
FOMA: Flexible Overlay Multi-path Data
Aggregation in Wireless Sensor Networks

Majid Ashouri, Hamed Yousefi, Ali Mohammad Afshin Hemmatyar, and Ali Movaghar
Department of Computer Engineering, Sharif University of Technology, Tehran, Iran

{ashuri,hyousefi}@ce.sharif.edu, {hemmatyar,movaghar}@sharif.edu

Abstract—Data aggregation is an efficient method to conserve
energy by reducing packet transmissions in WSNs. However,
providing end-to-end data reliability is a major challenge when
the network uses data aggregation. In this case, a packet loss
can miss a complete subtree of values, thus greatly affecting the
final results. Data transmission in multiple paths can tolerate this
problem, but it may incur some computation errors for duplicate-
sensitive aggregates. In this paper, we propose a Flexible Overlay
Multi-path data Aggregation protocol (FOMA) which uses the
available path redundancy to deliver a correct aggregate result
to the sink with high reliability in an energy-efficient manner. It
aggregates data in two layers, routing layer and data aggregation
layer, while eliminating the computation errors by using a
signature-based method. We implement FOMA in TinyOs 2.x
and test it by the TOSSIM simulator. The results reveal that the
proposed algorithm outperforms other existing ones in terms of
energy consumption and data accuracy.

Keywords-Wireless Sensor Networks; Data Aggregation; Reli-
ability; Multi-path Routing.

I. Introduction

Wireless Sensor Networks (WSNs) consist of a large num-
ber of sensor nodes equipped with limited and irreplaceable
batteries which make energy efficiency a major concern [1].
Data aggregation is a promised technique to filter redundancy
and reduce communication overhead and, in turn, energy con-
sumption. Many applications use data aggregation functions
to summarize and reduce data that must be sent to the sink.

Besides, in WSNs, communication links are unreliable and
often unpredictable [7]. Data aggregation reduces the inherent
redundancy and total number of messages, so it can decrease
the accuracy of the final results against communication errors.
A packet loss over a link in a spanning-tree structure can
result in the loss of all sensor readings or partial aggregation
results from the complete subtree below the link. Thus, the
network requires some reliability methods to overcome the
faults and increase data delivery probability. Multi-path routing
can compensate loss effects by duplicating and forwarding
sensor data over available redundant paths. However, it may
incur computation errors when aggregating individual sensor
values multiple times. Specifically, some aggregation functions
are duplicate-sensitive and may produce wrong results with a
duplicate aggregation. Finally, aggregation accuracy in WSNs
is affected by the fidelity of both communication and compu-
tation.

The previous works propose different ways to aggregate
data in a reliable manner. SD [6], SKETCH [3], and TD
[5] aggressively exploit multi-path routing to combat message

losses. However, they suffer from the computation errors in
final results due to using hash functions. OPAG [2] performs
in-network data aggregation with no computation error and
tolerates moderate message losses in WSNs. However, it has
a major drawback: The aggregation nodes are usually too far
from the source nodes. This problem creates some serious
issues in data accuracy and energy consumption.

To achieve full benefits, we propose FOMA, a flexible
overlay protocol performing in-network data aggregation in
two layers. At routing layer, it creates an aggregation structure
based on the link-quality information. When the link error
rate is low, the structure is close to a spanning tree. We use
multi-path routing advantages to forward redundant packets,
so it can tolerate losses if the link error rate is high. At
the aggregation layer, FOMA aggregates intermediate partial
results as soon as possible on their way to the sink while
incurring no computation error and sensor’s data is aggregated
at most once by exploiting a signature-based transmission
method.

The rest of the paper is organized as follows. Section II
discusses the related work. Section III explains the proposed
scheme and presents its specifications. Experimental setup and
simulation results are presented and discussed in Section IV.
Finally, Section V concludes our work.

