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Real networks show nontrivial topological properties such as community structure and long-tail degree dis-
tribution. Moreover, many network analysis applications are based on topological comparison of complex
networks. Classification and clustering of networks, model selection, and anomaly detection are just some
applications of network comparison. In these applications, an effective similarity metric is needed which,
given two complex networks of possibly different sizes, evaluates the amount of similarity between the struc-
tural features of the two networks. Traditional graph comparison approaches, such as isomorphism-based
methods, are not only too time consuming, but also inappropriate to compare networks with different sizes.
In this paper, we propose an intelligent method based on the genetic algorithms for integrating, selecting, and
weighting the network features in order to develop an effective similarity measure for complex networks. The
proposed similarity metric outperforms state of the art methods with respect to different evaluation criteria.
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A distance metric for complex networks plays an
important role in many network-analysis appli-
cations. Given two networks with possibly differ-
ent sizes, the metric should represent the distance
(dissimilarity) of the features in the two networks
as a single integrated measure. Traditional graph
comparison methods such as graph isomorphism
and edit distance are improper for comparing
the complex networks because they are compu-
tationally infeasible for large networks, unaware
of nontrivial network features, and inappropriate
for the topological comparison of networks with
different sizes. Some recent network similarity
metrics have been developed based on the man-
ual selection of the features and creating heuris-
tic network distance metrics. This approach is
eventually error-prone, since it is based on trial
and error. In this paper, we employ machine
learning algorithms to learn a metric based on
the available network similarity evidences. Our
proposed methodology includes a novel feature
selection and feature weighting method for learn-
ing a network distance metric based on a genetic
algorithm. The proposed method is comprehen-
sively evaluated using different artificial, real, and
temporal network datasets, and outperforms the
baseline methods with respect to all considered
evaluation criteria.
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I. INTRODUCTION

Many network analysis applications are based on
the comparison of the complex networks. Particularly,
we often need a similarity metric in order to compare
networks according to their structural properties. Given
two networks of possibly different sizes, the metric is
supposed to quantify the structural similarity of the
two networks. It is possible to compare the networks
based on individual measurements such as density,
clustering coefficient, degree distribution, and average
path lengths. But many applications require a single
integrated quantity as the overall similarity of the
two given networks. In this paper, we investigate the
problem of developing an appropriate network similarity
measure, which is size-independent, scalable, and also
compatible with available network similarity evidences.
Existing network similarity metrics define the network
similarity according to a manual selection of some
local/global features1,2. In contrast to this error-prone
manual approach, we propose to utilize machine learning
methods to infer the network similarity metric, based
on the network labels which are witnesses to network
similarities.

The need for a structural similarity metric for complex
networks is frequently discussed in the literature1–10.
The definition of an appropriate network distance metric
is the base of many data-analysis and data-mining tasks
including classification and clustering. In the analysis
of complex networks, a size-independent similarity
metric plays an important role in the evaluation of the
network generation models8,11–15, evaluation of sam-
pling methods16–20, generative model selection4,21,22,
network classification and clustering4,10,21–24, anomaly
and discontinuity detection2,25,26, study of epidemic
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dynamics27–29, and biological networks comparison1,7.
In such applications, the network distance metric is
supposed to consider various network features, then
compare the overall structural properties of the two
networks, and finally, return a single aggregated dis-
tance quantity. Additionally, in most of the mentioned
applications, the network distance metric should be
size-independent so that it can compare networks of
different scales. For example, in the evaluation of the
sampling algorithms, which is a potential application
of the network distance metric, a large network is com-
pared with a sampled smaller network. As a result, the
intended network distance metric is different from other
similarity/dissimilarity notions including graph similar-
ity with known node correspondence6, classical graph
similarity approaches (including graph matching, graph
isomorphism, graph alignment, and edit distance)30,31,
and most of the existing graph kernels32–36.

In order to develop a network similarity metric, it
is possible to create a feature vector for each network
based on the existing network measurements. We can
compute the similarity of feature vectors according to
näıve distance methods such as Euclidean distance.
This approach is investigated in some of the existing
network distance metrics1–3. It is also possible to
manually assign specific weights for different features.
The problem with manual feature selection and manual
weighting of features is the significant trial and error
effort needed in order to construct the distance function,
which is actually error-prone and inefficient. As an
alternative, we consider intelligent and automated
methods for creating the distance functions. The art of
using machine learning methods in developing distance
functions is called “distance metric learning”. We will
show that this approach leads to integrated and more
accurate similarity metrics. In this paper, we propose an
intelligent network distance metric, called NetDistance.
In contrast to methods that concentrate only on local
features1,2, NetDistance is based on a combination of
local and global network features. In this paper, novel
methods for “feature selection” and “distance metric
learning” are devised, along with admissible “evaluation
criteria”. The proposed methodology can be applied in
other network domains, perhaps with different network
datasets and even other network features. To the best of
our knowledge, this is the first effort to apply machine
learning methods for feature selection and structural
distance metric learning for complex networks. The
comprehensive evaluations reveal significant contribu-
tions of this research.

In the remainder of this paper, we use “network”,
“complex network”, and “graph” terms and phrases in-
terchangeably. Since “similarity” is the counterpart of
“distance” and “dissimilarity”, we may also use these
terms for the meaning of quantified distance measure-
ments for networks. Although the proposed method-

ology is applicable for weighted and directed networks,
we only consider simple networks (undirected and un-
weighted graphs) in our experiments. The structure of
the rest of this paper is as follows: In Section II, we re-
view the literature and related works. In Section III, the
proposed method is illustrated. In Section IV, we eval-
uate our method and compare it with baseline methods.
In Section V, the time and space complexity of the pro-
posed distance metric is analyzed. Finally, we conclude
the paper in Section VI.

