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Abstract This paper presents a mathematical model

using Stochastic Activity Networks (SANs) to model

a grid resource, and compute the throughput of a re-

source in servicing grid tasks wherein the failure-repair

behavior of the processors inside the resource is taken

into account. The proposed SAN models the structural

behavior of a grid resource and evaluates the combined

performance and availability measure of the resource.

Afterwards, the curve fitting technique is used to find a

suitable function fitted to the throughput of a resource

for grid tasks. Having this function and the size of each

grid job based on its tasks, an algorithm is proposed

to compute the makespan of each available resource to

a sequence of grid jobs assigned to the resource. Us-

ing the makespans of all grid resources computed in

the previous step, the total makespan of the entire grid

environment can be computed. Hence, a scheduling al-

gorithm based on the Simulated Annealing (SA) meta-

heuristic is presented to find a good enough scheduling

of jobs on resources with the aim of minimizing the total

makespan of the entire grid. Numerical results obtained
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by applying the proposed SAN model, the algorithm

presented to find the makespan of a single resource,

and the proposed SA-based scheduling algorithm to a

desktop grid show the applicability of the proposed ap-

proach in real grid environments.

Keywords Performance · availability · grid com-

puting · stochastic activity network · curve fitting ·
simulated annealing.

1 Introduction

In pure performance evaluation, performance measures

are assessed without any consideration of the fact that

practically other dependability measures can affect the

overall performance of the system. Especially, in highly
distributed systems in which resources are most prone

to fail, dependability of the components should be taken

into consideration when the overall performance of the

system is evaluated. Grid computing [14,23] is one of

the highly distributed systems which collects various

resources from different administrative domains to use

their processing capabilities in solving computational-

and data-intensive problems in science and industry. In

grids, resources are connected to a Grid Manager (GM)

which receives grid jobs from grid users and dispatches

them among the resources. The manager is responsible

for sustaining the overall grid activities of scheduling

and rescheduling [3,25,35]. Depending on the structure

of the grid, GM can be considered as a single resource or

even a distributed system composed of some resources

[12,15]. In grid computing environments, performance

evaluation mainly focuses on completion time of the

jobs submitted by grid and/or local users. In this re-

spect, several related measures such as the total com-

pletion time of all jobs, expected waiting time of jobs,
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mean number of waiting grid jobs, expected sojourn

time of jobs and so forth can be considered as perfor-

mance measures [3,12,31,32,39].

In order to deliver jobs to the grid environment, grid

resources should be available to be able to interact with

users to get the jobs and service them. The availabil-

ity of a grid resource can be affected by failure of the

processor(s) inside the resource. When a resource fails,

the GM has to use other available resources in the en-

vironment to schedule jobs on them [3,25]. Therefore,

the availability of resources highly influences the total

time on which the grid can service a sequence of jobs.

This time which is called the total makespan of the grid

environment is a measure to assess the performance of

the entire grid. The total makespan of a grid computing

environment is defined as the largest makespans of grid

resources. The makespan of a resource is the time slot

between the start and completion of a sequence of jobs

assigned to that resource [8,11,12,18,22,30,33,36,37,

39,40]. Actually, grid is considered as a high through-

put system, and minimizing the total makespan of the

grid increases the throughput of the environment ac-

cordingly. In order to minimize the total makespan of

the grid, assignment of jobs to grid resources should be

done with more consideration. Hence, applying a suit-

able job scheduling algorithm to appropriately dispatch

jobs to grid resources can help developers to increase

the throughput of the environment.

Since decision about the assignment of jobs to re-

sources and finding the best match between jobs and

resources is an NP-complete problem [2,8,11,12,18,22,

24,30,33,36,39,40,41], we use Simulated Annealing (SA)

meta-heuristic [2,8,19,24,33,40,41] to propose a job sch-
eduling algorithm to solve the problem. SA is a gener-

alization of the Monte Carlo method for statistically

finding the global optimum for multivariate functions.

