networks. For small values of β, Qβ(G) will show a
coarse-grained representation of the degree distribution with
few real numbers. For larger values of β, more fine-grained
intervals of the degree distribution are available. According to
Equation 9, we can simply compute the elements of Qβ(G)
based on the elements in Qβ+1(G). In other words, it is
possible to calculate IDPG for smaller values of β (coarse-
grained quantification) using IDPG with larger values of β
(fine-grained quantification).

Finally, we propose the Equation 10 for comparing two
degree distributions. This equation compares two networks
based on their corresponding IDPG values for different
granularities, from larger intervals (with s = 0) to smaller
intervals (with s = β). A coefficient (γs), which is the third
configurable parameter of our framework, is also included
to influence the impact of different granularities. Intuitively,
d(G1, G2) compares the corresponding interval degree proba-
bilities of the two networks, sums their differences, and also
includes a discount factor of γ for the more fine-granularity in-
tervals to raise the impact of course-grained intervals. Equation
10 is a distance function for degree distribution of networks,
and it is the result of a comprehensive study of different
artificial and real networks.

IDPG(IG(i, L) = IDPG(IG(2i−1, 2L)+IDPG(IG(2i, 2L) (9)

d(G1, G2) = distance(G1, G2) =

β∑
s=0

γs
4×2s∑
i=1

|IDPG1(IG1(i, 2
s)− IDPG2(IG2(i, 2

s)| (10)

IV. EVALUATION

A. Datasets

In our problem setting, we aim a distance function that given
the degree distribution of two networks, calculates how similar
they are. But what benchmark is available for evaluating such
a distance function? For evaluating different distance metrics,
an approved dataset of networks with known distances of its
instances is required. Although there is no such an accepted
benchmark of networks with known “distance values”, there
exist some similarity witnesses among the networks. For
evaluating different distance metrics, we have prepared two
network datasets with admissible similarity witnesses among
the networks of these datasets:

1) Real-world Networks
We have collected a dataset of 33 real-world networks of

different types, most of them are publicly available in the
web. The networks are selected from six different network
categories. The category of networks is a sign of similarity:
networks of the same type usually follow similar link for-
mation procedures and produce similar degree distributions.
Therefore, when comparing two network instances, we expect
the distance metric to return small distances (in average) for
networks of the same type and relatively larger distances for
networks with different types. The networks of this dataset
are categorized as following: Citation Networks. In these
networks, the edges show the citations between the papers
or patents. The members of this class are: Cit-HepPh1, Cit-
HepTh1, dblp cite2, and CitCiteSeerX3. Collaboration Net-
works. This class shows the graph of collaboration or co-
authorships. The members of this class are: CA-AstroPh1,
CA-CondMat1, CA-HepTh1, CiteSeerX Collaboration3, com-
dblp.ungraph1, dblp collab2, refined dblp200808244, IMDB-
USA-Commedy-095, CA-GrQc1, and CA-HepPh1. Commu-
nication Networks. These networks show the graph of
some people who had electronically communicated with
each other. The dataset consists of the following com-
munication networks: Email6, Email-Enron1, Email-EuAll7,
and WikiTalk1. Friendship Networks. These networks show
the interactions of some social entities. The networks in
this category are: Facebook-links8, Slashdot08111, Slash-
dot09021, soc-Epinions11, Twitter-Richmond-FF5, youtube-d-
growth8and dolphins9. Web-graph Networks. These networks
show the graph of some web pages in which the edges
correspond the hyperlinks. The members of this category are:
Web-BerkStan1, web-Google1, web-NotreDame1, and web-
Stanford1. P2P Networks. These networks represent peer-
to-peer computer networks. In this class, the following net-

1http://snap.stanford.edu
2http://dblp.uni-trier.de/xml/
3http://citeseerx.ist.psu.edu
4http://www.sommer.jp/graphs/
5http://giuliorossetti.net/about/ongoing-works/datasets
6http://deim.urv.cat/ aarenas/data/welcome.htm
7http://konect.uni-koblenz.de/
8http://socialnetworks.mpi-sws.org
9http://www-personal.umich.edu/ mejn/netdata/



works are prepared: p2p-Gnutella0410, p2p-Gnutella0510, p2p-
Gnutella0610, and p2p-Gnutella0810.