II. LITERATURE REVIEW

Among the different approaches for network com-
parison, the classical methods consider the notion of
“graph isomorphism”. Two graphs are called isomorphic
if they have an identical topology. Some variations
of isomorphism are also proposed, including subgraph
isomorphism and maximum common subgraphs36. “Edit
distance” measures the degree of isomorphism between
two graphs. Other isomorphism-inspired methods
also exist which are based on counting the number
of spanning trees37, comparing graph spectrums30,
or computing similarity scores for nodes and edges31.
Metrics that investigate graph isomorphism are compu-
tationally expensive and totally inapplicable for large
networks. This category of similarity metrics seeks a
correspondence between the nodes of networks, and they
do not reflect the overall structural similarities of the
networks.

Another approach in network comparison is the
utilization of the kernel methods. A kernel k(x, x′)
is a measure of similarity between objects x and x′,
and network comparison involves defining a kernel for
graphs. An appropriate kernel function should capture
the characteristics of the graphs, and it should also
be both efficiently computable and positive definite33.
Many graph kernels are proposed in the literature32–36,
but they do not consider nontrivial features such as
degree distribution, community structure, and transi-
tivity of relationships, which are actually important for
comparison of complex networks.

“Graphlet counting” is an alternative approach for
comparing networks. In order to characterize the local
structure of graphs, it is possible to count some small
subgraphs called motifs or graphlets. Graphlets are
small subgraphs and represent significant patterns of
interconnections7,38. Similarity of “graphlet counts”
may be used as a measure of similarity between
graphs4,7,38–42. Graphlet counting is a computationally
complex process, and its methods are usually based on
a pre-stage of network sampling4,42.

Another family of distance measures for network
comparison aims at representing the graphs by feature
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vectors that summarize the graph topology3,8,24,36,43.
The feature vector is referred to as the “topological
descriptor” or the “signature” of the network. In this ap-
proach, the graph is replaced by a vector-representation.
The feature vectors can be utilized for defining the graph
similarity metric, since such vectors are considered
beneficial for graph comparison2,4–6.

When there exist evidences about the similarity and
dissimilarity of the instances, we can develop a distance
metric by the means of artificial intelligence. “Distance
Metric Learning” is the art of applying machine learning
methods in order to find a distance function based on a
given collection of similar/dissimilar instances. Yang44

has surveyed the field of distance metric learning,
along with its techniques and methods. Xing et al.45

formulated the problem as a constrained convex pro-
gramming problem. Weinberger et al.46 proposed Large
Margin Nearest Neighbor (LMNN) classification method
in which a Mahalanobis distance metric is learned
from labeled examples of a dataset. LMNN obtains
a family of metrics by computing Euclidean distances
after performing a linear transformation x⃗′ = Lx⃗. The
distance metric is expressed in terms of the squared
matrix M , which is defined as M = LTL. If the elements
of L are real numbers, M is guaranteed to be positive
semidefinite. Equation 1 shows the squared distance in
terms of the matrix M . LMNN is admitted and applied
in many applications, and our experiments also show
the effectiveness of LMNN in distance metric learning
for complex networks. However, we will show that
our proposed method is based on genetic algorithms
(GA)47 since GA outperforms LMNN in this application.

DM (x⃗i, x⃗j) = (x⃗i − x⃗j)
T
M (x⃗i − x⃗j) (1)

III. PROPOSED METHOD

Our proposed method for network similarity measure-
ment, called NetDistance, is based on learning a distance
metric by the means of available network similarity evi-
dences. Our proposed roadmap for learning the distance
metric for networks is described in Figure 1. In this
roadmap, we first gather a set of networks in which the
similar networks are known. Then, we extract a set of
topological features from each network. As a result, each
network in the dataset is represented by a feature vector.
In the next step, a subset of the networks are fed as the
training data to machine learning algorithms for feature
selection and distance metric learning. Finally, the rest
of the networks are used as test data in order to evaluate
the proposed network distance metric.

Gather a set of 

networks with known 

similarity evidences 

Feature Selection 

Feature Extraction 

Distance Metric 

Learning 

Evaluate the learned  

similarity metric 

Training set Test set 

FIG. 1: The roadmap towards learning and evaluating
a distance metric for complex networks.

A. Network Similarity Evidences

Distance metric learning methods use a dataset of
similar/dissimilar pairs in order to learn a distance
function that preserves the distance relation among
the training data instances44. These methods tune a
distance function so that it will return smaller distances
for similar instances. In order to learn a distance metric
for complex networks, some evidences are needed about
networks similarities in a set of available networks. We
propose to utilize at least three evidences about the
similarity/dissimilarity of networks. The first evidence
is the expected similarity among artificial networks that
are generated with the same generative model. The
networks that are generated by the same model follow
similar link formation rules, and we can regard them to
have similar topological structures. In this approach, a
set of artificial networks are labeled by the generative
models and networks of the same model are considered
more similar to each other. For example, a scale-free net-
work generated by the preferential attachment process14

is probably more similar to another scale free network,
than to a network generated by the small-world13 model.
This notion of similarity for artificial networks is also
utilized in the literature4,9,21,22. The second evidence
of the network similarity is the type of real networks.
Networks in the real world appear in different types
such as communication networks, citation networks, and
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collaboration networks. Real networks of the same type
usually demonstrate similar structural characteristics,
and they can be regarded similar to each other. For
example, the network of Twitter users is similar to the
Google+ network, but not that similar to the network
of peer-to-peer networks. The definition of similarity
for real networks based on the network types is also
utilized in the literature2,5,9,10. The third evidence of
network similarity exists in the structure of a network
over time. If there are no considerable changes in the
behaviour of the entities in different timestamps of a
network, we can assume that a snapshot of the network
is similar to its near-in-the-time network snapshots48,49.
This assumption is the base of anomaly detection and
discontinuity detection methods2,25,26.

In the case of artificial and real networks, we de-
fined the network similarity criteria based on the network
classes (i.e., network models and network types). One
may argue that this definition is not valid since two net-
works of the same class may be structurally different. It is
worth noting that we do not assume that two same-class
networks are (very) similar. We also confirm that in some
cases, two different-class networks may be more similar
than two same-class networks. But despite the differ-
ences among the same-class networks and possible simi-
larities among the networks of different classes, a greater
average similarity is expected among the networks of the
same class. Therefore, we assume that the overall “ex-
pected similarity” (average similarity) among networks
of the same class is greater than the expected similarity
of different-class networks. This is an admissible assump-
tion that is used in many existing researches2,4,5,9,10,21,22.