The concept originates from the way in which crys-

talline structures are brought to more ordered states

by an annealing process of repeated heating and slowly

cooling the structures. For more information on SA in

job scheduling context please see [2,8,24,33,40,41]. Our

proposed SA-based scheduling algorithm tries to min-

imize the total makespan of the grid by appropriately

assigning grid jobs to grid resources. The most impor-

tant part of the proposed algorithm is using a more

practical algorithm to find the makespan of each grid

resource in which the makespan of a resource is cal-

culated using a mathematical solution which estimates

the throughput of the resource for grid jobs consisting

of many grid tasks in each time instant. To do this,

we first model a grid resource using Stochastic Activity

Networks (SANs) [27,28,29], and then, find the func-

tion fitted to the results obtained by analyzing the SAN

model. The proposed SAN models the arrival of grid

and local tasks to a resource, and the servicing process

of them in the resource. Moreover, the failure and repair

behavior of the processors inside the resource are mod-

eled using the proposed SAN. After modeling a grid

resource by a SAN, some important measures can be

assessed using the transient and steady state analysis

of the proposed SAN. Therefore, the performance of a

single grid resource can be evaluated wherein the avail-

ability of its processors is taken into account.

The main contribution of this paper can be sum-

marized into three categories. First, the paper uses the

SAN formalism to formally model a single grid resource

and compute the combined performance and availabil-

ity measure of the resource. The proposed model not

only considers the simultaneous execution of grid and

local tasks, but also it applies higher execution prior-

ity to local tasks against grid ones. Since in grid en-

vironments, local tasks are generally preferred to be

serviced before grid tasks [14], we model this real as-

sumption using specific characteristics of SANs which

are explained in the following sections with details. In

addition to modeling a grid resource by SAN formal-

ism, we define some interesting output measures on the

proposed SAN to be able to find the combined per-

formance and availability measure. It turns out that

each time we construct the SAN model, it is required

to know the status of available resources to be able to

compute the performability measure of a grid resource.

Since this computation does not take more time, it can

be done immediately in the GM after resource discovery

phase. Second, the paper proposes an algorithm to find

the makespan of a single grid resource for a sequence of

grid jobs. After analyzing the SAN model and finding

the throughput of a single grid resource for grid tasks,

we use the curve fitting technique to find the most fit-

ted function to the results obtained from the numeri-

cal analysis of the SAN model. The function fitted to

the throughput of a grid resource is used to find the

makespan of the resource for a possible scheduling of

jobs on the resource. Third, we use the proposed SAN

model and the algorithm proposed to find the makespan

of a single grid resource to present a scheduling algo-

rithm to dispatch grid jobs to grid resources with the

aim of minimizing the total makespan of the grid envi-

ronment. The proposed job scheduling algorithm uses

SA meta-heuristic to find the most suitable schedule of

grid jobs on grid resources.

The remaining parts of the paper are organized as

follows. Section 2 introduces some related work done in

this research area. Section 3 provides a short overview

on SANs. Section 4 presents the proposed approach

which is composed of four subsections; a SAN model
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for a single grid resource, methods for computing the

measures of interest, an algorithm to find the makespan

of a single grid resource, and a SA-based job scheduling

algorithm to minimize the total makespan of the grid

environment. In Section 5, a simple example on a hy-

pothesis grid environment is presented to show how the

proposed approach can be used. Moreover, a sensitivity

analysis on makespan of a grid resource when the in-

ternal configuration of the resource changes is done in

Section 5. In Section 6, numerical results obtained by

applying the proposed approach to two different grid

environments are reported to show how the proposed

approach can be applied to real systems. Finally, Sec-

tion 7 concludes the paper and presents some guidelines

for future work.

2 Related Work

Since our proposed approach includes two main parts;

mathematically model and scheduling algorithm, we or-

ganize the related work section in two different parts

called performance modeling and task scheduling.

2.1 Performance Modeling

There have been proposed many analytical models to

evaluate the performance and availability of distributed

systems. In the following, some of the related work done

in the field of performance and availability/reliability

evaluation in distributed computing systems are intro-

duced.

