
Journal of Intelligent & Fuzzy Systems 36 (2019) 5135–5152
DOI:10.3233/JIFS-171927
IOS Press

5135

EATSDCD: A green energy-aware
scheduling algorithm for parallel task-based
application using clustering, duplication
and DVFS technique in cloud datacenters

Behnam Barzegara, Homayun Motamenia,∗ and Ali Movagharb

aDepartment of Computer Engineering, Sari Branch, Islamic Azad University, Sari, Iran
bDepartment of Computer Engineering, Sharif University of Technology, Tehran, Iran

Abstract. Energy consumption and performance metrics have become critical issues for scheduling parallel task-based
applications in high-performance computing systems such as cloud datacenters. The duplication and clustering strategy,
as well as Dynamic Voltage Frequency Scaling (DVFS) technique, have separately been concentrated on reducing energy
consumption and optimizing performance parameters such as throughput and makespan. In this paper, a dual-phase algorithm
called EATSDCD which is an energy efficient time aware has been proposed. The algorithm uses the combination of
duplication and clustering strategies to schedule the precedence-constrained task graph on datacenter processors through
DVFS. The first phase focuses on a smart combination of duplication and clustering strategy to reduce makespan and energy
consumed by processors in an effort to execute Directed Acyclic Graph (DAG) while satisfying the throughput constraint.
The main idea behind EATSDCD intended to minimize energy consumption in the second phase. After determining the
critical path and specifying a set of dependent tasks in non-critical paths, the slack time for each task in non-critical paths was
distributed among all dependent tasks in that path. Then, the frequency of DVFS-enabled processors is scaled down to execute
non-critical tasks as well as idle and communication phases, without extending the execution time of tasks. Finally, a testbed
is developed and different parameters are tested on the randomly generated DAG to evaluate and illustrate the effectiveness
of EATSDCD. It was also compared against duplication and clustering-based algorithms and DVFS-based algorithms. In
terms of energy consumption and makespan, the results show that our proposed algorithm can save up to 8.3% and 20%
energy compared against Power Aware List-based Scheduling (PALS) and Power Aware Task Clustering (PATC) algorithms,
respectively. Furthermore, there is 16% improvement over Parallel Pipeline Latency Optimization (PaPilo) algorithm with
Encur = 1.2Enmin(G). In comparison with Reliability Aware Scheduling with Duplication (RASD) algorithm, the execution
time has been reduced in heterogeneous environments.

Keywords: Green computing, cloud data centers, dynamic voltage and frequency scaling (DVFS), task duplication, energy
consumption, slack time, throughput

∗Corresponding author. Homayun Motameni, Department of
Computer Engineering, Sari Branch, Islamic Azad University,
Sari, Iran. Tel./Fax: +98 9111140554; E-mail: motameni@iau
sari.ac.ir.

1. Introduction

Nowadays, energy consumption has become a
critical issue in high performance distributed comput-
ing systems (HPDCSs). Therefore, green computing
attempts to minimize energy consumption, carbon

1064-1246/19/$35.00 © 2019 – IOS Press and the authors. All rights reserved

mailto:motameni@iau{penalty -@M }sari.ac.ir

5136 B. Barzegar et al. / A green energy-aware parallel tasks scheduling algorithm in DVFS-enabled cloud data center

footprint and CO2 emissions in HPDCSs, including
clusters, grids and clouds made up of a large number
of parallel processors [1].

Recent studies suggest that nearly 1.5–2% of total
energy worldwide is consumed by datacenters. Such
tremendous growth can be attributed to popularity
of distributed computing platforms such as clusters,
grids and clouds. Moreover, previous studies indi-
cated that about 52% of energy in datacenters is
consumed by computing systems, while the rest is
consumed by support systems. In fact, it has been
estimated that the electricity consumed in the Amer-
ican datacenters will expand from 91 billion kWh in
2013 to roughly 140 million kWh in 2020 [2].

Hence, it is crucial to schedule precedence-
constrained parallel applications, one of the models
applied in science and engineering fields, on homo-
geneous and heterogeneous computing systems like
cloud computing infrastructures with regard to energy
consumption and other performance parameters [3,
4]. Scheduling is also considered a well-known NP-
Hard optimization problem [5], for which numerous
heuristic algorithms have so far been proposed [6, 7].

The data analysis steps can be expressed as DAG,
which operates on a stream of input data-task in
DAG repeatedly receiving input data items from
their predecessors, while writing the output to their
successors. Makespan and throughput are typical
performance-related metrics to measure the perfor-
mance of a DAG (precedence-constrained parallel
application). Makespan is the maximum time to pro-
cess an individual data item, in which the task in the
DAG has been completed [4], while throughput sim-
ply counts the number of tasks completed over the
makespan [8].

Hence, it is essential to create a compromise
between performance and energy consumption,
thereby to decrease makespan and energy consump-
tion while increasing throughput. Green computing
is therefore crucial for ensuring the future growth
of cloud computing will be persistent. The design
and development of green software for schedul-
ing precedence-constrained parallel applications can
directly affect performance parameters as well as
energy consumed by processors and communication
networks in cloud datacenters.

Our objective in this paper was to propose an
energy-efficient, time-aware, scheduling heuristic
strategy called EATSDCD for energy-aware task
duplication-based scheduling algorithm of parallel
tasks on cloud datacenters. In order to achieve
good performance and energy consumption for a

given parallel application, we proposed a novel
task scheduling algorithm based on clustering and
duplication design pattern and dynamic voltage fre-
quency scaling (DVFS) technique. The proposed
algorithm aims to reduce the communication energy
through task duplication and clustering. However,
these duplicate-based scheduling strategies replicate
tasks and clustering by another task only according
to the energy difference between current task com-
putation energy and communication energy of these
two tasks. We have developed an application which
can be represented as a DAG.

This application involves four tasks called t1, t2, t3
and t4, the execution timed of which are 3, 10, 3 and 4
time units with four communication links called d12,
d13, d24 and d34, the communication times of which
are 10, 4, 7 and 5, respectively.

Figure 1 illustrates an example of processor allo-
cation, and the values of makespan, throughput and
energy consumption, without using duplication, clus-
tering and DVFS technique. Figure 2 provides a DAG
example using clustering and DVFS technique, while
Fig. 3 displays a DAG example using clustering,
duplication and DVFS technique.

Task clustering is a technique to minimize and
eliminate the expensive communication cost during
data transfer between tasks through tasks allocation
to same processors. In practice, cluster refers to a set
of tasks executed on an identical processor. Applied
correctly, this technique can mitigate makespan and
energy consumption, maximize throughput and min-
imize the number of active processors for task
scheduling [50].

Task duplication is a technique that causes to pre-
vent the communication cost between processors
assigned to the tasks, which are in communication, by
creating data locality. The data locality is generated

Fig. 1. A DAG scheduling example without using clustering,
duplication and DVFS.

B. Barzegar et al. / A green energy-aware parallel tasks scheduling algorithm in DVFS-enabled cloud data center 5137

Fig. 2. (a) Gantt chart for P1 and P2 after clustering, (b) Energy
Gantt chart after stack time distribution (employ DVFS).

Fig. 3. (a) Gantt chart for p1 and p2 after duplication & cluster-
ing, (b) Energy Gantt chart after stack time distribution (employ
DVFS).

by replicating and copy of specific tasks on multi-
ple processors. In fact, this technique prevents data
transfer between predecessor and successor, thereby
to reduce communication costs. This technique can
be far more effective in reduction of makespan and
energy consumption for DAG with greater CCRs
[6, 9–13].

DVFS technique, modern processors are equipped
with dynamic voltage frequency scaling (DVFS)
technique, which reduces energy consumption by
switching between processor‘s voltage and frequency
pairs to execute tasks during slack times and idle or
communication phases [14]. The processor dispatch
strategy of tasks is assumed to allocate each cluster
on an independent processor.