2) Artificial Networks
We have generated 8,000 artificial networks using eight gen-

erative models (1,000 network instances for each generative
model). The selected generative models are Barabási-Albert
model [10], copying model [11], [12], Erdős-Rényi [13], For-
est Fire [14], Kronecker model [15], random power-law [16],
Small-world (WattsStrogatz) model [17], and regular graph
model. For each generative model, 1,000 network instances are
generated using completely different parameters. The number
of nodes in generated networks ranges from 1,000 to 5,000
nodes with the average of 2,936.34 nodes in each network
instance. The average number of edges is 13,714.75. In this
dataset, the generative models (generation methods) are the
witnesses of the similarity: the networks generated from the
same model follow identical link formation rules, and their
degree distributions are considered similar. In both real and
artificial networks datasets, it is possible for two different-class
networks to be more similar than two same-class networks. But
we can assume that the overall “expected similarity” among
networks of the same class is more than the expected similarity
of different-class networks. This definition of similarity based
on the network types is frequently utilized in the literature
(e.g., [18]).

B. Evaluation Criteria

In the section IV-A, we described our two network datasets
and we introduced different signs and witnesses of similarities
among networks of these datasets. We evaluate the network
distance functions based on their consistency to mentioned
witnesses of the similarity. For this purpose, we consider the
following criteria:

1) kNN-Accuracy
The k-Nearest-Neighbor rule (kNN) is a common classi-

fication method which categorizes an unlabeled example by
the majority label of its k-nearest neighbors in the training
set. The performance of kNN is essentially dependent on the
way that similarities are computed between different examples.
Therefore, better distance metrics result in better classification
accuracy of kNN. In a dataset of labeled instances, the KNN-
accuracy of a distance metric d is the probability that the
predicted class of an instance is equal to its actual class, when
the distance metric d is used in the KNN classifier. In order
to evaluate the accuracy of different distance functions, we
employ them in kNN classification and we test the accuracy
of this classifier.

2) Inter-class distances
An appropriate distance metric should return larger dis-

tances if the two compared networks are chosen from different
classes. In other words, the distance metric is expected to
report a small distance between two classmate networks and
large distance between two networks of different classes. In
order to evaluate a distance metric based on this requirement,

10http://snap.stanford.edu

we calculate the distance between any pair of networks of
a dataset and we check the distance among non-classmate
instances to be relatively larger. In order to compare different
distance metrics, we normalize distances of each distance met-
ric according to its mean and standard deviation. As Equation
13 shows, the z-score is used for normalizing distance values.
In this formula, µS,d shows the average pairwise-distances
for networks in dataset S, according to the d distance metric
(Equation 11), and σS,d indicates the standard deviation of the
pairwise-distances (Equation 12). ndS,d(G1, G2) shows the
normalized distance between G1 and G2 networks based on
the population of S dataset of networks and d distance metric.
Normalized distance (nd) is an appropriate base for evaluating
the accuracy of distance metrics, since it is a dimensionless
quantity (it shows the number of standard deviations that a
distance is above the average distance). Z-score is widely
used in the literature for similar purposes [19], [20], [21].
The normalization emphasizes the relative magnitude of the
distances rather than their absolute magnitude, which is im-
portant for the comparison of computed distances in different
distance functions. The average of normalized distances (nd)
in a dataset is equal to zero, similar instances result a small
(negative) normalized distance and dissimilar instances show
large (positive) normalized distances. Equation 14 defines
the average of normalized inter-class distances (INTERd).
INTERd shows the distance among networks with different
classes, hence an appropriate distance function should indicate
a large INTERd value.

µS,d =
1

|S| × (|S| − 1)

∑
G1,G2∈S,G1 6=G2

d(G1, G2) (11)

σS,d =

√
1

|S| × (|S| − 1)

∑
G1,G2∈S,G1 6=G2

(d(G1, G2)− µS,d)2

(12)

ndS,d(G1, G2) =
d(G1, G2)− µS,d

σS,d
(13)

INTERS,d = average(ndS,d(G1, G2));

G1, G2 ∈ S, class(G1) 6= class(G2) (14)

Using the specified criteria, we compare our proposed
method with three existing baseline methods: “Power-law”,
“KS-test” and “Percentiles”. It is worth noting that “KS-
test” actually does not include a quantification mechanism
and needs the whole degree distributions to operate. This
is a drawback of KS-test, since other baseline methods and
our proposed distance metric need a small quantification of
the degree distributions (e.g., a feature vector of eight real
numbers) for comparing two networks.