B. Feature Extraction

Plenty of measures are defined in the literature for
quantifying the structural features of networks. In this
subsection, we describe the network features considered
in this research. Most of our investigated features are
well-known and frequently studied measures in the lit-
erature. Although we have examined many network fea-
tures, only some of them are finally selected and included
in the NetDistance function, based on a feature selection
method described in the next subsection.

Path lengths: In real networks, most of the nodes can
reach other nodes by a small number of steps (small-
world property). Among the features related to path-
lengths, we consider average shortest path length23 and
effective diameter15. Other measurements in this cate-
gory are: Radius3 and diameter3, which are not consid-
ered in our experiments, since they are sensitive to outlier
nodes.

Sparseness: Usually a small fraction of possible edges
exist in real networks, and the networks are considered

sparse. Network density50 and average degree23 are mea-
surements related to sparseness of networks.

Transitivity of Relationships: Two nodes that are
both neighbors of the same third node have more chance
of also being neighbors of one another51. Clustering
coefficient13 and transitivity23 are two well-known mea-
sures that quantify the tendency of nodes for creating
closed triads.

Community Structure: The nodes of many real net-
works can be grouped in some clusters in such a way
that the nodes in a cluster are more densely connected
with each other than with the nodes of other clusters.
Modularity52 is one of the best measures to quantify
community structure of a network. Networks with high
modularity have dense intra-community connections and
sparse inter-community edges. Although the modularity
of a network is dependent on the employed community
detection algorithm, an appropriate community detec-
tion algorithm can estimate the modularity of the net-
work.

Degree Correlation: In some real networks, the nodes
prefer to attach nodes of similar degrees. Degree correla-
tion is a kind of homophily53 or assortative mixing12, but
it is usually referred simply as assortativity. The assorta-
tivity measure54 shows the correlation of degree between
pairs of linked nodes.

Degree Distribution: The degree distribution is an
important characteristic of the complex networks. If we
assume that the degree distribution of a network follows
the power-law distribution (Nd ∝ d−γ), we can estimate
the power-law exponent (γ) and use it as a measurement
about the degree distribution. But this assumption is
rejected in some cases and the power-law degree dis-
tribution is regarded an inappropriate model for many
networks50,55. We utilize the “degree distribution quan-
tification and comparison (DDQC)” method, for feature
extraction from the degree distribution56,57. A näıve
version of DDQC method has shown successful applica-
tions in generative model selection21. DDQC extracts
eight feature values (DDQC1..DDQC8) from the distri-
bution pattern of node degrees in different degree inter-
vals. Since DDQC considers mean and standard devia-
tion of the node degrees for defining the degree intervals,
it enables the effective comparison of degree distributions
for networks with different sizes.

There is no standard list for network features. Other
patterns are also reported for complex networks, some of
which are densification15, shrinking diameter15, network
resilience12, vulnerability58, navigability59, and the rich-
club phenomenon60. In this paper, we have only consid-
ered simple graphs, and measurements related to directed
graphs are not investigated. Our proposed methodology
is not dependent on the specified network features, and
one can utilize a different set of features, according to
the desired application domain. As Table I summarizes,
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TABLE I: Extracted Topological Network Features

Topological Feature Selected Measurements

Degree Distribution Eight DDQC features, Fitted
power-law exponent

Path lengths Average shortest path length,
Effective Diameter

Sparseness Density, Average Degree

Transitivity of Relationships Transitivity, Average Cluster-
ing

Community Structure Modularity

Degree Correlation Assortativity

we have considered 17 different global and local network
features. It is worth noting that according to our experi-
ments, which are described in the evaluation section and
resulted in NetDistance, only nine out of 17 features are
sufficient for reaching an appropriate network distance
metric. Actually, our utilized feature selection method
excludes eight features, and only nine features remain in
the final distance metric.

C. Feature Selection and Distance Metric Learning

After extracting the relevant network features, the
next step (feature selection) is to select a subset of
features that participate in the final distance metric.
Then, the weight of each selected feature in the final
distance metric is specified. In our proposed method,
a genetic algorithm47 is utilized which covers both
feature selection and distance metric learning tasks.
Actually, finding the most important features (feature
selection) and finding the feature weights in the dis-
tance metric are both search problems with very large
search spaces. Genetic algorithms are known for their
capability to solve such search problems efficiently47.
Appendix C describes genetic algorithms in more details.

In our investigation of the network distance met-
ric, we considered three base metric types: Weighted
Euclidean distance (Equation 2), weighted Manhattan
distance (Equation 3), and weighted Canberra distance
(Equation 4). In these equations, p and q show two
feature vectors that represent two compared networks,
pi is the ith extracted feature from network p, and wi is
the corresponding weight of that feature in the distance
function. Using genetic algorithms, we searched the
weight parameters for the best distance function. A
chromosome is represented by a vector of real-valued
weights corresponding to each of the considered network
features. The feature weights evolve in the process of
natural selection and the best weights are produced.
The fitness of a distance metric can be defined based on
its ability to classify instances. In our implementation,
the distance function is employed in k-nearest-neighbour

(KNN) algorithm and the precision of the KNN classifier
is utilized as the fitness function (we will explain the
KNN algorithm in detail in Section IVC). If the weight
of a feature is set to zero by the genetic algorithm, that
feature is actually excluded from the set of effective
features and does not contribute in the final distance
metric. Hence, the genetic algorithm performs both the
feature selection and the feature weighting (distance
metric learning) tasks.

We divide the similarity evidences into disjoint sets
of training and test data. The training data are used
for learning the distance metric, and the test data are
used for the evaluation of the learned metric. We also
repartitioned the instances iteratively in order to follow
the cross-validation technique and avoid overfitting. The
next section shows a proof of concept for the proposed
method, based on different network datasets and various
similarity evidences. Our best finding for the distance
metric, called NetDistance, is based on the weighted
Manhattan distance (Equation 3) with nine selected fea-
tures.