As can be seen in Fig. 2, t1 has been clustered with
t2 and t4 so as to avoid their expensive communica-
tion link. This in turn mitigates energy consumption
and makespan, while enhancing throughput. Dupli-
cation can reduce communication costs by allocating
the copies of tasks to extra processors. Figure 3 shows
that t1 is duplicated and simultaneously allocated to
two processors. This can hide the communication cost
of d13. Compared to clustering, the combination of
duplication and clustering techniques has delivered
better results. After applying the clustering and dupli-
cation techniques on the primary DAG sample, the
results of the two strategies can be seen in Figs. 2
and 3, where DVFS should be adopted. To that end,
the critical path was first determined and slack times
of non-critical paths were calculated. Then, the idle
and communication phases were specified by reduc-
ing the voltage and frequency of processors through
the DVFS technique, which significantly reduces
energy consumption. Given the fact that dynamic
power consumption of processors has been calculated
by Equation P = ACv2f , and the values of A and C
are constant for each processor in addition to vαf

consequently Pαf 3. Given that = P × t, therefore
Enαf 3 × t will be true [29]. At this stage, we can cal-
culate the amount of energy consumed by processors
by executing the given graph sample.

The rest of the paper has been organized as follows.
In Section 2, we present the related work and the
current state-of-the-art in energy-aware scheduling
based on DVFS and duplication technique. System
model including an architecture model, parallel task
model, resource model, DVFS model and the multi-
objective estimation model are illustrated in Section
3. In Section 4, we introduce our new EATSDCD
algorithm for solving the problem. This algorithm
includes two phases called EATSDC and EADVFSA.
The time complexity analysis for the proposed algo-
rithm and the tracing EATSDCD algorithm on given
DAG are presented in Sections 5 and 6, respectively.
Section 7 explores the performance constraint setting,
randomly generated DAG and experimental results
compared with other algorithms. Finally, Section 8
concludes this paper and plans for future work.

5138 B. Barzegar et al. / A green energy-aware parallel tasks scheduling algorithm in DVFS-enabled cloud data center

2. Related work

Traditional algorithms mainly focused on schedul-
ing of precedence-constrained parallel applications
on distributed platforms such as clusters, grids, and
clouds, minimizing the total completion time or
makespan without worrying about the energy con-
sumed in datacenters [15, 16]. As the Information
and Communication Technology (ICT) has devel-
oped over the last few years, there have been a
growing number of datacenters and accordingly a
dramatic increase in energy consumption. This has
subsequently left negative impact on the environment
through generation of greenhouse gases and exces-
sive emission of CO2 [49]. In recent years, great
efforts have been made to mitigate the energy con-
sumed by processors at datacenters using 1) DVFS
techniques [17–21, 53], 2) changing the scheduling
policies for allocating tasks on available processors
[21], 3) dynamic power management (DPM) [22], 4)
Working Vacation [23–25] and 5) redesign of algo-
rithms using energy-efficient pattern in compilers
[26]. These efforts have replied on several design pat-
terns such as clustering and duplication. This section
will discuss relevant studies previously conducted on
a few conventional techniques.

2.1. Energy reduction based on DVFS technique

Dynamic voltage and frequency scaling (DVFS)
has been recognized as an effective technique to
reduce energy consumption of processors through
simultaneous minimization of frequency and supply
voltage for slack time slot of tasks as well as commu-
nication and idle phases.

The authors in [20] employed an energy-aware
scheduling heuristic algorithm called PALS and
PATC to simultaneously reduce makespan and energy
consumption for scheduling parallel tasks in a clus-
ter through DVFS technique. After determining the
critical path and non-critical paths, the proposed algo-
rithm assigns jobs in the critical paths to processors
with the highest voltage/frequency. Then, the slack
time of each jobs is calculated in the non-critical
paths, and the voltage/frequency of the assigned pro-
cessors is scaled down to process the non-critical jobs.
This strategy mitigates energy consumption with-
out increasing makespan. By negotiating with users,
based on the Green service-level agreement (SLA)
negotiation, a compromise is made between further
reducing energy consumption and thus increasing
makespan. Another approach to scheduling tasks has

been proposed to reduce energy consumption using
the DVFS technique [27]. This technique has been
adopted to dynamically control the frequency and
voltage of cloud computing servers.

The scheduling algorithm takes into account the
maximum job (Fmax) and minimum job (Fmin) fre-
quencies given to each job and multiple server Si
running at maximum Si (Fmax) and minimum Si
(Fmin) frequencies. For specific jobs, the scheduling
algorithm efficiently assigns proper servers that run
between (Fmin, Fmax) to jobs according to require-
ments of job frequencies.

Juarez et al. [26] proposed a real-time dynamic
scheduling method called Multi-heuristic Resource
Allocation (MHRA) for efficient execution of task-
based applications on a distributed computing
platform of cloud computing. This served to miti-
gate energy consumption and makespan. This method
involved a polynomial time algorithm combining a
set of heuristic rules and resource allocation tech-
niques. In order to balance the two-objective function,
a weight factor was introducedα0 ≤ α ≤ 1, by which
the user can specify the significance of each objective.

Yikun Hu et al. [19] developed an algorithm called
Energy Aware Service Level Agreement (EASLA)
for scheduling parallel applications through DVFS
technique, while maintaining the SLA on a cluster
platform.

The main idea behind EASLA algorithm is to allo-
cate each slack to a maximum set of independent tasks
for each task using a compatible task matrix and scale
frequencies down to minimize energy consumption
within certain extension rate of makespan mutually
accepted by user and service provider.

Furthermore, Mezmaz M et al proposed a hybrid,
parallel, multi-objective genetic algorithm to solve
the problem of scheduling parallel precedence-
constrained applications in an effort to simultane-
ously mitigate the overall execution time of tasks and
energy consumed in cloud computing. The energy
storage involved DVFS, where each processor can
operate at different clock frequencies. This approach
has been evaluated with the Earliest Finish Time
(FFT) task graph, which is a real-world application
[3].

Cloud computing offers utility-oriented IT services
to consumers based on pay-as-you-go model. This
model involves a payment method for services charg-
ing based on usage only for resources needed [47].

Datacenters have extensively grown to provide
service to clients globally. Hence, the datacen-
ter hosts consume a huge amount of power for

B. Barzegar et al. / A green energy-aware parallel tasks scheduling algorithm in DVFS-enabled cloud data center 5139

Infrastructure as a Service (IaaS), Software as a ser-
vice (SaaS), Platform as a Service (Paas) applications.
This consequently leaves an adverse impact on the
natural environment. Beloglazov A et al. proposed
an architectural framework for energy-aware, heuris-
tic allocation of data center resources to consumer
applications, while considering the quality of services
(QOS) and power usage characteristics of the devices
[28].

Reducing energy consumption in an idle servers
and running a server with CPU utilization controlled
by DVFS techniques, and authors’ approach has been
evaluated through CloudSim toolkit.

The authors in [29] proposed a new task slack time
algorithm for task scheduling in distributed comput-
ing systems using DVFS technique.

In [30], a scheduling algorithm called Energy
Aware DAG Scheduling (EADAGS) was developed
on heterogeneous distributed processor system using
dynamic voltage scaling (DVS) with decisive path
scheduling (DPS) to achieve minimal finish time and
energy consumption.

In [53], the problem of scheduling precedence-
constrained parallel applications on multiprocessor

system was proposed to increase throughput and
minimize energy consumption by dynamic voltage
scaling.

H.K Imura et al. [31] introduced an algorithm
reclaims slack time, where slack time in parallel
applications was executed on a power-scalable clus-
ter computing using DVFS. Moreover, the newly
proposed method was evaluated by a toolkit called
Powerwat, which includes a monitoring and control
tool.

Ding et al. [14] proposed an energy consumption
optimization algorithm known as Energy Efficient
virtual machines scheduling (EEVS) for schedul-
ing of virtual machines given the deadline constraint
using DVFS.

Shu et al. have offered other examples of how
to optimize resource allocation using an improved
clonal selection algorithm with bi-objective cri-
teria in cloud computing. The authors proposed
an improved clonal selection algorithm (ICSA)
based on makespan optimization and improve-
ment of energy efficiency in datacenters, capable
of effectively meeting the SLA requested by
consumers [55].