C. Evaluation Results

In this subsection, we comprehensively evaluate the pro-
posed method (DDQC) and compare it with the baseline
methods. As described in section III, the proposed method
is configurable by three parameters: α, β and γ. We start the
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Fig. 1: kNN Accuracy for different methods.

evaluations by setting α = 1, β = 1 and γ = 0.8. Later, we
will show the best values for these parameters.

For evaluating kNN accuracy on artificial networks dataset
(Figure 1a), we iteratively created a small subset of this dataset
and performed kNN on all instances of the formed subset. In
each iteration of this experiment, we randomly selected 50
network instances from the dataset and computed the kNN
accuracy for the set of these instances. Figure 1a shows this
evaluation and reports the average of kNN accuracy on 100
independent iterations, for several values of K. Figure 1b
shows the evaluation of different methods based on their
kNN accuracy for real-world networks dataset. In this exper-
iment, 33 real network instances, with known class labels,
are classified using kNN algorithm and the average accuracy
of the classifier is measured. According to Figures 1a and 1b,
DDQC outperforms all the baseline methods considerably with
respect to kNN-accuracy, in both datasets of real networks and
artificial networks. The evaluations are performed for different
values of K to ensure that the superiority of DDQC is not
dependent on a particular K value.

In the next experiment, we evaluate different methods based
on INTERd (Equation 14). As Figure 2 indicate, DDQC
outperforms all the baseline methods with respect to INTERd
, in both datasets of real networks and artificial networks.
As discussed before, a good distance metric should have a
meaningfully larger values for INTERd.

In order to evaluate the effect of β parameter on the
accuracy of our proposed distance metric, we repeated the
previous experiment with different values of β in the range
of integer numbers from 0 to 4. As Figure 3 shows, the
distance metric is improved by increasing the value of β
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Fig. 3: The effect of β parameter on the accuracy of the
proposed method in artificial networks dataset, for INTERd

and it asymptotically becomes stable with values larger than
β = 3. Hence, β = 3 is an appropriate setting as a tradeoff
between the accuracy of the distance metric and the size of
the quantified vector (with β = 3 we will have 4 × 23 = 32
real numbers in the quantification of the degree distribution).

Finally, we examine different values of α and γ config-
uration parameters to find their best settings. Five values are
tested for α as α = 〈2i〉i=−2,−1,0,1,2,3. Setting α to values out
of this range (i.e., α > 8 or α < 0.25) makes the two middle
regions of the degree distribution too wide or too narrow. For
γ parameter, 20 different values are tested (γ = 〈 i10 〉i=1..20).
Figure 4 shows the average inter-class distances of DDQC for
artificial networks dataset, using the described values for α
and γ. As Figure 4 indicates, the best parameter setting is
α = 1 and γ = 0.8 for both the diagrams. This setting is used
for the parameters in our reported experiments. The diagram
indicates a convex space with no other local optimum in this
search experiment. The parameters may be further tuned via a
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fine-grained search in the set of real numbers. Since the search
space (the collection of all possible solutions) is prohibitively
large, intelligent search algorithms such as genetic algorithm
or simulated annealing will improve the performance of the
search.

V. CONCLUSION

In this paper, we first discussed the notion of distance and
similarity for degree distributions. The degree distribution is
an indicator of the link formation process in the network
which reflects the overall pattern of connections [22]. Similarly
evolving networks have analogous degree distributions, hence
we derive similarity of degree distributions according to the
similarity of link formation process in the networks. We
proposed a novel method for quantification and compari-
son of network degree distributions. In order to derive the
amount of similarity between the networks, we introduced
admissible witnesses for network similarity: similarity among
same-type real networks and same-model artificial networks.
Kolmogorov-Smirnov (KS) test is currently the most common
method for comparing the degree distributions. But KS-test
does not support quantification and needs the whole degree
distribution. Power-law exponent and Percentiles [2] are other
measures for comparing degree distributions. Our proposed
method, named DDQC, outperforms the existing algorithms
with regard to its accuracy in various evaluation criteria.

As the future works, we will use the proposed quantification
and comparison method in other application domains. Our
proposed method enables the data analysis applications and
data mining algorithms to employ the feature of the degree
distribution as a fixed-length set of real numbers. It is now
possible to represent a network instance with a record of
features (including clustering coefficient, average path length
and the quantified degree distribution) and use such records in
data analysis applications. We will combine different network
features along with the quantified degree distribution in an
integrated distance metric for complex networks. Such an
integrated distance metric will be the main building block of
our future researches in evaluation and selection of network
generative models and sampling methods.
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