II. RelatedWork

Many aggregation algorithms have been developed in
WSNs. TAG [4] proposes an efficient framework which uses a
tree-based structure to collect and aggregates data. However,
it suffers from packet loss and node failure. If we lose any
aggregated data, all sensor data from the complete subtree
below the failure position will be lost.

As discussed before, multi-path transmission reduces com-
munication errors dramatically, but produces duplication con-
cern. To cope with this problem, SD [6] and SKETCH [3]
suggest hash-based data aggregation schemes over a ring
structure. However, the final value is an approximation of
actual value (computation error). TD [5] is a hybrid work that
tries to solve the above problems by combining SD and TAG.
The nodes that are near to the sink behave similar to SD’s
nodes (multi-path nodes), but other nodes build a spanning tree
and aggregate like TAG in lower levels (tree nodes). However,
it still suffers from the computation errors.

To eliminate the computation errors, OPAG [2] proposes an
overlay network that separates routing from the aggregation



N1 N2

N6

N8

N7N5N4

N3

N11N10N9

N0

N1 N2

N6

N8

N7N5N4

N3

N11N10N9

N0

Level 0

Level 1

Level 2

Level 3

Routing Layer

Data Aggregation
Layer

Fig. 1. Data aggregation layer and Routing layer.

layer. It is a highly reliable protocol without any computation
error. However, it has a major drawback: The aggregation
nodes are usually too far from the source nodes. This problem
creates some serious issues in accuracy and energy consump-
tion. Actually, a data message has limitations on length and, in
turn, only a few numbers of partial results can be added into
it. Therefore, especially in dense networks, OPAG has to drop
some partials and it may decrease data aggregation accuracy.
Moreover, if the aggregation nodes are far from the source
nodes, partials are flooded through the available paths, so a
large amount of energy is consumed in the forwarder nodes.

III. FOMA Protocol

FOMA performs data aggregation in two layers: data ag-
gregation layer and routing layer. At the first layer, only the
parents and Data Aggregation Nodes (DANs) can aggregate
data along an overlay spanning tree while incurring no com-
putation error. We try to compute the aggregation results in the
parent nodes to reduce data transmissions; otherwise, DANs
are responsible for data aggregation. Underneath the routing
layer, network nodes may use the available path redundancy to
deliver a correct aggregate result to the sink via a multi-path
routing. FOMA has four phases to collect data from sources:
• Creating a routing tree structure: any routing protocol can

be used in this phase.
• Finding proper DANs: a DAN can be one or more level

lower than source nodes.
• Creating signatures: a signature-based method is used to

avoid the duplication problem.
• Data Collection.
We now explain an example with two scenarios to present

the basic idea. Let’s suppose a routing protocol has built
parent-child relations and specified the level of each node in
Figure 1 where the root has level 0. The Nodes forward data
only to the others at one level lower not to the same or higher
level, and each node has one DAN. Here, we want to aggregate
N9’s data.

First scenario: Suppose that N9 and N5 select N2 as their
DAN. N9 broadcasts its data packet and N4, N5, and N6 receive
that. Because N5 is the parent of N9 and has the same DAN,

it aggregates N9’s data with its own (and maybe other nodes’)
and updates the child signature. Besides N5, N4 and N6 also
receive N9’s data, so if they have a path to N2, they add it
to their partial results. Suppose N6 can hear N2’s packets but
N4 cannot. Thus, if N6’s data packet has enough space, it will
merge N9’s data into the message and broadcast it, but N4
drops this partial result because it has no path to N2. When
N2 receives a data packet from N5, it looks at N5’s child
signature first, and for every bit that has been set, it adds
the related node (in this example N9) to the aggregated node
table and aggregates N5’s data. N6’s data packet also contains
a partial result from N9; however, this partial result will be
dropped by N2 because it has aggregated N9’s data before. If
the transmitted packet from N5 is lost in the middle, N2 adds
N9’s partial result that has received from N6 to the partial table
and finally, aggregates it.