Dweighted−euclidean(p, q) =

√√√√ n∑
i=1

(wiqi − wipi)2 (2)

Dweighted−manhattan(p, q) =
n∑

i=1

|wipi − wiqi| (3)

Dweighted−canberra(p, q) =

n∑
i=1

wi
|pi − qi|
|pi|+ |qi|

(4)

IV. EVALUATIONS

A. Dataset

We prepared three network datasets, along with sim-
ilarity evidences among the networks of each dataset,
which are described in the following. These datasets are
utilized for training and testing the proposed method.
The datasets are available upon request.

Artificial Networks: In this dataset, 6,000 artificial
networks are generated using six generative mod-
els. The considered generative models are Barabási-
Albert model14, Erdős-Rényi61, Forest Fire15, Kronecker
model8, random power-law62, and Small-world (Watts-
Strogatz) model13. The selected generative models are
some of the important and widely used network genera-
tion methods which cover a wide range of network struc-
tures. For each generative model, 1000 networks are gen-
erated using different parameters, i.e., no two networks
are generated using the same parameters. The number of
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nodes in a generated network ranges from 1,000 to 5,000
nodes, with the average of 2,916 nodes and 12,838 edges
per network. In this dataset, the generative models are
the evidences of the similarity, i.e., those networks that
are generated by the same model are considered to be
structurally similar. More details about this dataset are
presented in Appendix A.

Real-world Networks: A dataset of 32 real-world net-
works are collected from six different network classes:
Citation Networks, Collaboration Networks, Communi-
cation Networks, Friendship Networks, Web-graph Net-
works, and P2P Networks. The dataset shows a diverse
range of network sizes, from small networks (e.g., CA-
GrQc with about 5,000 nodes and 14,000 edges) to extra-
large networks (e.g., CitCiteSeerX with about one million
nodes and 12 million edges). In this dataset, the category
of the networks is a sign of their similarity. The networks
of this dataset are described in Appendix B.

Temporal Networks: We considered two networks as
time series, and we extracted temporal snapshots of
the two networks: Cit CiteSeerX, which is a citation
network extracted from CiteSeerX digital library63 and
Collab CiteSeerX which is a collaboration network (co-
authorship) obtained from the same service. For each of
the two temporal networks, we extracted 11 snapshots of
the network from 1990 to 2010 biannually (1990, 1992, ...
, 2010). Although the structure of the networks evolves
over time, if there are no considerable changes in the be-
haviour of the network entities in different timestamps,
we can assume that a snapshot of the network is similar
to its near-in-the-time network snapshots48,49. As a re-
sult, it is reasonable to assume that two snapshots of the
same temporal network are more similar if they are close
in the time. For example, “Cit CiteSeerX 2010” (the ci-
tation network of the papers published before 2010) is
probably more similar to “Cit CiteSeerX 2008”, than to
“Cit CiteSeerX 1994”.

B. NetDistance Function

We followed the cross-validation technique and iter-
atively divided the “artificial networks” dataset into a
training set with 1,000 networks and a test set with 5,000
networks. In each iteration, we fed the training data to
the proposed learning method. The artificial test data
(5,000 networks), along with the whole real networks
dataset and the two temporal networks datasets were
kept as the test-data for the evaluations. In the rest
of this paper, when we refer to the artificial networks
dataset in the evaluations, we mean the test data of
the 5,000 artificial networks. We found that the best
network distance metric, called NetDistance, is based
on the weighted Manhattan distance (Equation 3). The
proposed genetic algorithm is performed on the three
weighted metrics, and the resulting weighted Manhattan
distance outperformed the weighted Canberra distance

TABLE II: The learned weights of the selected features
in NetDistance, which is a weighted Manhattan

distance function.

Selected Feature Weight of the feature

Average Clustering Coefficient 0.953

Transitivity 0.835

Assortativity 0.902

Modularity 0.803

DDQC2 0.776

DDQC3 0.439

DDQC5 0.925

DDQC7 0.890

DDQC8 0.504

and weighted Euclidean distance metrics. The selected
features and corresponding weights in NetDistance are
described in Table II. The remaining network features
are excluded by the genetic algorithm, since their
corresponding weight in the distance function were
assigned to zero. The employed genetic algorithm which
resulted in the final NetDistance function is described in
Appendix C.

C. Effectiveness of Machine Learning for Creating the
Network Distance Metric

Existing network similarity measures utilize näıve
comparison schemes and do not consider the role of
machine learning for specifying the weight of different
network features. In order to evaluate the effectiveness
of machine learning algorithms in development of the
network distance metric, we first compare the näıve met-
rics with the learning-based metrics. In this experiment,
a network is represented by a feature vector containing
the network features described in Section III B, and then
based on these feature vectors, four different network dis-
tances are evaluated. Näıve-Euclidean is the Euclidean
distance of the feature vectors, Näıve-Manhattan uses
the Manhattan distance as the distance function, LMNN
is based on learning a distance function using the LMNN
learning method46, and NetDistance is our proposed
method which uses the described genetic algorithm for
learning the feature weights in the weighted Manhattan
distance function. The details of the utilized LMNN
algorithm46 is following: The maximum iterations of
the LMNN algorithm is set equal to 5000. Although it
is possible to use a simplified version of LMNN method
in order to learn a diagonal M matrix, we applied the
original LMNN algorithm to learn a full M matrix (see
Equation 1). LMNN may utilize auxiliary information,
beyond the instance labels, as the target neighbors of
each instance. In our experiments, in the absence of
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prior knowledge, LMNN method assumes that the target
neighbors are computed as the k nearest neighbors with
the same class label determined by Euclidean distance46.
We have utilized the public implementation of LMNN,
published by its authors, which uses k = 3 by default,
but the results were not sensitive to this setting in our
experiments.