Entezari-Maleki et al. [13] have proposed three Sto-

chastic Reward Net (SRN) models to evaluate the per-

formability of a single grid resource, and then, applied

the single models to model and evaluate the whole grid

environment. Since the exact monolithic model of an en-

tire grid shows state space explosion, two approximate

models were proposed in [13] to estimate the performa-

bility of whole grid environment. Entezari-Maleki et al.

[9] have proposed a Markov Reward Model (MRM) to

model and evaluate the performability of a single grid

resource. Although MRM presented in [9] is a mathe-

matical solution which models a grid resource appropri-

ately, it still ignores some details of the resource such

as existing various numbers of processors inside the re-

source and failing the processors servicing grid and lo-

cal tasks which can be seen in real systems. None of the

approaches presented in [9] and [13] discusses about us-

ing the resulting measures in optimizing the system to

reach a better performability.

Longo et al. [26] have proposed an SRN model to

analyze the availability of large scale IaaS cloud. The

model was first presented in its monolithic form in one

level, and then, it was decomposed to overcome large-

ness problem suffered by the monolithic model. The

model presented in [26] can be appropriately used to

analyze the availability of hot, warm and cold pools of

resources in a cloud, and finally, analyze the total avail-

ability of an IaaS cloud. Another model in the same

context has been proposed in [17] by Ghosh et al. In

[17], interacting stochastic sub-models were presented

to evaluate the performance of large scale IaaS clouds

while workload of the cloud, system characteristics and

management policies were taken into account. Entezari-

Maleki et al. [10] have proposed a SAN to model and

evaluate the availability of a grid environment. The

SAN model presented in [10] can assess the availability

of grid management system together with availability

of grid resources. Furthermore, the impact of applying

different task scheduling policies to dispatch grid and

local tasks among the grid resources can be appropri-

ately studied by the SAN model presented in [10]. It

should be mentioned that all models proposed in [10,

17,26] only evaluate the availability of the system pay-

ing no attention to the performance measures.

Parsa et al. [31,32] have proposed Queuing Network

(QN) and Generalized Stochastic Petri Net (GSPN) so-

lutions to model and evaluate the performance of grid

computing systems. The performance measures evalu-

ated in [31] and [32] are the total makespan of the envi-

ronment and the mean number of grid tasks waiting to

receive service from the environment, respectively. Both

QN and GSPN models proposed in [32] only consider

grid tasks submitted by grid users paying no attention

to the local tasks of the system, whereas the models

proposed in [31] consider both grid and local tasks. Dif-

ficulty with all of the models proposed in [31] and [32]

is that the models can only compute pure performance

measures of the grid environment, and they do not han-

dle the situation in which one or more of the resources

fail. Azgomi et al. [3] have presented a Colored Petri

Net (CPN) model to show the workflow of task exe-

cution in grid computing, and compute the reliability

of a grid service. Although the CPN model proposed

in [3] precisely investigates the failure of grid resources

and its effect on the performance of resources, it ignores

considering local tasks and solves the problem when a

single resource is considered in isolation without having

any interaction with others.

2.2 Task Scheduling

Many scheduling algorithms can be found in literature

which dispatch the requests to the servers in distributed

systems. In the following, some of the research papers
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proposing new scheduling schemes in distributed com-

puting systems are introduced.

Garg et al. [16] have proposed an adaptive method

to schedule dependent tasks to grid resources where the

availability of computing nodes and links are consid-

ered to be variable due to the existence of local load.

Kolodziej et al. [22] have defined the problem of inde-

pendent batch scheduling in computational grids as a

three-objective global optimization problem with make-

span, flow-time and energy consumption minimized ac-

cording to different security constraints. The optimiza-

tion problem defined in [22] was solved by genetic based

meta-heuristics. Entezari-Maleki et al. [12] have pro-

posed a probabilistic task scheduling method in grids

to decrease the mean response time of tasks in grid com-

puting environments. The method used in [12] to eval-

uate the mean response time of entire grid for servic-

ing grid tasks is Discrete Time Markov Chain (DTMC)

which models each of the clusters of the grid. How-

ever, the model presented in [12] still ignores the failure-

repair behavior of grid resources, and the performance

is evaluated purely without any consideration about

dependability issues. The same authors have proposed

a genetic based scheduling algorithm to minimize the

makespan of a grid environment, and thereby, maximize

the throughput of entire grid environment [11]. The ge-

netic algorithm proposed in [11] applies a good repre-

sentation of the problem in the form of chromosomes to

help the algorithm to converge to the suitable result in

situations that the numbers of tasks and resources are

very large.