Table 1
Previous studies on task duplication technique

Reference Target platform Scheduling objective

TDGA [11] Homo/heter Schedule length
Load balancing satisfaction

RASD [33] Heter Reliability
Makespan

CA-D [6] Homo/heter Speed up
Energy consumption

AES [34] Homo Performance
Schedule length

EPTAC [2] Homo Energy consumption
CPU utilization

ASA [35] Homo Makespan
EAMD [22] Heter Energy consumption

Cost
Reliability
Makespan

CPFD [36], PY [37],
LWB [38], BTDH
[39], DSH [40]

Homo/heter Efficiency
Cost
Normalized scheduling length

TCLO [8] Homo Latency
Throughput
Power consumption

SDS [54] Homo Schedule length
Number of processors

NEADS [43] Homo Makespan
Energy
consumption

PaPIio [41] Homo Latency
Throughput
Power

5140 B. Barzegar et al. / A green energy-aware parallel tasks scheduling algorithm in DVFS-enabled cloud data center

2.2. Energy reduction based on scheduling
policy and duplicate technique

Table 1 summarizes the previous studies on
scheduling policies with duplicate technique for allo-
cating tasks on processors with different objectives.
We presented algorithms in each reference, while
target platforms can be classified to homogeneous
and heterogeneous environments and scheduling
objectives.

3. System model

In this section, formal definition for system archi-
tecture model, parallel task model, DVFS model,
resource model, energy consumption model in pro-
cessors as well as interconnections, performance
model under some assumption and restrictions, which
are employed in problem formulation has been
proposed. Table 2 summarizes the notations used in
this paper.

3.1. Architecture model

This section introduces our proposed architecture
model for the parallel task scheduling environment
on cloud datacenters. The architecture model illus-
trated in Fig. 4 comprises three layers each including
different sections.

3.1.1. COMP Superscalar layer
COMP Superscalar (COMPSs) layer is a frame-

work aiming to ease the development and execution
of task-based applications for distributed infrastruc-
ture, such as clusters, grids and clouds, and a runtime
system which manages several execution aspects of
applications. Besides, it keeps the underlying infras-
tructure transport to the application [26].

3.1.2. Datacenter resource layer
This layer contains several computational nodes,

each including multiple virtual machines. Each vir-
tual machine includes multiple processors, disks,
memories, and communication networks. Processors
are DVFS-enabled and are assigned to execute tasks.

3.2. Parallel task model

The sequential program sent by the user to
COMPSs is converted into DAG by the task depen-
dency analyzer component. The created DAG, called

Table 2
Definition of notations

Notation Definition

ti The task number ith
N The number of tasks (nodes) in DAG
wi The weight of task ith
tst
i

The start time of task ith
et(ti, pj) The execution time of task ith on processor jth
tend
i

The end time of task ith
CPI The clock per instruction
succ(ti) The set of successors of task ith
pred(ti) The set of predecessors of task ith
dij The independent between task ti and tj
ct(dij) The communication time to transfer message dij

et(Ci) The execution time of cluster ci

|j| The number of computational nodes
|k| The number of VM in each computing node
|m| The number of processors in each VM
(vj, fj)| The voltage and frequency pairs of processor jth
(vkj, fkj) The voltage/frequency pairs of processor jth at

level k
vhighj The highest voltage of processor jth
fhighj The highest frequency of processor jth
pj .f

op

k
The processor jth operating frequency at level k

NDti The number of duplication task ith
CCR Communication to Computation Ratio
l Communication link
p Power consumption
Pdynamic Dynamic Power consumption
Pstatic Static Power consumption
E Energy consumption
ecij Communication energy by edge dij

PC Power of interconnect
Cmax Makespan (total length of the schedule)
CPL Critical Path Length
CommR(G) Communication Rate for DAG
CompR(G) computation Rate for DAG
Th(G) Throughout for DAG

task dependency graph, is displayed as G(T, D),
where:

• T : consists of a set of tasks in G, which can be
represented by Equation 1. All tasks ∀ti ∈ T are
the components of the application code (nodes
in a DAG). These tasks are scheduled to run over
different processors in the systems.

T = ∪{ti}, 1 ≤ i ≤ n (1)

Where

• tiis a task ith in DAG.
• n is the total number of tasks.
• wi is weight on task, ti represents the instruction

number of task ti.
• tsti is the start time of task ti.
• et(ti, pj) is execution/computation time of task ti

on processor pj , which is indivisible and its exe-

B. Barzegar et al. / A green energy-aware parallel tasks scheduling algorithm in DVFS-enabled cloud data center 5141

Fig. 4. Comprises three layers each including different sections.

cution cannot be interrupted. The task execution
time ti is calculated as indicated on Equation 2.

et(ti, pj) = ti.w× CPI

pj.fop (2)

CPI denotes the number of clock cycle per instruc-
tion for a task by processor. The ideal CPI is 1.

• tend
i is the end/finish time of task ti calculated

through Equation 3.

(tend
i , pj) = (tst

i , pj)+ et(ti, pj) (3)

• D: consists of a set of directed edges between the
tasks in G to represent precedence constraints of
an edge, dij ∈ D represents that task tj is inde-
pendent on task ti, where tj must be executed
after end of ti., ti is the parent and tj is the
child. (or ti is the predecessor of tj and tj is the

successor of ti). A task may have one or more

inputs. When all inputs are available, the task is
triggered to execute. After the execution, the task
generates its output. In the DAG, we use succ(ti)
to denote the set of successors of task ti and
pred(ti) to denote the set of predecessors of task
ti. A task with no predecessors, pred(ti) = φ,
is called an entry task (tentry) and a task with
no successors, succ(ti) = φ is called an exit task
(texit). We require a single entry task and single
exit task for a DAG. Since a given graph contains
more than one entry or exit task, we can pro-
duce a new graph by connecting all entry tasks
to a new zero-cost entry task or all exit tasks to
a new zero-cost exit task. The communication
costs between the tasks are zero.
• ct(dij) is communication time/cost of an edge

dij , for transfer message dij , this time/cost is
incurred if ti and tj are scheduled on different
processors and is considered to be zero if ti and

5142 B. Barzegar et al. / A green energy-aware parallel tasks scheduling algorithm in DVFS-enabled cloud data center

tj are scheduled on the same processor.

3.3. Cloud datacenter resource model

We model the cloud datacenter resource layer as
CDR = {j, k, m, l}, where:

• j represents the set of computational nodes,
while there is a |j| computing node in CDR

• k represents the set of virtual machines, while
there is a |k| virtual machine in each computing
node.
• m represents the set of processors, while there is

a |m| processor in each virtual machine.
• The resource layer consists of multiple com-

puting nodes CN = {cn1, cn2, . . . , cnj}, where
node j represented by cnj , each computing node
cnj consists of a set of virtual machines Vj =
{Vj1, Vj2, . . . , Vjk}, where virtual machine k of
computing node j is represented by Vjk. Each
virtual machine Vjk has a set of processors
Cjkm = {Cjk1, Cjk2, . . . , Cjkm}.
• l; all computing nodes, virtual machines and pro-

cessors are fully interconnected with the same
communication link l.

3.4. DVFS model

Nowadays, DVFS-enabled processors are
employed to mitigate energy consumption in HPC
systems [42].

DVFS-enabled processors can execute tasks during
slack times as well as idle and communica-
tion phases using a discrete set of voltage and
frequency pairs, (vifj). Assume that each pro-
cessor has k DVFS levels in other words k
processing operating points. Hence, supply volt-
age and frequency processor j can be described by
Equation 4.

(vi, fj)

=
{

(vlowj, Flowj)= (v1j, f1j) < (v2j, f2j) < · · · <
(vkj, fkj) = (vhighj, fhighj)

}
(4)

Where (vkj, fkj) is the voltage and frequency for
processor j at level k.

Furthermore, the execution time of task ti on pro-
cessor pj with the set of working frequencies from
f1j to fkj can be calculated through Equation 5. In
fact, the greater the frequency level the shorter the

execution time.

et′(ti, pj)

=
[

ti.w× CPI

pj.f
op
1

,
ti.w× CPI

pj.f
op
2

, . . . ,
ti.w× CPI

pj.f
op
k

]
(5)

3.5. Estimation model of DAG schedule

In this section, a few models are adopted by evalua-
tion of DAGs at different sizes to estimate throughput,
makespan and energy consumption.

3.5.1. Makespan estimation
Makespan (Cmax) is defined as the amount of time,

from start to end for completing a set of sequences.
The best effort in a scheduling algorithm is to min-
imize the maximum completion time (makespan).
Equation 6 describes how the makespan of a DAG
is calculated

Cmax =
[
max(task i.tend)−min(task j. tst)

]
,

1 ≤ i, j ≤ n (6)

Critical Path (CP) of a DAG is the longest path from
the entry node to the exit node in the graph. The lower
bound of a schedule length is the minimum critical
path length (CPMIN). If any task on the critical path
is late, the tasks scheduling in graph is late. Since the
number of processing sources for tasks execution is
unlimited, Cmax can be considered equal to the length
of critical path for G graph.