The four described distance functions are employed
in the KNN classification algorithm46. Measuring KNN
accuracy is a common approach for evaluation of the
distance metrics. KNN is a classification method which
categorizes an unlabeled example by the majority label
of its k-nearest neighbors in the training set. The accu-
racy of KNN is dependent on the way that distances are
computed between the examples. Hence, better distance
metrics result in better classification KNN accuracy.
The resulting KNN classifiers are used for classifying the
real networks dataset and the artificial networks dataset
(the 5,000 artificial networks of the test set). The labels
of these test-case networks are available and thus we
can compute the precision of the KNN classifier, which
actually indicates the precision of the employed distance
metric. As Equation 5 shows, in a dataset of labeled
instances, the KNN-accuracy of a distance metric d is
the probability that the predicted class of an instance
is equal to its actual class, when the distance metric
d is used in the KNN classifier. Figure 2 and Figure
3 show the average precision of the KNN classifier, for
K = 1..7, based on the four described distance functions.
As the figures show, in both the artificial and real
networks datasets, the learning-based distance metrics
(LMNN-based metric and NetDistance) outperform the
näıve metrics (Euclidean and Manhattan). This exper-
iment shows that the distance metric learning methods
improve the precision of the distance functions in this
application. This experiment also shows that using
our proposed genetic algorithm method for learning
the feature weights, outperforms the LMNN method in
this application. Existing network similarity metrics do
not utilize machine learning algorithms for developing
the distance metric and assign equal weights to all the
features. Figure 2 and 3 confirm our hypothesis that
machine learning algorithms are effective in improving
the precision of network structural comparison.

KNN -Accuracy(d) = P (KNN -Classifyd(x) = class(x)), x ∈ dataset
(5)

D. Baseline Methods

We will comprehensively compare NetDistance with
three baseline methods: NetSimile2, KronFit-based8

distance, and RGF-distance1. These metrics represent

FIG. 2: The average accuracy of the KNN classifier
(for K = 1..7) based on different distance metrics in

artificial networks dataset.

FIG. 3: The average accuracy of the KNN classifier
(for K = 1..7) based on different distance metrics in the

real networks dataset.

different comparison approaches: NetSimile considers
some local network features, KronFit is based on
extracting a small graph-signature, and RGF-distance
considers graphlet counts.

NetSimile is based on the Canberra distance of 35 local
features (five aggregate values for seven local features).
NetSimile already outperforms FSM (frequent subgraph
mining) and EIG (eigenvalues extraction) methods2. In
KronFit-based distance, the similarity of two networks is
measured via the similarity of the fitted 2 × 2 initiator
matrix in KronFit algorithm. KronFit is the algorithm
for fitting the Kronecker graph generation model to large
real networks8. Leskovec et al. show that with KronFit,
we can find a 2× 2 initiator matrix (K1) that well mim-
ics the properties of the target network, and using this
matrix of four parameters we can accurately model sev-
eral aspects of global network structure. Leskovec et al.
propose to compare the structure of the networks (even
of different sizes) by the means of the differences in es-
timated parameters of the initiator matrix, but they do
not explicitly specify a network distance function. We
employed the fitted initiator matrix as the feature vector
for the networks and realized that a Euclidean distance
function based on this feature vector outperforms Can-
berra and Manhattan distance metrics. We refer to the
Euclidean distance of the four features in the 2× 2 fitted
initiator matrix of the KronFit algorithm by “KronFit-
distance”. Finally, RGF-distance is a network distance
metric proposed by Nataša et al.1, which is based on
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counting the relative graphlet counts of the networks.
Nataša et al. also proposed another network similar-
ity metric based on the graphlet counts, called GDD-
agreement7, but in our experiments RGF-distance out-
performs GDD-agreement considerably. Janssen et al.,4

also propose a method based on the graphlet counts, but
the considered features of this method are actually de-
pendent on the network size. The graphlet counting al-
gorithms are also computationally complex, and thus it
is not practical to execute such algorithms for most of
the networks in our real and temporal networks datasets.
This problem is also mentioned in the existing works64.
Approximate graphlet counting algorithms may improve
the efficiency of the algorithm, but with the penalty of a
reduction in the accuracy64. In addition, the evaluations
in the artificial networks dataset shows that NetDistance
and other baseline methods outperform RGF-distance.
According to this result, and since running RGF-distance
is impractical for large networks, we exclude the evalu-
ation of RGF-distance for large graphs of temporal and
real networks datasets.

E. Experiments

In order to evaluate the precision of network distance
metrics, we first employ them in KNN algorithm, and
then we assess the precision of the resulting KNN
classifier. This is the same approach described in Section
IVC and Equation 5. KNN evaluation is a common
approach for testing distance metric methods when the
category of records is known in a labeled dataset . In
our experiments, the instances of the artificial networks
dataset are labeled by the generative models, and the
category-label is also available in the real networks
dataset. Figure 4 shows the KNN precision based on
different distance metrics for various K values in the
artificial networks dataset, in which NetDistance out-
performs all the baseline methods. Figure 5 illustrates
the result of the same experiment for the real networks
dataset. NetDistance surpasses the baseline methods in
this evaluation.

In the next experiment, we consider the Precision-at-
K (P@K) evaluation criterion. P@K indicates the per-
centage of classmates in the K nearest neighbors. As
Equation 6 shows, P@K is the expected (average) num-
ber of classmates in the K nearest neighbors of an in-
stance, divided by k. This measure is dependent on the
distance metric d which is utilized for computing the dis-
tances among the dataset instances. Figure 6 and Figure
7 show the P@K for the networks of the artificial and
real networks dataset respectively, according to different
distance metrics. As both the figures show, NetDistance
outperforms all the baseline methods with respect to the
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FIG. 4: The accuracy of the KNN classifier for different
K values in artificial networks, based on different

distance metrics.
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K values in real networks, based on different distance

metrics.

P@K measure.

P@K(d) =
E(c)

k
; c = count(m),m ∈ KNNd(x) , class(m) = class(x), x ∈ dataset

(6)

In the next experiment, we study the inter-class and
intra-class distances for different distance metrics. An
appropriate distance metric is supposed to return large
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FIG. 6: P@K for different K values in artificial
networks, based on different distance metrics.
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FIG. 7: P@K for different K values in real networks,
based on different distance metrics.