Parsa et al. [30] have proposed a task scheduling al-

gorithm called RASA which uses the advantages of both
Min-Min and Max-Min algorithms and covers their dis-

advantages simultaneously. To achieve this, RASA firstly

estimates the completion time of the tasks on each of

the available resources, and then, applies the Min-Min

and Max-Min algorithms alternatively. Damodaran et

al. [8] have proposed a SA algorithm to minimize the

makespan of a group of processing machines working in

parallel. In the algorithm proposed in [8], each machine

can simultaneously process several jobs as a batch. Ran-

dom instances were used to compare the results of the

proposed SA in [8]. Abdulal et al. [2] have presented

a SA-based scheduling algorithm to find a good solu-

tion for scheduling independent tasks in grid environ-

ments. The measures considered in the SA algorithm

presented in [2] are makespan, time to release, reliabil-

ity and flow-time. Torabzadeh et al. [40] have proposed

a job scheduling algorithm based on SA meta-heuristic.

The aim of the algorithm presented in [40] is minimizing

the weighted sum of makespan and the mean comple-

tion time for n available jobs.

Rathore et al. [34] have provided an extensive survey

of the existing load balancing and job migration tech-

niques in grid environments together with a detailed

classification of the existing techniques based on dif-

ferent parameters such as structures, scheduling strate-

gies, techniques, algorithms, attributes, models, compo-

nents, performance metrics, and challenges. After an-

alyzing the previously proposed methods, a new ap-

proach has been devised in [34] which uses the hier-

archical load balancing technique and fault tolerance

with check-pointing based job migration technique. The

same authors have proposed a novel technique to tackle

hierarchical load balancing in grid environments while

maintaining the resource utilization and response time

for dynamic and decentralized grids [35]. The proposed

method was analyzed based on variable threshold value.

To achieve this, the load was divided into different cat-

egories, such as lightly loaded, under-lightly loaded,

overloaded, and normally loaded. It is worthwhile to

mention that the method proposed in [35] eliminates

the scalability complexity of a site by a dynamic thresh-

old value, while most of the existing load balancing

techniques use a static threshold value which causes

problems in a large-scale grid environment.

Other related methods and algorithms in this re-

search field can be found in the literature. Generally,

each of the methods presented in this area has its own

advantages and disadvantages. There are some prob-

lems with the previously proposed methods in grid con-

text. One of the problems is that only a few of them

consider both local and grid tasks, and simultaneous ex-

ecution of them inside grid resources. Some papers that

consider both types of tasks only compute pure perfor-

mance of the grid environment paying no attention to

the failure-repair behavior of resources. Proposing only

a framework to evaluate the performance and/or de-

pendability of grids disregarding the scheduling prob-

lem of jobs on grid resources is another difficulty in

some previous research papers. Moreover, the schedul-

ing algorithms proposed in this area only optimize a

fitness value which is a simple criterion or combina-

tion of some simple criteria without proposing a general

framework and formal way to compute the fitness value

compatible with the system under study. We try to ad-

dress the problems mentioned above in our proposed

approach in this paper.

3 Overview of SANs

In order to compute the combined performance and

availability of a single grid resource, SANs are used

in this paper. For the sake of brevity, only the basic

concepts of SANs are presented in this section, but for
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more information on formal definition, structure, and

characteristics of SANs please see [4,27,28,29,38].