Cmax(G) = CPL(G) (7)

3.5.2. Throughput estimation
The proposed model for evaluation of throughput

has been adopted from [41]. It is essential to include
communication rate (CommR(G)) and computation
rate (CompR(G)) for the given DAG, G.

Since all tasks in a cluster such as Ci should be
executed on one processor, the data elements are pro-
cessed sequentially. The computation rate for cluster
Ci is equal to 1

et(Ci)
data items per unit of time. Given

that the computation rate for the given DAG, G, is
determined by the slowest cluster, we can calculate
the CompR(G) as indicated by Equation 8

CompR(G) = min
∀Ci∈C

&
1

et(Ci)
(8)

B. Barzegar et al. / A green energy-aware parallel tasks scheduling algorithm in DVFS-enabled cloud data center 5143

Moreover, the communication rate for each edge
dij is equal to 1

ct(dij) data items per unit of time. Given
that the communication rate for G given DAG is deter-
mined by the lowest communication rate for all edges
in G, the CommR(G) of the DAG can be calculated
according to Equation 9.

CommR(G) = min
∀dij∈D

,
1

ct(dij)
(9)

Since the computation and communication for dif-
ferent processors can be carried out simultaneously,
the overall throughout can be calculated through
Equation 10.

Th(G) = min
∀dij∈D

{compR(G), commR(G)} (10)

3.5.3. Energy consumption model
The energy consumed for scheduling of dependent

tasks in computational systems is equal to total com-
putation energy of processors for task execution as
well as energy consumed to transfer data between
processors across communication networks.

3.5.3.1. Computation energy
Nowadays, most processors are constructed using
CMOS circuits. In such processors, power con-
sumption is divided into two parts (dynamic power
consumption and static power consumption) which
are obtained through Equation 11.

Static power consumption, i.e. the main source of
static current, is leakage current and reverse based
PN junction when there is no circuit activity, whereas
dynamic power consumption involves charging and
discharging of capacitances when inputs are active
[20, 32].

P = Pdynamic + Pstatic (11)

Given that the total energy consumed to execute
parallel tasks involves computation energy by proces-
sors and communication energy between processors,
the static part of power consumption can be ignored.

The dynamic power consumption of processors
can be calculated through Equation 12 [52].

Pdynamic = ACv2f (12)

Where A is the percentage of active logic gates,
C is the effective load capacitance, v is the supply
voltage and f is the frequency of processor.

Given that modern processors are equipped with
DVFS technology, the maximum power consump-
tion of processor Pproc.highest occurs when it operates
at maximum voltage vhighest and frequency fhighest .
Therefore, it can be concluded that the active
power consumption for a processor under the volt-
age and frequency set (vj, fj) is calculated through
Equation 13.

Pprocj = Pproc.highest ×
v2

j ×fj

v2
highest×fhighest

Pproc.highest = ACv2
highestfhighest

(13)

Since the proposed algorithm adopts the task dupli-
cation strategy for scheduling a DAG with n tasks on
DVFS-enabled processors, the total energy consump-
tion can be calculated through Equation 14.

Pprocessor.active =
n∑

i=1
Pproc.higest(

k∑
j=1

v2
j ×f2

j
vhighest×fhighest

+ ND ti

)

Eprocessors.active =
n∑

i=1
Pproc.higest

(
k∑

j=1

v2
j ×fj

v2
highest×fhighest

× et(ti, pm(vj, fj)

)

+ND ti× et(ti, pm(vhigest, fhigest))

(14)

When there are no processing and execution tasks,
processors switch to idle mode, where the energy con-
sumed by processors is calculated by Equation 15.
Where m is the total number of processors, makespan
is the maximum time for completion of tasks by pro-
cessors, also known as scheduling length.

Eprocessor.idle

= ACv2
lowest flowest

(
|m| ×makespan

−
n∑

i=1

(
k∑

j=1
et(ti, Pm(vj, fj)

)
+ND ti× et(ti, pm(vhighest, fhighest))

(15)

Finally, the total energy consumed by processors
to execute the task dependency graph can be obtained
through sum of Equations 14 and 15.

Eprocessors = Eprocessors.active + Eprocessors.idle (16)

5144 B. Barzegar et al. / A green energy-aware parallel tasks scheduling algorithm in DVFS-enabled cloud data center

3.5.3.2. Communication energy
Since the processors in each datacenter have been
assumed to be homogeneous, the data transfer speed
and power consumption are identical.

The communication energy consumed by edge
dij ∈ D can be denoted as ecij , where PC is the power
of interconnect. ecij is calculated through Equation
17.

ecij = PC× ct(dij) (17)

Therefore, the total communication energy for the
entire network can be calculated through Equation
18.

ECommunications =
n∑

i=1

∑
vj∈Succ(vi)

(xij × ecij) (18)

In Equation 18, element xij is expressed by Equa-
tion 19 below:

xij =
{

0 if (tend
i , pm) = (tstj , pm)

1 O.W
(19)

Finally, the total energy consumed by cloud data-
centers can be obtained through sum of Equations 16
and 18.

ETotal = Edynamic(processor.active)

+Edynamic(processor.idel)

+Ecommunication (20)

4. Proposed method

This section describes the proposed algorithm
(EATSDCD) for scheduling dependent tasks, in order
to mitigate energy consumption under throughput
and makespan constraints. Based on the performance
and energy models shown in Section 3, we can
demonstrate the effects of combined duplication and
clustering strategy together with the DVFS technique
to achieve the stated objectives. The new algorithm
consists of two phases namely EATSDC and EAD-
VFSA.

In the first phase, a schedule serves to reduce
communication energy and increase throughput. It is
obtained through the energy-aware task duplication-
clustering algorithm (EATDC). The second phase
focuses on implementation of DVFS technique for
each processor to decrease computation energy con-
sumption of DAG, using the energy-aware dynamic

Algorithm 1. Energy − Aware Task Scheduling with

Duplication − Clustering Algorithm (EATSDC)

Input: Task Dependency Graph; DAG(T,D), Energy constraint;
Enc, Throughput constraint; Thc

Output: DAG
′
(T,D)

1. Begin
2. DAG

′
(T,D)← DAG(T,D)

3. Task Clustering C′i← {Ci|Ci = {ti} for all ti ∈ T}, C′i is an
unordered list of task-clusters, initially each task ti a
separate task-Cluster Ci

4. For all task-cluster C′i, if Thc > 0 then number of(C′i)←
Thc × et(Ci, pj) else number of(C′i)← 1

5. Thcur ← calculate throughput(DAG’(T,D))
6. If Thcur < Thc then
7. For all edge dij with min(numr(ti,

numr(tj)/ct(dij) < Thc

8. D’← {for all dij ∈ D & ti and tj belong separate
cluster}

9. Sort the edges dij of the DAG in a descending order
of edge time.

10. Initially all edges are unexamined.
11. Repeat:
12. Pick an unexamined edge which has largest edge time

and CommR(d′ij) < Thc, mark it as examined
13. t′i is the source task and t′j is destination task of d′ij
14. DAG1(T,D)← DAG′(T,D), DAG2(T, D)← DAG′

(T,D)
15. Zero the highest edge weight in DAG1(T,D)
16. Duplicate (t′i(DAG2)) and zero the highest edge time

DAG2(T, D)
17. Constraint Critical Path(CP):
18. If (CP1 < CP2) then DAG′(T, D)← DAG1(T, D)

else DAG′(T, D)← DAG2(T, D)
19. Encur ← calculate energy consumption DAG′(T, D)
20. end
21. While (Encur > Enc) do
22. D′ ← {for all dij |dij ∈ D & ti and tj belong

separate cluster}
23. If D′ = � then return null;
24. List D′ ← sort the remaining edge of the DAG

after Clustering & Duplication in descending order of edge
communication time.

25. d′ij← select the first edge in D′,
26. zeroing the d′ij
27. Encur← compute energy consumption DAG′(T,D)
28. End
29. When two cluster are merged, the ordering of tasks in the

resulting cluster is based on their b-level (algorithm 2).
30. END

voltage/frequency scaling algorithm (EADVFSA).
The following sub-section describes both phases in
greater details.