FIG. 8: The ratio between the average inter-class
distances and average intra-class distances, in artificial

networks dataset.

distances for instances with different classes (large inter-
class distance) and relatively smaller distances for class-
mate instances (small intra-class distance). In order to
evaluate this property, we first measure the distance be-
tween all the pairs of networks in a dataset, and then we
compute the ratio between the average inter-class dis-
tances and the average intra-class distances. Figure 8
and Figure 9 show this ratio for instances of the artificial
and real networks datasets. As the figures show, NetDis-
tance shows the largest inter-class to intra-class distance
ratio in both the datasets.
Dunn Index65 is a more strict measure for comparing

the inter/intra class distances. For any partition setting
U , in which the set of instances are clustered or classified
into c groups (U ↔ X = X1 ∪X2 ∪ ... ∪Xc), Dunn de-
fined the separation index of U as described in Equation
765. Dunn index investigates the ratio between the aver-
age distance of the two nearest classes (Equation 8) and
the average distance between the members of the most
extended class (Equation 9). The Equation 8 and Equa-
tion 9 are actually defined in a generalized Dunn index66.
Bezdek et al.66 showed that the generalized Dunn index
is more effective than the original Dunn index65 form.
Figure 10 and Figure 11 illustrate the Dunn index for

FIG. 9: The ratio between the average inter-class
distances and average intra-class distances, in real

networks dataset.

FIG. 10: Dunn index for different distance metrics in
artificial networks dataset.

different network distance metrics in the artificial and
real network datasets respectively. According to these
figures, NetDistance shows the best (the largest) Dunn
index in comparison with other baseline methods.

DI(U) = min︸︷︷︸
1≤i≤c

{ min︸︷︷︸
1≤j≤c

j ̸=i

{ δ(Xi, Xj)

max︸︷︷︸
1≤k≤c

{∆(Xk)}
}} (7)

δ(S, T ) = δavg(S, T ) =
1

|S||T |
∑

x∈S,y∈T

d(x, y) (8)

∆(S) =
1

|S| · (|S| − 1)

∑
x,y∈S,x̸=y

d(x, y) (9)

The previous experiments investigate the suitability
of various network similarity measures according to
the network class labels. In the next experiment, we
analyze the correlation between the structural net-
work distances and temporal distances for different
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FIG. 11: Dunn index for different distance metrics in
real networks dataset.

distance metrics in the two temporal networks datasets
(Cit CiteSeerX and Collab CiteSeerX). For an evolving
network which experiences no abrupt structural changes,
it is reasonable to assume that the temporal proximity
of network snapshots is an evidence of their topological
similarity48,49. In order to evaluate the distance metrics
for capturing the topological similarity of proximate
temporal networks in a temporal network dataset, we
extract the distance between all the pairs of network
snapshots. Then, we compute the Pearson correlation
between the topological distance and the temporal
distance of the networks. The temporal distance of
two network snapshots is defined as their time interval
gap. For instance, the temporal distance between
Cit CiteSeerX 2010 and Cit CiteSeerX 2008 is equal
to two (years). Figure 12 shows the correlation of
different distance metrics to the temporal distances in
the Cit CiteSeerX temporal networks dataset. Figure
13 shows the same experiment for the Collab CiteSeerX
dataset. As the figures show, NetDistance exhibits the
greatest correlation to the temporal distances.

We can also analyze the time evolution of NetDistance
and the baseline methods in the two temporal network
datasets. As a network evolves over time, the network
structure stabilizes, tending to the final structure of the
given network. Therefore, the network snapshots become
structurally more similar to their preceding or succeeding
counterparts over time. An appropriate network distance
function is supposed to reflect such an increasing similar-
ity in network snapshots. Figure 14 and Figure 15 show
the distance of temporal networks to their adjacent snap-
shots, in citation and collaboration networks datasets re-
spectively. Each distance value is also divided by the
maximum distance among the snapshots based on the
corresponding distance metric. As the figures show, Net-
Distance results in the expected decreasing distance over
time, better and more stable than the other two base-
lines. In this experiment, the distance of each snapshot
is computed to its preceding and succeeding snapshots,
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FIG. 12: The correlation between the network distance
and the temporal distance for different distance metrics

in the citations temporal networks dataset.

FIG. 13: The correlation between the network distance
and the temporal distance for different distance metrics

in the collaborations temporal networks dataset.

and the average of the two distances are reported. The
exceptions are the first (1990) and the last (2010) snap-
shots, each of which are compared with only one adjacent
counterpart.

As the evaluations show, the proposed method is size-
independent since it works well in various datasets, each
of which consists of networks with different sizes. This is
mainly because the selected features in the final NetDis-
tance function (clustering coefficient, assortativity, etc.)
are not dependent on the network size. This is while
some existing network analysis methods, e.g.,4,6, are size-
dependent, which means that they are unable to compare
networks with different sizes (size-dependent methods are
not included in the baselines). One may argue that the
accuracy of NetDistance may increase if it compares net-
works with similar sizes. But we have experienced such
an improvement in none of the described evaluations. For
example, Figure 16 shows that if only similar-size net-
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FIG. 15: The distance of a collaboration network to its
adjacent snapshots over time, divided by the maximum

distance among the snapshots.

works are considered in KNN classification, the precision
of NetDistance will not improve. In this experiment, we
consider two networks to be similar in size if their num-
ber of nodes differ less than a threshold γ. According to
the range of the network sizes in the artificial networks
dataset (1000 to 5000 nodes per network), the threshold
is heuristically set as γ = 500 in our experiments.

It is worth overviewing some implementation notes
about the empirical experiments. In order to calculate
the network features, we used the SNAP tool67 (ver-
sion 2.2), igraph library68 (version 0.7.1), and the a fast
community detection69 for estimating the network mod-
ularity (version MSCD 0.11b4). We utilized the public
implementation of the KronFit algorithm (available in
SNAP library67) and the LMNN method70 (version 2.5
as a MATLAB program). We also used the SNAP tool67

as the implementation of the generative models. The
GDD-agreement and RGF-distance measures are com-
puted by the means of GraphCrunch2 tool71. We imple-
mented NetSimile2, DDQC56, the proposed genetic algo-
rithm, NetDistance, and the evaluation scenarios in Java
programming language.
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FIG. 16: The accuracy of the KNN classifier for
different K values in artificial networks, in two
configuration. In the first case, a network is only
compared with those with similar sizes, and in the

second configuration, no restriction is enforced on the
size of the compared networks. NetDistance shows a
similar accuracy in the two configurations, and thus is

regarded size-independent.