Second scenario: Suppose that N9 chooses one of the nodes
at the lower level separated by one hop (N4, N5, or N6) as
its DAN. In this condition, no signature modification would
be required and the data will be aggregated at the DAN with
no overhead. Next, we will present the different phases of the
FOMA protocol.

A. DAN Selection

In the previous section, we showed how a node aggregates
other node’s data or forwards it to the sink by an example. We
now explain how a node chooses its DAN. Choosing a DAN
in FOMA is close to that of OPAG, but with some differences.
Each node tries to select its DAN at one level lower if there is a
node providing minimum user reliability; otherwise, the DAN
will be selected at lower levels. Suppose that R is the minimum
reliability that a user needs, so a node in one-hop distance that
has higher reliability than R is selected as its DAN. If no node
can satisfy this condition, a node with maximum reliability
will be selected at lower levels.

The DAN selection mechanism starts at the root. Each node
sends an announcement that could have a few entries (its
own and lower level nodes whose announcement it can hear).
An entry that is related to node j, contains two reliability
parameters. First, the successful transmission probability of
node j to the sink (p) and second, the successful transmission
probability of node j to node i (p f ). For example, suppose
N1 in Figure 1 has received an announcement message from
the root whose both reliability parameters are 1. It would
broadcast a message with two entries. An entry contains its
own announcement with p f = 1 and p will be computed as in
(1); another contains N0’s announcement with p = 1 and p f
will be computed as (2). Each node repeats this process until
all nodes have a DAN. In (1), we show how a node calculates
its successful transmission probability to the sink.

p = p f × p(D) (1)

p(D) is the successful transmission probability from a DAN
to the sink (it is obtained from the announcement message)
and p f is the successful transmission probability to the DAN
calculated as follows:



id Did Dlevel payload

Fig. 2. Partial result structure

p f = 1 −
∏

i∈ f orwarers

(1 − p fi(D) × l(i)) (2)

where i belongs to the forwarder list of D that announces
it, and l(i) is the link reliability to i. Finally, if a node receives
no announcement message or p(D) is lower than a specified
threshold, it chooses the parent as its DAN.

B. Signature Construction

According to the previous discussions, data aggregation
could be performed in parents or DANs. Each node creates
a child signature and broadcasts the child ID to avoid the
duplication problem. We now explain child signature creation
in this section.

After DAN selection phase was done by all nodes, they
must produce a signature for each child. In contrast to the DAN
selection phase, signature creation starts at the leaf nodes. Each
node sends its own signature announcement message based
on the TAG scheduling algorithm [4]. The message contains
parent− id, DAN− id, child−no and some Cid/Did pairs. The
parent− id and DAN− id represent the parent and DAN of the
sender node, respectively. Child − no specifies the number of
Cid/Did pairs. Each Cid/Did shows a child ID and its DAN.

Suppose that node i sends a child signature message to node
j. when node j receives the message, it checks the parent field.
If j is the parent of i and they both have the same DAN, j
adds i and its DAN − id to the child list. Then the algorithm
verifies Cid/Did pairs. If j has been selected as a DAN by the
announced pairs of Cid/Did, j adds them to the list of nodes
that have selected j as their DAN, known as aggregation table.
Besides Cid, j obtains the signature of Cid in i and adds it
to Cid entry. We create a Cid signature in j according to its
position in the message.

C. Data Collection

Here, we will illustrate how a node aggregates data and for-
wards it through the network. Data collection is initiated just
after the signature construction because each node must have
a child signature to aggregate data. Data message contains an
aggregation signature and the level fields with one or more
partial result data structures. The structure of a partial result
is shown in Figure 2. The id field refers to the address of
the node to which this partial belongs. Its DAN address and
the DAN level are shown with Did and Dlevel. Clearly, the
payload field refers to data that must be delivered to the sink.