4.1. Energy-Aware Task Duplication-Clustering
Algorithm (EATSDC)

The first phase presents the Energy-Aware Task
Duplication-Clustering Algorithm (EATSDC) for
parallel task scheduling. Our EATSDC attempts to
satisfy makespan, throughput and energy constraints

B. Barzegar et al. / A green energy-aware parallel tasks scheduling algorithm in DVFS-enabled cloud data center 5145

using duplication and clustering strategy. Task clus-
tering reduces makespan by zeroing edges of high
communication time and proper adoption of the
strategy. Task duplication decreases the communica-
tion overhead by reducing allocating certain tasks to
multiple processors and thereby mitigate energy con-
sumption. The pseudo-code of EATSDC is shown in
Algorithm 1.

4.1.1. Generate original task scheduling
sequence

Given that one of the scheduling objectives is to
reduce makespan, task scheduling based on descend-
ing order of their b-level can lead to earlier scheduling
of tasks on a critical path.

In fact, b-level is a priority assigned to each task.
The b-level of task ti is the length of longest path from
ti to an exit node. The b-level of a task is bounded
from above by the length of a critical path. b-level is
calculated through Algorithm 2.

Algorithm 2. Computation of b − level

1. Begin
2. Construct a list of all tasks ∈ T in reversed topological

order, call it RevTopList.
3. For each task ti in RevTopList do
4. maxlength = 0
5. For each immediate succeeding task tj of task ti do
6. If ct(dij)+ b− level(tj) > maxlength then

7. maxlength = ct(dij)+ b− level(tj)
8. end if

9. end for

10. b− level{tj} = et{ti, pj} +maxlength

11. end for

12. end

4.2. Energy-Aware Dynamic Voltage/Frequency
Scaling Algorithm (EADVFSA)

After applying the duplication and clustering
strategy on the input graph, which leads to lower
energy consumption and makespan, and also higher
throughput, we intend to further mitigate the energy
consumed by processors by determining the critical
path and non-critical paths. We also specify the slack
time of non-critical tasks, and calculate the voltage
and frequency of processors assigned to processing
of tasks in non-critical paths as well as idle and com-
munication phases through scaling down DVFS. For
this reason, it is essential to first explore the impor-
tant parameters used in applying DVFS techniques to
reduce energy consumption. These parameters have
been listed in Table 3.

Table 3
Important parameters used in DVFS technique

Notations Definition

EST (ti) Earliest start time of task ti
EFT (ti) Earliest finish time of task ti
LST (ti) Latest start time of task ti
LFT (ti) Latest finish time of task ti

4.2.1. Calculation of slack time for a task
The parameters in Table 3 are used to calculate the

slack time of tasks and determine the critical path.
Calculation of Earliest Start Time (EST) is a top-
down method, which starts with the first task and ends
with the last task, calculated by Equation 21.

EST(ti)

=

⎧⎪⎨
⎪⎩

0 if pred(ti) = φ

MAX(EFT (tj),

MAX(EFT (tk)+ (dki)) O.W
(21)

tkεpred(ti), diiεD

After calculating EST, the Earliest Finish Time
(EFT) can be calculated for task ti by Equation 22.

EFT (ti) = EST (ti)+ et(ti, pm) (22)

Moreover, the calculation of Last Finish Time
(LFT) is a bottom-up method, which starts with the
last task and ends with the first task, calculated by
Equation 23.

LFT(ti)

=

⎧⎪⎨
⎪⎩

EFT (tj) or makespan if 	 (ti) = φ

Min(LST (tj),

Min(LST (tk)− (dik)) O.W
(23)

tk ∈ succ(ti), dij ∈ D

The Latest Start Time (LST) for task ti is also
calculated by Equation 24.

LST (ti) = LFT (ti)− et(ti, pm) (24)

4.2.2. Determining the critical path
Critical path is the longest path through a DAG

from entry task to exit task. It consists of the set of
tasks that, if delayed in any way, would cause a delay
in completion of the all tasks. The tasks, whose LST
is equal to their EST, make up the critical path (or,
equivalently, whose LFT is equal to their EFT).

5146 B. Barzegar et al. / A green energy-aware parallel tasks scheduling algorithm in DVFS-enabled cloud data center

4.2.3. Calculating the slack time of tasks
The non-critical tasks in a DAG are distinguished

by the presence of slack. Slack is the amount of time
by which the start of an activity can be delayed with-
out delaying the makespan. Critical tasks have zero
slack, while non-critical tasks have slack value, This
is known as slack time. For each task ith, slack time
is calculated through Equation 25.

Slack time for task ti = LST (ti)− EST (ti) or

LFT (ti)− EFT (ti) (25)

The pseudo-code of calculating slack time, critical
and non-critical path have been described in Algo-
rithm 3.

Algorithm 3. Calculate Slack time & Critical Path

1. Begin
2. Initially all tasks in a descending order according to their

finishing time (Queue topological sort)
3. For each task ti in DAG do
4. Calculate EST (ti), EFT (ti), LST (ti), LFT (ti) as

Equations (21–24)
5 end for
6. For each task ti in Queue topological sort do
7 Calculate Slack time of ti as Equation (25)
8. if Slack time task ti = 0 then
9. Add task ti to Critical Path List

10. else
11. Add task ti to Non-Critical Path List
12. end if
13. end for
14. end

4.2.4. Voltage/frequency scaling
This section shows how to employ the DVFS

technique to scale down the voltage/frequency of pro-
cessors assigned to non-critical tasks, reduce the idle
and communication phases, and scale up the volt-
age/frequency of processors assigned to critical tasks,
thereby to mitigate energy consumption.

The critical path (CP) of scheduled task graph in a
Gantt chart is a set of time slots of task execution and
data communication from the first task to the last task,
of which the sum of computation time and communi-
cation time is the makespan. Assuming that The CP is
t1 − t3 − t5 − t6, the best-effort scheduling algorithm
does not extend the makespan, the voltage/frequency
of processors during the time slots of task execution
in the CP is not changed. Voltage and frequency of
other time slots in a Gantt chart are considered to
be scaled down. Processor′k.freqop, is calculated as

shown in Equation 26:

Processor′k.freqop = freqhighest

×et(ti, pm(vhighest, fhighest))

slak time for task ti
(26)

The pseudo-code of voltage/frequency scaling is
shown in Algorithm 4.

Algorithm 4. voltage/frequency scaling

1. Begin
2. for each procj do
3. for each times slot in proc′

j
s do

4. if procj execute a critical task ti then
5. scale up procj frequency to highest
6. end if
7. if procj execute a non critical task ti then
8. calculate procj frequency to procj .f

op as Equation (26)
9. end if

10. if procj is idle or it executes a communication phase then
11. scale down procj frequency to lowest
12. end if
13. end for
14. end for
15. end

5. Time complexity analysis

Given that the input of the proposed algorithms is
DAG (T, D), in which |T| and |D| represent the number
of tasks and edges, respectively, we want to analyze
the time complexity of algorithms presented in the
previous sections.

5.1. Analysis of EATSDC

5.1.1. Algorithm 1
This algorithm executes the clustering and dupli-

cation strategies on the input graph. Lines 3 and 4
require |T|, while Lines 5 to 8 require |D| operation
times to calculate CompR(G) and CommR(G). Sort-
ing in Line 9 can be done at time |D| log |D| based on
quick sort. Lines 10 to 16 require 2× (|T| + |D|)2

operations, calculation of CP in Line 17 requires
(|T| + |D|)2 operations, and Lines 19 to 25 require
|D|2 operations to satisfy the energy consumption.
Moreover, the calculation of b-level for all tasks in
the integrated cluster requires (|T| + |D| + |D|) oper-
ations. As a result, the time complexity of EATDCA
is equal to O

(|D| × (|T| + |D|)2
)
.

B. Barzegar et al. / A green energy-aware parallel tasks scheduling algorithm in DVFS-enabled cloud data center 5147

5.1.2. Algorithm 2
This algorithm computes the b-level for tasks.

The construct RevTopList of Line 2 can be done in
o (|T | + |D|) time. Lines 3 and 5 are a double-loop.

Given that the number of iterations in the two
loops is equal to the number of children of each
node to which they are connected, the total dupli-
cations of Lines 3-11 is |D| times. Therefore,
the total number of iterations of the algorithm is
equal to (|T | + |D| + |D|), with time complexity of
0 (|T | + |D|).