SANs are stochastic generalization of PNs, gener-

ally defined for the modeling and analysis of distributed

real-time systems. SANs are more powerful and flex-

ible than other stochastic extensions of PNs such as

Stochastic Petri Nets (SPNs) and Generalized Stochas-

tic Petri Nets (GSPNs). In General, SANs are prob-

abilistic extensions of Activity Networks (ANs) which

have been equipped by a set of activity time distri-

bution functions, reactivation predicates and enabling

rate functions. The nature of the extension is similar to

the extension that constructs SPNs from classical PNs.

Informally, SANs can be described with three major

primitives called places, activities (timed and instan-

taneous), and gates (input and output). The graphical

notations of these primitives are shown in Fig. 1 [4,

28,29,38]. Followings are descriptions of each of SAN

elements [4,28]:

• Place: it is similar to a place in PNs and is shown by

a circle. Places can act as depositories which tokens

are put in. For example, a place in a SAN model

can represent an input buffer of the specified size.

• Timed activity : timed activities represent activities

of the modeled system whose durations impact the

system’s ability to perform. A timed activity has

m inputs and n outputs, where m + n > 0. Each

of the inputs of a timed activity can be a place or

an input gate, and also each of the outputs can be

a place or an output gate. An activity distribution

function, enabling rate and n-ary computable pred-

icates called the reactivation predicates are associ-

ated for each timed activity. Timed activities are

shown by thick bars or boxes.

• Instantaneous activity : instantaneous activities rep-

resent the system activities which can be completed

in a negligible amount of time. An instantaneous

activity has m inputs and n outputs. A case prob-

ability function (i.e. a computable partial function

that returns a value in range [0, 1]) is associated for

each instantaneous activity. Case probabilities asso-

ciated with instantaneous activities permit the re-

alization of uncertainty. Instantaneous activities are

shown by thin bars.

• Input gate: an input gate has a finite set of inputs

and one output. For each of the input gates an n-ary

computable predicate called the enabling predicate

and a computable partial function called the input

function are associated. Input gates are shown by

the filled triangles.

• Output gate: an output gate has a finite set of out-

puts and one input. A computable function called

the output function is associated to each such out-

Element Place 
Timed    

activity 

Instantaneous 

activity 

Input        

gate 

Output       

gate 

Graphical 

notation 

 

     

 

1 
2 

m m 

2 

1 

Fig. 1 The graphical representation of SAN elements

put gate. Output gates also are shown by the filled

triangles.

Modeling and analysis with SANs need a software

tool to help construct and evaluate the model. The orig-

inal definition of SANs has been used as a modeling

formalism in some modeling tools, such as METASAN,

UltraSAN and Möbius [4,7]. All of these tools are in-

tended for the evaluation of operational aspects (such

as performance, dependability, and performability) of

systems. In this paper, the Möbius tool [7] is used to

construct and analyze the proposed SAN model.

4 The Proposed Approach

This section explains the proposed approach with de-

tails in four subsections. In Subsection 4.1, the SAN

model proposed to evaluate the combined performance

and availability of a single grid resource is presented.

Subsection 4.2 introduces some measures which can be

obtained by analyzing the proposed SAN model. The

algorithm proposed to compute the makespan of a sin-

gle grid resource for a sequence of grid jobs is given in

Subsection 4.3, and finally, the SA-based job scheduling

algorithm is presented in Subsection 4.4.

4.1 The Proposed SAN Model

Fig. 2 shows the SAN model of a single grid resource

wherein the failure-repair behavior of its processors is

taken into account. Input parameters of the proposed

SAN are: grid and local queue sizes of the resource (MG

and ML), grid and local tasks arrival rates (λG and

λL), number of the processors inside the resource (N),

service rate of each processor (µ), failure rates of idle

and busy processors (γi and γb), and repair rate of a

failed processor (δ).

Places PUP and PDW represent the up (operational)

and down (non-operational) processors inside the re-

source, respectively. It is assumed that there are N op-

erational homogeneous processors in the resource when

it starts to service the tasks, so there are N tokens in

place PUP in the beginning. Timed activity TAIPF rep-

resents the failure process of idle processors. It should
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Fig. 2 The proposed SAN model for a single grid resource

be noted that the times assigned to all timed activi-

ties follow exponential distribution which is an accept-

able assumption in this area [3,9,10,13,17,25,26,31,

32]. The rate of timed activity TAIPF is Mark(PUP ).γi
where Mark(PUP ) denotes the number of tokens inside

place PUP and γi is the failure rate of an idle processor.