V. TIME AND SPACE COMPLEXITY

In this section, we evaluate the proposed distance
metric and the baselines with respect to their time and
space complexity. In order to compute the distance
between two given networks, the distance metric should
first extract a feature vector from the networks (feature
extraction phase), and then compute the distance be-
tween the feature vectors (distance computation phase).
All the considered distance metrics utilize a fixed-size
feature vector. Therefore, the distance computation
has a constant time and space complexity (O(1)). As
a result the complexity of the metrics are equal to the
complexity of their feature extraction phase. Table III
shows the complexity of extracting utilized features
in NetDistance. In this table, V shows the number
of nodes, E is the number of edges, and d shows the
maximum node degree in the network. Since complex
networks are usually sparse graphs, we can assume
that O(E) = O(V ) and d < V 8,69,72. Therefore, the
overall complexity of NetDistance, which is equal to
the maximum complexity of its feature extraction com-
ponents, is O(E) for both time and space complexity.
Table IV shows the number of extracted features along
with the complexity of baseline methods. As the figure
shows, NetDistance and KronFit show the least overall
complexity and the smallest needed feature vector. This
is whilst NetDistance outperforms KronFit with respect
to accuracy in any experienced evaluation.

The complexity of the “distance learning” is not
critical in the analysis of the proposed method since
the learning phase is performed only once, and then
the learned methods are applied for each input network
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TABLE III: Time and space complexity of the
NetDistance feature extraction components.

Time Complexity Space Complexity

Clustering Coefficient O(E) O(V )

Transitivity O(E) O(V )

Assortativity O(E) O(E)

Modularity O(V ) O(E)

Degree Distribution (DDQC) O(E) O(d)

Total (Maximum) O(E) O(E)

TABLE IV: Time and space complexity of different
methods. NetDistance and KronFit show the least

overall complexity.

Number of Features Time Complexity Space Complexity

NetDistance 9 O(E) O(E)

RGF 29 O(V d4) O(V )

KronFit 4 O(E) O(E)

NetSimile 35 O(V log V ) O(V )

data. Nevertheless, it is worth noting the efficiency of
the learning phase in the proposed method: The distance
learning is based on running a genetic algorithm in less
than 200 iterations on a population of 600 individuals,
which converges in less than an hour in a moderate
workstation with a single processor and 4 gigabytes
of RAM. It is also worth noting that the learning
algorithms are applied on rather small networks with
less than 5,000 nodes, and thus the feature extraction
and the computations in the learning phase are efficient.

VI. CONCLUSION

In this paper, we investigated the development of a
network distance metric for comparing the topologies
of the complex networks. Such a distance metric plays
an important role in similarity-based network analysis
applications including network classification, anomaly
detection in network time series, model selection, evalu-
ation of generative models, and evaluation of sampling
algorithms. The proposed distance metric, rather than
to check the node/edge correspondence of similar-size
networks, is capable of comparing the overall structural
properties of the networks, even for networks with
different sizes. Although it is difficult to define an accu-
rate meaning for the topological similarity of complex
networks, there exist various evidences (e.g., network la-
bels) about similarity/dissimilarity of complex networks.
Instead of defining a heuristic similarity metric manually,
which is a time-consuming and error-prone approach,
we utilized supervised machine learning methods to
learn a distance metric based on the existing similarity
evidences. The supervised machine learning algorithm
automated feature selection and feature weighting pro-

cesses, and it resulted in a more accurate distance metric.

In this paper, a genetic algorithm is designed for
feature selection and feature weighting (distance metric
learning) in the final proposed distance metric, which
is called NetDistance. According to the comprehensive
experiments, NetDistance outperforms the baseline
methods in all of the evaluation criteria, for the three
prepared datasets. As a result, NetDistance is re-
garded an appropriate distance metric for comparing
the topological structure of complex networks. We
have also examined an alternative machine learning
method (LMNN) for feature selection and weighting,
which results in a metric that is less accurate than
NetDistance, but performs better than the näıve (not
intelligent) methods. Therefore, this paper shows the
effectiveness of machine learning in development of a
distance metric for topological comparison of complex
networks. The proposed methodology for learning a
network distance metric can be applied in other domains,
perhaps with alternative machine learning methods,
different network features, other network datasets and
alternative similarity evidences.

The evaluation of the noise tolerance for the network
distance metrics is a subject of future work. We also
intend to apply NetDistance in different applications
including network generation, anomaly detection, and
model selection. Furthermore, we will investigate net-
work simulations to test the correlation between the dy-
namics of a network and its structural properties, in pro-
cesses such as decentralized search59 and the diffusion of
innovation28.
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Appendix A: Artificial Networks Dataset

The utilized network generation models and the syn-
thesized graphs of the artificial networks dataset are de-
scribed in the following:

Barabási-Albert model (BA)14. In this model, a
new node is randomly connected to k existing nodes with
a probability that is proportional to the degree of the
available nodes. In our artificial networks dataset, k is
randomly selected as an integer number from the range
1 ⩽ k ⩽ 10.
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Erdős-Rényi (ER). This model generates com-
pletely random graphs with a specified density61. The
density of the ER networks in our artificial networks
dataset is randomly selected from the range 0.002 ⩽
density ⩽ 0.005.
Forest Fire (FF). This model supports shrinking di-

ameter and densification properties, along with heavy-
tailed in-degrees and community structure15. This model
is configured by two main parameters: Forward burning
probability (p) and backward burning probability (pb).
For generating artificial networks dataset, we fixed pb =
0.32 and selected p randomly from the range 0 ⩽ p ⩽ 0.3.
Kronecker graphs (KG). This model generates re-

alistic synthetic networks by applying a matrix operation
(the kronecker product) on a small initiator matrix8. The
KG networks of the artificial networks dataset are gen-
erated using a 2× 2 initiator matrix. The four elements
of the initiator matrix are randomly selected from the
ranges: 0.7 ⩽ P1,1 ⩽ 0.9, 0.5 ⩽ P1,2 ⩽ 0.7, 0.4 ⩽ P2,1 ⩽
0.6, 0.2 ⩽ P2,2 ⩽ 0.4.
Random power-law (RP). This model follows a

variation of ER model and generates synthetic networks
with power law degree distribution62. This model is con-
figured by the power-law degree exponent (γ). In our pa-
rameter setting for generating artificial networks dataset,
γ is randomly selected from the range 2.5 < γ < 3.
Watts-Strogatz model (WS). The classical Watts-