5.2. Analysis of EADVFSA

5.2.1. Algorithm 3
This algorithm computes the slack time for task and

then produces a CP. The sorting of Line 2 can be done
in |T| log |T| time using quick sort. Assuming task
has k successors or predecessors, Lines 3–5 occur
k |T| times. Lines 6–12 compute the slack time for
each task in the DAG, determine CP, and execute |T|
times. Thus, the total number of iterations is equal
to (|T| log |T| + k |T| + |T|) and the complexity for
algorithm 3 is O (|T| log |T|).

5.2.2. Algorithm 4
This algorithm scales the frequency of processors.

Assuming each virtual machine has |m| processors,
with s time slots, Line 2 and 3 are double-loop. Hence,
the complexity of Algorithm 4 is O (s |m|).

6. Performance analysis with simulation

This section presents the experiments carried
out to evaluate the proposed heuristic algorithm,
Energy-Aware Task Scheduling with Duplication
Clustering Dynamic voltage/frequency Algorithm
(EATSDCD) and compare EATSDCD against pre-
vious work, namely power aware task clustering
(PATC) [20], power aware list-based scheduling
(PALS) [20], Energy Aware Duplication Schedul-
ing (EADUS) & TEBUS [44] with objective energy
saving, RASD [33], Heterogeneous Earliest Finish
Time (HEFT) [51] with objective execution time
and PaPilo [41], Throughput Constrained Latency
Optimization heuristic (TCLO) & Throughput Con-
strained Latency Optimization Pipelined (TCLO-P)
[8] in homogeneous and heterogeneous environments
while considering energy consumption and through-
put.

6.1. Energy, throughput and makespan
constraint settings

The solution described in the proposed method
for best-effort scheduling optimizes energy con-
sumption while meeting makespan and throughput
requirements. We define lower bound of the energy
constraint denoted as Enmin and upper bound of
throughput constraint, denoted as Thmax and lower
bound of the makespan or critical path, denoted as
CPmin.

The minimum consumed energy by processors
to execute tasks occurs when the communication
cost is excluded and no duplication takes place
(numr(ti) = 1). To that end, it is essential to execute
all tasks on a single processor.

Therefore, the minimum energy consumption can
be calculated as shown in Equation 27.

Enmin(G) =
∑
∀Ci∈C

et(Ci) (27)

Moreover, the maximum throughput is achieved
when we have |m| processors in the system as indi-
cated by Equation 28.

Thmax(G) = |m|∑∀Ci ∈ Cet(Ci)
(28)

The minimum makespan or critical path, denoted
as CPmin(G), is achieved by clustering all tasks on
one processor.

This discard the communication time and achieves
the makespan constraint, as represented in Equation
29.

CPmin(G) = EFT(texit) (29)

Since it is impossible to simultaneously obtain
the minimum energy consumption and maximum
throughput, it is crucial to consider a coefficient for
Enmin(G) and Thmax(G).

For that purpose, three energy constraints
Enmin(G) are set: 1.2Enmin(G), 1.5Enmin(G) and
2.0Enmin(G) and three throughput constraints
Thmax(G).

0.25Thmax(G), 0.5Thmax(G) and 0.75Thmax(G).

6.2. Randomly generated application task
graphs

In this paper, we first considered the randomly
generated application task graph. Currently, there
are many random graph generator tools to generate

5148 B. Barzegar et al. / A green energy-aware parallel tasks scheduling algorithm in DVFS-enabled cloud data center

weighted application DAG, such as STG (standard
task graph) [45]. STG is a kind of benchmark for
evaluation of proposed scheduling algorithms. Three
fundamental characteristics of the DAG are consid-
ered:

� DAG size, (n): The number of tasks in DAG.
� Communication-to-Computation Ratio,

(CCR): it is the ratio between average commu-
nication time to the average computation time
of the application DAG. Equation 30 describes
how the CCR of a DAG is calculated.

CCR =
∑

1≤i,j≤nct (dij)∑
1≤i≤nwi

(30)

� Parallelism factor, (λ): the number of levels of
the application DAG.

In our simulation experiments, the DAG sizes vary
between 40 to 1000, in steps of 40, with random node
and edge weights. CCR was varied as 0.1, 1 and 10.
The number of levels is determined byλ, which varied
as 0.5, 1.0, 2.0 and 5.0. in total about 200 graphs were
generated for evaluation of the proposed method with
other algorithms.

6.3. Experimental results

The platform of simulation environment to eval-
uate our work is CloudSim toolkit [46] based on
Java, which supports the modeling and simulation of
energy-aware computational resources in large-scale
cloud-computing datacenters. We installed CloudSim
in an Asus Notebook with Intel core i7-A540UP CPU
2.4 GHz with 8 cores and 4GB of memory. We create
five datacenters in our simulation, and set 200 vir-
tual machines, each involving three processor types

namely AMD Turion 64 MT-34, AMD Opteron 2218
and Intel core i3-540 respectively [34]. These are all
equipped with DVFS technology. Table 4 shows the
details of the four processor types.

Firstly, we compare the proposed EATSDCD
against the other four algorithms namely PALC,
PATC, EADUS & TEBUS. According to the sim-
ulation results, the parameters of DAG size and CCR
can greatly affect the extent of energy saving.

For CCR = 10 and CCR = 0.1, the application DAG
is computation intensive and communication inten-
sive respectively. The energy-saving of EATSDCD
is higher than that of other algorithms. As for
CCR = 1, the energy-saving of EATSDCD and other
four algorithms are almost equal. Table 5 com-
pares EATSDCD against other energy-aware DAG
scheduling algorithms in term of max energy sav-
ing. PALC and PATC use the clustering and DVFS
technique for parallel task scheduling in cluster to
reduce energy consumption. EADUS and TEBUS
use the duplication and clustering technique for
scheduling precedence-constrained parallel tasks on
clusters to balance scheduling length and energy
consumption.

The second set of simulation is to compare the
proposed EATSDC algorithm against the other three
algorithms namely RASD [33], HEFT [51]. Accord-
ing to the simulation results, Figs. 5–7 show the
makespan of the EATSDC varies with respect to the
DAG size (40, 80, 120, 160, 200) and the CCR size
(0.1, 1, 5).

The third set of simulation shows the perfor-
mance of the EATSDCD algorithm with CCR = 1 and
throughput set to 0.25Thmax(G), 0.5Thmax(G) and
0.75Thmax(G). against previously proposed schemes:
PaPilo [41], TCLO & TCLO-P [8].

Table 4
Power consumption for different voltage/frequency of processors [34]

Processors AMD Opteron 2218 AMD Turion MT-34 Intel Core i3-540

Voltage (V) 1.1, 1.15, 1.15, 1.20, 1.25, 1.30 0.9, 1.0, 1.05, 1.1, 1.15, 1.2 1.125, 1.125, 1.2, 1.2, 1.3, 1.3, 1.375
Frequency (GHz) 1.0, 1.8, 2.0, 2.2, 2.4, 2.6 0.8, 1.0, 1.2, 1.4, 1.6, 1.8 3.07, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2
Highest power (W) 95 25 108
Lowest power (W) 26.16 6.25 53

Table 5
Comparison of energy-saving between our proposed EATSDCD and the other four algorithms

Energy-aware DAG Technique Maximum energy
scheduling algorithms saving (%)

PATC [20] DVFS & Clustering 39.7
PALS [20] DVFS & ETF scheduling 44.3
EADUS & TEBUS [44] Clustering & Duplication 16.8
EATSDCD (proposed method) Duplication & Clustering & DVFS 52.7

B. Barzegar et al. / A green energy-aware parallel tasks scheduling algorithm in DVFS-enabled cloud data center 5149

Fig. 5. Comparison of makespan between EATSDC and RASD,
HEFT for CCR = 0.1.

The results are shown in Table 6. Based on the
simulation observations, we can find that the PaPilo
algorithm and the proposed EATSDCD algorithm
achieved the Encur = 1.5 Enmin(G) and Encur = 2.0
Enmin(G) energy and throughput constraints for all
200 graph samples.