When node j receives a data message from node i, it runs
the Receive function shown in Figure 3. First, It checks the
aggregation signature and performs the bitwise AND operation
between the aggregation and child signature. If the result is not
equal to zero, it adds the related node to the aggregated node
list. Then j executes the Process function for every partial
result in the message. It checks the child list, if i is in the

1) Periodically sense the environment
2) Receive(msg){
3) FindAggregatedNodes(msg.sig)
4) f or each partial call Process(i,msg.partial)
5) }
6) Process(i, partial){
7) i f (isChild(i)){
8) Aggregate(partial.payload)
9) U pdateS ignature(i)}
10) i f (partial.Did = my.id)
11) AggregaeBe f oreS ending(i, partial.payload)
12) i f (partial.Dlevel >= my.level)
13) Drop(partial)
14) i f (!isChild(i) and partial.Dlevel < my.level)
15) AddToPartialList()
16) }

Fig. 3. Partials processing algorithm

child list, it aggregates data payload with its own data and
updates the aggregation signature. For this purpose j performs
the bitwise OR operation between the aggregation signature
and the child signature. If a partial result in node i’s data
message has selected j as its DAN, node j adds id of the partial
result and its data to the list of data that may be aggregated
before sending the task. Finally, if j did not meet the above
conditions and its level is lower than Dlevel, it adds its partial
result to the partial list. The protocol drops partials that have
a bigger level than the receiver.

IV. Performance Evaluation

A. Experimental Setup

To evaluate performance, we implemented FOMA as
TinyOS modules and tested on the TOSSIM simulator. The
results are compared with TAG [4] and OPAG [2] protocols
to show the efficiency of FOMA for reliable data aggregation
in WSNs. The simulated network consists of 36 nodes located
on a 6 × 6 grid. One of the nodes is configured as the sink
and all the other ones sense the environment and forward
aggregated data to the sink. Each partial result contains a
8-byte data payload. TinyOS has a limitation on the size
of messages (payload has at most a 120-byte length), so a
limited number of partials can be added to a data message.
A maximum hop distance between a source and its DAN is
set to 2 for decreasing control messages and eliminating the
affect of redundant paths. We use five minutes to boot sensors
and build the network structure. Then each source sends its
data every two minutes according to a scheduling algorithm
like TAG.

B. Evaluation

Here, we compare FOMA with OPAG and TAG for the
performance evaluation. One of the most important param-
eters of a WSN is energy consumption. Considering that
the message sending task consumes the major energy, we
use the number of transmitted bytes to show the efficiency
of the proposed methods in terms of energy consumption.
Aggregation accuracy is another important parameter to be
evaluated for data aggregation applications. This parameter



0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

5

10

15

20

25

30

35

40

45

50

55

60

Min Link Reliability

A
v
e
ra

g
e
 N

u
m

b
e
r 

o
f 
T

ra
n
s
m

it
te

d
 P

a
rt

ia
ls

 

 

FOMA

OPAG

TAG

Fig. 4. The impact of link reliability on partial
results transmissions

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
300

400

500

600

700

800

900

1000

Min Link Reliability

A
v
e
ra

g
e
 N

u
m

b
e
r 

o
f 
B

y
te

s
 T

ra
n
s
m

it
te

d
 b

y
 E

a
c
h
 N

o
d
e

 

 

FOMA

OPAG

TAG

Fig. 5. Total number of transmitted bytes vs.
Min Link Reliability

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Min Link Reliability

R
M

S
 E

rr
o
r

 

 

FOMA

OPAG

TAG

Fig. 6. The impact of link reliability on RMS
error

compares the actual value with the aggregated value in the
sink. We use the Root Mean Square (RMS) error to normalize
the inaccuracy of the final results.

RMS =
1
V

√√√ N∑
t=1

(Vt − V)2/N (3)

where V is the actual value and Vt is the aggregated value in
the sink at time t. All the active links are uniformly assigned
different values of link reliability in the interval of Min Link
Reliability and 1.