Timed activity TAR represents the repair process of a

failed processor. The completion rate of this activity is

δ which shows that there exists only a repair facility in

the system because its rate is not marking dependent.

As shown in Fig. 2, there are two separate lines of

task arrivals in the proposed SAN. The first line which

is initiated with timed activity TAGA models the arrival

of grid tasks to the resource. When activity TAGA is

completed with rate λG, a token is deposited into place

PGQ to show that a grid task has already been sub-

mitted to the resource, and it is waiting to get service

from one of the idle operational processors. The com-

pletion capability of timed activity TAGA is checked by

input gate IGG1 to prevent this activity from comple-

tion if there are MG tokens inside place PGQ where MG

denotes the grid queue size of the resource. If there is

a waiting grid task in the grid queue of the resource

(one token in place PGQ), and at least one operational

processor (one token in place PUP ), instantaneous ac-

tivity IAG can be completed. This condition is checked

by input gate IGG2. Upon completion of instantaneous

activity IAG, a token from place PGQ together with an-

other token from place PUP is removed and a token is

deposited into place PGS to show that a grid task is ser-

vicing by one of the processors. These adding/removing

are done by output gate OGG2 and input gate IGG2.

Existence of a token in place PGS causes two timed

activities TAGS and TAG BPF to be enabled. Timed

activity TAGS models servicing process of a grid task

inside the resource with completion rate Mark(PGS).µ,

where Mark(PGS) denotes the number of tokens inside

place PGS and µ is the service rate of a processor. After

completion of timed activity TAGS , a token is deposited

into place PUP to show that a processor has already

serviced a grid task, and it is ready to be assigned to

another task submitted to the resource. Timed activity

TAG BPF models the failure process of a busy proces-

sor which services a grid task. The completion rate of

this activity is also marking dependent which multiplies

the failure rate of a single busy processor (γb) by the

number of tokens inside place PGS . After completion

of timed activity TAG BPF , a token is put into place

PDW to show that a processor has failed, and it should

be repaired before being able to service other grid/local

tasks. Moreover, the failed grid task is returned to the

queue to be scheduled on another processor later.

The same configuration is considered for local tasks

in which the second line of task arrivals is initiated
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Table 1 Input predicates/functions of some input gates of the SAN model presented in Fig. 2

Gate Predicate Function

IGG1 Mark
(
PGQ

)
< MG ;

IGG2

(
Mark

(
PGQ

)
> 0

)
and

(
Mark

(
PUP

)
> 0

)
and

(
Mark

(
PLQ

)
== 0

)
Mark

(
PGQ

)
= Mark

(
PGQ

)
− 1;

Mark
(
PUP

)
= Mark

(
PUP

)
− 1;

IGL1 Mark
(
PLQ

)
< ML ;

IGL2

(
Mark

(
PLQ

)
> 0

)
and

(
Mark

(
PUP

)
> 0

)
Mark

(
PLQ

)
= Mark

(
PLQ

)
− 1;

Mark
(
PUP

)
= Mark

(
PUP

)
− 1;

IGL3

(
Mark

(
PLQ

)
> 0

)
and

(
Mark

(
PUP

)
== 0

)
and

(
Mark

(
PGS

)
> 0

)
Mark

(
PLQ

)
= Mark

(
PLQ

)
− 1;