Meanwhile, as the energy constraints changed
to Encur = 1.2 Enmin(G) at the same throughput
constraints, only EATSDCD achieved the specified
constraint in all 200 sample graphs. The objectives
were realized because after applying the duplication
and clustering technique on the input graph samples
and calculation of slack time for all tasks, the DVFS
technique was adopted to mitigate the voltage and fre-
quency of processors assigned to process non-critical
tasks as well as idle and communication phases. This
in turn minimized the energy consumption and thus
fulfilled the specified constraints.

Fig. 6. Comparison of makespan between EATSDC and RASD,
HEFT for CCR = 1.

Fig. 7. Comparison of makespan between EATSDC and RASD,
HEFT for CCR = 5.

Table 6
Number of feasible solutions for 100-node random task graph, with different Energy and throughput constraints, for CCR = 1

(a) Encur = 2.0 Enmin(G)
Thmax EATSDCD(proposed method) TCLO [8] TCLO-P [8] PaPilo [41]
0.25Thmax 1 0.96 0.72 1
0.5Thmax 1 0.82 0.64 1
0.75Thmax 1 0.77 0.57 1

(b) Encur = 1.5 Enmin(G)

Thmax EATSDCD(proposed method) TCLO [8] TCLO-P [8] PaPilo [41]
0.25Thmax 1 0.51 0.69 1
0.5Thmax 1 0.47 0.58 1
0.75Thmax 1 0.39 0.55 1

(c) Encur = 1.2Enmin(G)
Thmax EATSDCD(proposed method) TCLO [8] TCLO-P [8] PaPilo [41]
0.25Thmax 1 0.43 0.51 0.91
0.5Thmax 1 0.37 0.44 0.83
0.75Thmax 1 0.23 0.36 0.78

5150 B. Barzegar et al. / A green energy-aware parallel tasks scheduling algorithm in DVFS-enabled cloud data center

The results of simulation indicated that the newly
proposed algorithm can save greater energy than
other algorithms for the following reasons.

� EATSDCD uses task duplication and cluster-
ing to reduce the necessary communication
between processors.

� EATSDCD reduce the energy consumption dur-
ing the communication phase.

� EATSDCD reduce energy consumption when
processors are idle.

� EATSDCD employs the DVFS technique to
extend the task slack time.

7. Conclusions and future work

In this paper, we proposed a novel green
energy-aware scheduling algorithm, called Energy
Aware Task Duplication Clustering Dynamic volt-
age/frequency scaling (EATSDCD). It employs
the clustering & duplication technique on homo-
geneous/heterogeneous DVFS-enabled cloud data-
center processors. EATSDCD can be applied to
application DAGs such as STG so as to optimize
energy efficiency at the premise of meeting the
throughput and makespan constraints. In the first
phase, a schedule serves to reduce communication
energy and increase throughput. It is obtained through
the energy-aware task duplication-clustering algo-
rithm (EATDCA). The second phase focuses on
implement ion of DVFS technique for each pro-
cessor that can scale down clock frequency and
supply voltage whenever tasks have slack time
and during idle and communication time slots to
decrease energy consumption of DAG, using the
Energy-Aware Dynamic voltage/frequency scaling
Algorithm (EADVFSA).

testbed is developed and different parameters are
tested on the randomly generated DAG to evalu-
ate and illustrate the superiority and effectiveness of
EATSDCD. It was also compared against duplication
and clustering-based algorithms and DVFS-based
algorithms. In terms of energy consumption and
makespan, the results show that our proposed algo-
rithm can save up to 8.3% and 20% energy compared
against PALS [20] and PATC [20] algorithms without
performance loss, respectively. Furthermore, there is
16% improvement over PaPilo [41] algorithm with
Encur = 1.2Enmin(G). In comparison with RASD
[33] and HEFT [51] algorithm, the execution time
has been reduced in heterogeneous environments.

The future works can be divided into three areas.
Firstly, the user and service provider initiate negotia-
tions to reach a green SLA concerning the makespan
extension rate. An agreement on η rate (makespan
≤ (1+ η)× makespan best) will achieve the service
quality parameters and minimize energy saving by up
to 52.7% in the newly proposed method. Secondly,
a few samples of real applications, such as MPEG-2
decoder [41], can be run through the new algorithm.
Thirdly, a model can be proposed to mitigate energy
consumption in task scheduling for other components
such as disk, memory and network.

Acknowledgments

The authors would like to thank the anonymous
reviewers and the editor for their insightful comments
and suggestions.

References

[1] M. Uddin, Y. Darabidarabkhani, A. Shah and J. Memon,
Evaluating power efficient algorithms for efficiency and car-
bon emissions in cloud data centers: A review, Renewable
and Sustainable Energy Reviews 51 (2015), 1553–1563.

[2] A. Dobhal, Improved real-time energy aware parallel task
scheduling in a cluster, In: Computing for Sustainable
Global Development (INDIACom), 2016 3rd International
Conference on, 2016, pp. 475–480. IEEE.

[3] M. Mezmaz, N. Melab, Y. Kessaci, Y.C. Lee, E.-G. Talbi
and A.Y. Zomaya and D. Tuyttens, A parallel bi-objective
hybrid metaheuristic for energy-aware scheduling for cloud
computing systems, Journal of Parallel and Distributed
Computing 71(11) (2011), 1497–1508.

[4] S. Smanchat and K. Viriyapant, Taxonomies of workflow
scheduling problem and techniques in the cloud, Future
Generation Computer Systems 52 (2015), 1–12.

[5] J.D. Ullman, NP-complete scheduling problems, Journal of
Computer and System Sciences 10(3) (1975), 384–393.

[6] O. Sinnen, A. To and M. Kaur, Contention-aware scheduling
with task duplication, Journal of Parallel and Distributed
Computing 71(1) (2011), 77–86.

[7] S.C. Kim, S. Lee and J. Hahm, Push-pull: Determinis-
tic search-based dag scheduling for heterogeneous cluster
systems, IEEE Transactions on Parallel and Distributed
Systems 18(11) (2007).

[8] N. Vydyanathan, U. Catalyurek, T. Kurc, P. Sadayappan and
J. Saltz, Optimizing latency and throughput of application
workflows on clusters, Parallel Computing 37(10) (2011),
694–712.

[9] B. Vázquez-Barreiros, M. Mucientes and M. Lama, Enhanc-
ing discovered processes with duplicate tasks, Information
Sciences 373 (2016), 369–387.

[10] D. Boru, D. Kliazovich, F. Granelli, P. Bouvry and A.Y.
Zomaya, Energy-efficient data replication in cloud comput-
ing datacenters, Cluster Computing 18(1) (2015), 385–402.

[11] F.A. Omara and M.M. Arafa, Genetic algorithms for task
scheduling problem, Journal of Parallel and Distributed
Computing 70(1) (2010), 13–22.

B. Barzegar et al. / A green energy-aware parallel tasks scheduling algorithm in DVFS-enabled cloud data center 5151

[12] J. Mei, K. Li and K. Li, A resource-aware scheduling
algorithm with reduced task duplication on heterogeneous
computing systems, The Journal of Supercomputing 68(3)
(2014), 1347–1377.

[13] K. Shin, M. Cha, M. Jang, J. Jung, W. Yoon and S. Choi,
Task scheduling algorithm using minimized duplications in
homogeneous systems, Journal of Parallel and Distributed
Computing 68(8) (2008), 1146–1156.

[14] Y. Ding, X. Qin, L. Liu and T. Wang, Energy efficient
scheduling of virtual machines in cloud with deadline con-
straint, Future Generation Computer Systems 50 (2015),
62–74.

[15] W. Chen, R.F. da Silva, E. Deelman and R. Sakellariou,
Using imbalance metrics to optimize task clustering in sci-
entific workflow executions, Future Generation Computer
Systems 46 (2015), 69–84.

[16] F. Zhang, J. Cao, K. Li, S.U. Khan and K. Hwang, Multi-
objective scheduling of many tasks in cloud platforms,
Future Generation Computer Systems 37 (2014), 309–320.

[17] E. Arianyan, H. Taheri and V. Khoshdel, Novel fuzzy multi
objective DVFS-aware consolidation heuristics for energy
and SLA efficient resource management in cloud data cen-
ters, Journal of Network and Computer Applications 78
(2017), 43–61.

[18] N.B. Rizvandi, A.Y. Zomaya, Y.C. Lee, A.J. Boloori and
J. Taheri, Multiple frequency selection in DVFS-enabled
processors to minimize energy consumption, arXiv preprint
arXiv:1203.5160.