Strogatz small-world model synthesizes networks with
small path lengths and high clustering13. It starts with
a regular lattice, in which each node is connected to k
neighbors, and then randomly rewires some edges of the
network with rewiring probability β. In WS networks of
the artificial networks dataset, β is fixed as β = 0.5, and
k is randomly selected from the integer numbers between
2 and 10 (2 ⩽ k ⩽ 10).

Appendix B: Real Networks Dataset

In this section, the real networks dataset is briefly de-
scribed.
Citation Networks. In this category, the edges

in a network show the citations between the pa-
pers or patents. The members of this class in the
dataset are: Cit-HepPh73, Cit-HepTh73, dblp cite74, and
CitCiteSeerX63.
Collaboration Networks. This class shows the

graph of collaborations and co-authorships. The mem-
bers of this class are: CA-AstroPh73, CA-CondMat73,
CA-HepTh73, CiteSeerX Collaboration63, com-
dblp.ungraph73, dblp collab74, refined dblp2008082475,
IMDB-USA-Commedy-0976, CA-GrQc73, and CA-
HepPh73.
Communication Networks. Some people who had

electronically communicated with each other will cre-
ate a communication network. In this category, the
dataset consists of the following networks: Email77,
Email-Enron73, Email-EuAll78, and WikiTalk73.

Friendship Networks Interactions of some social en-
tities results in a friendship network. The networks
in this category are: Facebook-links79, Slashdot081173,
Slashdot090273, soc-Epinions173, Twitter-Richmond-
FF76, and youtube-d-growth79.

Web-graph Networks. These networks show the
graph of some web pages in which the edges correspond
the hyperlinks. The members of this category are: Web-
BerkStan73, web-Google73, web-NotreDame73, and web-
Stanford73.

P2P Networks This category represents peer-to-
peer networks. In this class, the following networks
are prepared: p2p-Gnutella0473, p2p-Gnutella0573, p2p-
Gnutella0673, and p2p-Gnutella0873.

Appendix C: Genetic Algorithms

Genetic algorithm (GA) is inspired by natural evolu-
tion, and is based on crossover, mutation, and natural
selection operations. In this algorithm, a solution is
represented by a chromosome which is an array of
genes. A population of many random chromosomes
start to evolve using crossover and mutation operations.
Consequently, the best members of each generation
survive based on a fitness function which defines the
suitability of a chromosome. Genetic algorithms (GA)
are frequently utilized to find solutions to optimization
and search problems47. Figure 17 shows a schematic
view of the GA concepts.

The employed genetic algorithm which resulted in the
final NetDistance function is configured as follows: A
population of 600 random individuals evolve in the pro-
cess of the genetic algorithm. The crossover operation
selects each feature weight from the corresponding fea-
ture weights in one of the parent chromosomes randomly,
favoring the better (more fitted) parent with probabil-
ity 0.68. The mutation is performed by assigning a
random value to a randomly selected feature weight,
with the mutation rate of 0.15. We set a maximum of
200 iterations for the genetic algorithm, but the algo-
rithm almost always converged with less than 50 genera-
tions, since no considerable improvements achieved with
more iterations. The consequent execution of the algo-
rithm resulted in no more considerable changes in the
reported weights. It is worth noting that the learned
distance metric (NetDistance) is not sensitive to utilized
GA parameters. For example, in our implementation of
GA, the mutation operator is based on “Mutation Rate”
and the crossover operator is based on “Fitted Parent
Preference” parameter (the genes from the more fitted
parent is preferred with this probability). Our exper-
iments showed that 0.15 < MutationRate < 0.4 and
0.6 < FittedParentPreference < 0.75 provide stable
results. We have chosen MutationRate = 0.15 and
FittedParentPreference = 0.68 based on our experi-
ments with trial and error. Small variations on the se-
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FIG. 17: Genetic algorithm concepts and operators.

lected parameters results in slight changes in the accu-
racy of the learned network distance metric.
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structure,” Metodološki zvezki 3, 185–216 (2006).

40I. Bordino, D. Donato, A. Gionis, and S. Leonardi, “Mining



15

large networks with subgraph counting,” in Data Mining, 2008.
ICDM’08. Eighth IEEE International Conference on (IEEE,
2008) pp. 737–742.

41R. Kondor, N. Shervashidze, and K. M. Borgwardt, “The
graphlet spectrum,” in Proceedings of the 26th Annual Interna-
tional Conference on Machine Learning (ACM, 2009) pp. 529–
536.

42N. Shervashidze, T. Petri, K. Mehlhorn, K. M. Borgwardt, and
S. Viswanathan, “Efficient graphlet kernels for large graph com-
parison,” in International Conference on Artificial Intelligence
and Statistics (2009) pp. 488–495.

43P. Mahadevan, D. Krioukov, K. Fall, and A. Vahdat, “System-
atic topology analysis and generation using degree correlations,”
ACM SIGCOMM Computer Communication Review 36, 135–
146 (2006).

44L. Yang and R. Jin, “Distance metric learning: A comprehensive
survey,” Michigan State Universiy , 1–51 (2006).

45E. P. Xing, M. I. Jordan, S. Russell, and A. Ng, “Distance metric
learning with application to clustering with side-information,” in
Advances in neural information processing systems (2002) pp.
505–512.

46K. Q. Weinberger and L. K. Saul, “Distance metric learning for
large margin nearest neighbor classification,” The Journal of Ma-
chine Learning Research 10, 207–244 (2009).

47D. E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning, 1st ed. (Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1989).
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