Mark
(
PGS

)
= Mark

(
PGS

)
− 1;

with timed activity TALA with rate λL modeling the

arrival of local tasks to the resource. For the sake of

brevity, the explanations about the components (places,

timed/instantaneous activities, and input/output gates)

related to the local tasks are not presented here, but

they are exactly the same as those for the corresponding

components of grid tasks. The important point which

should be mentioned here is that the local queue size of

the resource is ML which is checked by input gate IGL1

to make sure that the number of local tasks submitted

to the resource does not exceed this threshold. More-

over, since a grid resource voluntarily joins the grid en-

vironment, it services local tasks submitted by local

users in its administrative domain with higher priority

over grid tasks [14]. To model this, two types of pri-

ority disciplines, non-preemptive and preemptive, can

be considered. The model shown in Fig. 2 models the

preemptive priority discipline in which a newly arriving

local task preempts a servicing grid task if there is no
idle processor to be allocated to the local task. This is

controlled by input gates IGG2 and IGL3. The predi-

cate and input functions of these gates can be seen in

Table 1. As can be seen in this table, input gate IGG2

not only checks the existence of a token in both places

PGQ and PUP as mentioned earlier, but also it checks

the number of tokens inside place PGQ to be zero. Using

this mechanism, we can assign higher execution prior-

ity to local tasks over grid ones. However, the preemp-

tive priority is modeled by input gate IGL3. As can be

seen in Table 1, the condition [Mark(PLQ) > 0 and

Mark(PUP ) == 0 and Mark(PGS) > 0] is checked in

the predicate part of input gate IGL3. If this predicate

is evaluated to true, the instantaneous activity IAL2 is

completed, and a token is put into place PLS to show

that the local task has taken a processor from a servic-

ing grid task. Moreover, a token is deposited into place

PGQ upon completion of activity IAL2 to show that

the preempted grid task has been resubmitted to the

waiting grid queue to be executed later.

Although the predicates and functions of input gates

introduced above exactly implement the aforementioned

mechanisms in the network, to provide a better un-

derstanding of the proposed SAN, the predicates and

functions of input gates IGG1, IGG2, IGL1, IGL2, and

IGL3 are presented in Table 1. It should be mentioned

that we use a simple notation for representing the pred-

icates and functions to increase the readability of them

which is different from the language of Möbius. The in-

put gates which have not been listed in Table 1 are sim-

ple input gates which check the existence of a token in

their input places, and remove a token from them when

their corresponding activities are completed. Similarly,

all output gates shown in Fig. 2 are simple output gates

which add a token to their output places whenever their

corresponding activities are completed.

4.2 Measures of Interest

The model presented in Subsection 4.1 can be used to

compute various performance and dependability mea-

sures by assigning appropriate reward rate to each fea-

sible marking of the network. Let ri denote the reward

rate assigned to marking i of the SAN model presented

in Fig. 2. If πi denotes the steady state probability for

the SAN to be in marking i, then the expected steady

state reward rate can be computed as
∑

i riπi. An im-

pulse reward is the instantaneous reward gained when

firing activity t in a given marking [6]. In this paper

Möbius tool [7] is used to solve the numerical examples

of the proposed SAN model and obtain performance

measures. The interesting measures we are intending

to compute them by analyzing the proposed SAN are:

(1) the Throughput of a resource for grid tasks, (2)

the Mean Response Time of a resource for grid tasks,

and (3) the Failure Probability of grid tasks. In the fol-

lowing, we describe each measure and its calculation

method.
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Throughput of a resource for grid tasks. It

is a measure of how many grid tasks a resource can

process in a given amount of time. In the steady state,

the throughput of a resource for grid tasks is equal to

the effective arrival rate of grid tasks to the resource.

Let π(PGS = i) denote the steady state probability of

there being i tokens in place PGS . Hence, the through-

put of a resource for grid tasks can be computed by

Equation (1).

Throughput =

N∑
i=1

π(PGS = i) · i · µ, (1)

where N and µ denote the total number of processors

inside the resource and service rate of each processor,

respectively.

Failure Probability of grid tasks (PF ). It is

the probability that a processor servicing a grid task

fails. Using the concept of impulse reward, we can com-

pute this probability by measuring the reward obtained

when firing timed activity TAG BPF . In Möbius, there

is a direct way to compute the impulse reward of each

activity, so we use this capability of Möbius.

Mean Response Time of a resource for grid

tasks (E[R]). It is the mean time from a grid task is

submitted to a resource until it has been processed by

the resource which is the time from the instant that a

token is deposited into place PGQ until it is removed

from place PGS . Using Little’s law [5], the steady state

mean response time of grid tasks, E[R], can be com-

puted as Equation (2).