[19] Y. Hu, C. Liu, K. Li, X. Chen and K. Li, Slack alloca-
tion algorithm for energy minimization in cluster systems,
Future Generation Computer Systems 74 (2017), 119–131.

[20] L. Wang, K. Su, D. Chen, J. Kolodziej, R. Ranjan, C.-Z. Xu
and A. Zomaya, Energy-aware parallel task scheduling in a
cluster, Future Generation Computer Systems 29(7) (2013),
1661–1670.

[21] R. Entezari-Maleki, L. Sousa and A. Movaghar, Perfor-
mance and power modeling and evaluation of virtualized
servers in IaaS clouds, Information Sciences 394 (2017),
106–122.

[22] J. Mei, K. Li and K. Li, Energy-aware task scheduling in het-
erogeneous computing environments, Cluster Computing
17(2) (2014), 537–550.

[23] Y.-C. Ouyang, Y.-J. Chiang, C.-H. Hsu and G. Yi, An opti-
mal control policy to realize green cloud systems with
SLA-awareness, The Journal of Supercomputing 69(3)
(2014), 1284–1310.

[24] C.-H. Lin and J.-C. Ke, Multi-server system with single
working vacation, Applied Mathematical Modelling 33(7)
(2009), 2967–2977.

[25] M. Jain and A. Jain, Working vacations queueing model with
multiple types of server breakdowns, Applied Mathematical
Modelling 34(1) (2010), 1–13.

[26] F. Juarez, J. Ejarque and R.M. Badia, Dynamic energy-
aware scheduling for parallel task-based application in cloud
computing, Future Generation Computer Systems (2016).

[27] C.-M. Wu, R.-S. Chang and H.-Y. Chan, A green energy-
efficient scheduling algorithm using the DVFS technique for
cloud datacenters, Future Generation Computer Systems 37
(2014), 141–147.

[28] A. Beloglazov, J. Abawajy and R. Buyya, Energy-aware
resource allocation heuristics for efficient management of
data centers for cloud computing, Future Generation Com-
puter Systems 28(5) (2012), 755–768.

[29] N.B. Rizvandi, J. Taheri and A.Y. Zomaya, Some observa-
tions on optimal frequency selection in DVFS-based energy

consumption minimization, Journal of Parallel and Dis-
tributed Computing 71(8) (2011), 1154–1164.

[30] S. Baskiyar and R. Abdel-Kader, Energy aware DAG
scheduling on heterogeneous systems, Cluster Computing
13(4) (2010), 373–383.

[31] H. Kimura, M. Sato, Y. Hotta, T. Boku and D. Takahashi,
Emprical study on reducing energy of parallel programs
using slack reclamation by dvfs in a power-scalable high
performance cluster, In: Cluster Computing, 2006 IEEE
International Conference on, IEEE, 2006, pp. 1–10.

[32] V.K. Mohan Raj and R. Shriram, Power management in
virtualized datacenter – A survey, Journal of Network and
Computer Applications 69 (2016), 117–133.

[33] X. Tang, K. Li, R. Li and B. Veeravalli, Reliability-aware
scheduling strategy for heterogeneous distributed comput-
ing systems, Journal of Parallel and Distributed Computing
70(9) (2010), 941–952.

[34] W. Liu, W. Du, J. Chen, W. Wang and G. Zeng, Adaptive
energy-efficient scheduling algorithm for parallel tasks on
homogeneous clusters, Journal of Network and Computer
Applications 41 (2014), 101–113.

[35] M. Hu, J. Luo, Y. Wang and B. Veeravalli, Adaptive
Scheduling of Task Graphs with Dynamic Resilience, IEEE
Transactions on Computers 66(1) (2017), 17–23.

[36] I. Ahmad and Y.-K. Kwok, On exploiting task duplication in
parallel program scheduling, IEEE Transactions on Parallel
and Distributed Systems 9(9) (1998), 872–892.

[37] C.H. Papadimitriou and M. Yannakakis, Towards an
architecture-independent analysis of parallel algorithms,
SIAM Journal on Computing 19(2) (1990), 322–328.

[38] J.-Y. Colin and P. Chrétienne, CPM scheduling with small
communication delays and task duplication, Operations
Research 39(4) (1991), 680–684.

[39] Y.-C. Chung and S. Ranka, Applications and performance
analysis of a compile-time optimization approach for list
scheduling algorithms on distributed memory multiproces-
sors, In: Proceedings of the 1992 ACM/IEEE conference on
Supercomputing, IEEE Computer Society Press, 1992, pp.
512–521.

[40] B. Kruatrachue and T. Lewis, Grain size determination for
parallel processing, IEEE Software 5(1) (1988), 23–32.

[41] C.-S. Lin, C.-S. Lin, Y.-S. Lin, P.-A. Hsiung and C.
Shih, Multi-objective exploitation of pipeline parallelism
using clustering, replication and duplication in embedded
multi-core systems, Journal of Systems Architecture 59(10)
(2013), 1083–1094.

[42] R.W. Ahmad, A. Gani, S.H.Ab. Hamid, M. Shiraz, A.
Yousafzai and F. Xia, A survey on virtual machine migration
and server consolidation frameworks for cloud data centers,
Journal of Network and Computer Applications 52 (2015),
11–25.

[43] A. Liang and Y. Pang, A novel, energy-aware task
duplication-based scheduling algorithm of parallel tasks
on clusters, Mathematical and Computational Applications
22(1) (2016), 2.

[44] Z. Zong, A. Manzanares, B. Stinar and X. Qin, Energy-
aware duplication strategies for scheduling precedence-
constrained parallel tasks on clusters, In: Cluster Comput-
ing, 2006 IEEE International Conference on, IEEE, 2006,
pp. 1–8.

[45] Standard Task Graph Set. <http://www.kasahara.elec.
waseda.ac.jp/schedule/>.

[46] R. Buyya, R. Ranjan and R.N. Calheiros, Modeling and sim-
ulation of scalable Cloud computing environments and the
CloudSim toolkit: Challenges and opportunities, In: High

http://www.kasahara.elec.waseda.ac.jp/schedule/

5152 B. Barzegar et al. / A green energy-aware parallel tasks scheduling algorithm in DVFS-enabled cloud data center

Performance Computing & Simulation, 2009 HPCS’09
International Conference on, 2009, pp. 1–11. IEEE.

[47] A. Mohsenzadeh and H. Motameni, A trust model between
cloud entities using fuzzy mathematics, Journal of Intelli-
gent & Fuzzy Systems 29(5) (2015), 1795–1803.

[48] H. Lei, R. Wang, T. Zhang, Y. Liu and Y. Zha, A multi-
objective co-evolutionary algorithm for energy-efficient
scheduling on a green data center, Computers & Operations
Research 75 (2016), 103–117.

[49] S. Mustafa, B. Nazir, A. Hayat, A. ur Rehman Khan and S.A.
Madani, Resource management in cloud computing: Taxon-
omy prospects, and challenges, Computers and Electrical
Engineering 47 (2015), 186–203.

[50] A. Gerasoulis and T. Yang, A comparison of clustering
heuristics for scheduling directed acyclic graphs on multi-
processors, Journal of Parallel and Distributed Computing
16 (1992), 276–291.

[51] H. Topcuoglu, S. Hariri and M.-Y. Wu, Performance-
effective and low complexity task scheduling for hetero-
geneous computing, IEEE Trans Parallel Distrib Syst 13(3)
(2002), 260–274.

[52] Y. Sharma, B. Javadi, W. Si and D. Sun, Reliability and
energy efficiency in cloud computing systems: Survey and
taxonomy, Journal of Network and Computer Applications
74 (2016), 66–85.

[53] Y.C. Lee and A.Y. Zomaya, Energy conscious scheduling
for distributed computing systems under different operating
conditions, IEEE Transactions on Parallel and Distributed
Systems 22(8) (2011), 1374–1381.

[54] D. Bozdag, F. Ozguner and U.V. Catalyurek, Compaction of
schedules and a two-stage approach for duplication-based
DAG scheduling, IEEE Transactions on Parallel and Dis-
tributed Systems 20(6) (2009), 857–871.

[55] W. Shu, W. Wang and Y. Wang, A novel energy-efficient
resource allocation algorithm based on immune clonal
optimization for green cloud computing, EURASIP Jour-
nal on Wireless Communications and Networking 2014(1)
(2014), 6.