C. Results

We evaluate FOMA in two aspects: energy consumption and
data accuracy. The values have been obtained in 30 minutes.

1) Energy Consumption: We compare FOMA’s energy con-
sumption with TAG and OPAG in Figure 4. It shows the effect
of Minimum Link Reliability on the number of transmitted
partial results. Source nodes in TAG send one partial result
at each epoch, so it has a fixed value for different link
reliabilities. OPAG selects a node with the highest reliability
as its DAN and almost chooses the same DAN in most
cases; energy consumption increases when the link reliability
is high because in this condition most of the partials can
be received and forwarded by the forwarder nodes. Unlike
OPAG, FOMA has more flexibility in different situations and
decreases sending partials in good conditions due to the fact
that it tries to choose closer nodes as DANs, if they satisfies
the user reliability threshold (user threshold is considered to
be 0.9 in all scenarios). FOMA also uses a signature structure
to decrease the number of partial results, thus it always sends
fewer partial results than OPAG.

Figure 5 shows the total number of transmitted bytes
(including the protocol overheads). Although our protocol
has some extra control message overhead, it does not have
a considerable effect on the total number of the transmitted
bytes.

2) Accuracy: Aggregation accuracy is shown in Figure
6. TAG transmits few partials but it has high RMS error,
especially when the link error rate is high, because it does
not send any additional information to provide end-to-end
reliability. FOMA has lower RMS error than OPAG in different
conditions. Although our proposed method wastes the length

of messages by using the signatures, OPAG fills the message
space with partial results which are not aggregated at higher
levels quickly, so it loses some partials due to the limited size
of the message and in the consequence, it has a higher error in
all scenarios. Definitely, this problem becomes more obvious
if we increase the network density.

V. Conclusion

In this paper, we presented an overlay protocol for duplicate-
sensitive aggregation functions that aggregates partial results
with no computation error in a highly energy-efficient man-
ner. When the link error rate is low, FOMA behaves like
a spanning-tree and consumes a small amount of energy;
otherwise, it uses multi-path to transmit data to the sink for a
reliable data aggregation. The results evaluated in simulation
demonstrated a significant performance improvement in terms
of energy consumption and data accuracy.

Acknowledgment

This work has been supported by Iran Telecommunication
Research Center (ITRC).

References
[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey

on sensor networks,” IEEE Communications Magazine, vol. 40, no. 8,
pp. 102–114, Aug. 2002.

[2] Z. Chen and K. G. Shin, “OPAG: Opportunistic data aggregation in wire-
less sensor networks,” in Proceedings of Real-Time Systems Symposium
(RTSS’08), Dec. 2008, pp. 345–354.

[3] J. Considine, F. Li, G. Kollios, and J. Byers, “Approximate aggregation
techniques for sensor databases,” in Proceedings of 20th International
Conference on Data Engineering, April 2004, pp. 449–460.

[4] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TAG: A tiny
aggregation service for ad-hoc sensor networks,” in Proceedings of 5th
Symposium on Operating Systems Design and Implementation (OSDI’02),
2002.

[5] A. Manjhi, S. Nath, and P. B. Gibbons, “Tributaries and Deltas: efficient
and robust aggregation in sensor network streams,” in Proceedings of
ACM SIGMOD international conference on Management of data (SIG-
MOD’05), 2005, pp. 287–298.

[6] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson, “Synopsis
diffusion for robust aggregation in sensor networks,” in Proceedings of
the 2nd international conference on Embedded networked sensor systems
(SenSys’04), 2004, pp. 250–262.

[7] H. Yousefi, K. Mizanian, and A. H. Jahangir, “Modeling and evaluating
the reliability of cluster-based wireless sensor networks,” in Proceedings
of 24th IEEE International Conference on Advanced Information Net-
working and Applications (AINA’10), April 2010, pp. 827–834.