E[R] =
E[#PGQ] + E[#PGS ]

λeff
(2)

where E[#Pi] is the mean number of tokens in place Pi,

which is computed by assigning reward rate #Pi to the

states of the underlying Markov chain of the proposed

SAN. Moreover λeff is the effective arrival rate of grid

tasks which is computed by Equation (3).

λeff = (1− Pb)λG (3)

where λG is the arrival rate of grid tasks, and Pb is the

blocking probability of grid task arrivals which is com-

puted by assigning the following reward to the proposed

SAN model.

ri =

{
1, E[#PGQ] ≥MG

0, otherwise
(4)

where MG is the grid queue size of the resource.

4.3 The Proposed Algorithm to Find the Makespan of

a Single Grid Resource

Modeling a grid resource by the proposed SAN and us-

ing the methods introduced in Subsection 4.2, we can

compute the throughput a resource for grid tasks. As

mentioned earlier, the throughput of a resource is the

number of tasks processed over a given interval of time.

Using the curve fitting technique [20], we can find a

most suitable function fitted to the results obtained

by analyzing the proposed SAN model. Let fi(t) de-

note the function fitted to the results of the through-

put analysis of grid resource Ri for grid tasks. Suppose

scheduling string S represents a sequence of grid jobs

assigned to all grid resources in the environment, and

the sequence Seq inside scheduling string S shows the

gird jobs assigned to resource Ri. Let grid job Jj de-

note the first job in sequence Seq assigned to resource

Ri to be executed. If the size of job Jj is Sizej tasks,

then the time required for servicing job Jj by resource

Ri will be equal to tij1 which is computed by solving

Equation (5).

∫ tij1

tij0

fi(t)dt = Sizej (5)

where tij0 is the ready time of resource Ri for servic-

ing job Jj which should be set to a fixed number when

the resource starts to execute the job. In the begin-

ning in which the resource starts to service grid jobs,

this number is set to one. After finding tij1 which shows

the time required for servicing grid job Jj by resource

Ri, the ready time tik0 should be updated to tij1 before
being able to allocate Ri to the next grid job named

Jk (tik0 = tij1 ). Therefore, the time interval [tij0 , t
ij
1 ] is

the time required for resource Ri to service grid job Jj ,

which is the first job assigned to Ri in sequence Seq.

With the same procedure, time interval [tik0 , t
ik
1 ] shows

the time required to service job Jk by resource Ri while

Jk is the second job in scheduling sequence Seq assigned

to resource Ri after job Jj . Using the procedure men-

tioned above, we can compute the maximum time taken

by each resource to service a sequence of grid jobs as-

signed to that resource in a given scheduling string by

Equation (6).

Makespani = til1 (6)

where Makespani denotes the makespan of resource Ri

and Jl is the last job assigned to resource Ri in sequence

Seq under scheduling string S. The aforementioned pro-

cedure is summarized in Algorithm 1.
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Algorithm 1: The proposed algorithm to find

the makespan of grid resource Ri under schedul-

ing string S

Input: sequence Seq = {J1, J2, ..., Jl} showing the
grid jobs assigned to resource Ri in scheduling
string S and the size of job Jj as Sizej for
1 ≤ j ≤ l

Output: makespan of resource Ri as Makespani

1 ti10 ← 1

2 Model resource Ri using the SAN model presented in
Fig. 2

3 Compute the throughput of resource Ri for grid jobs
using Equation (1)

4 Find the function fi(t) fitted to the results obtained
from Equation (1)

for j = 1 to l do

5 Compute tij1 using Equation (5)

6 t
i{j+1}
0 ← tij1

end

7 Return til1 = t
i{l+1}
0 as Makespani.

4.4 The Proposed SA-based Scheduling Algorithm

Using the algorithm presented in Subsection 4.3, we

can compute the total makespan of a grid environment

in servicing grid jobs. For this reason, a sequence of n

independent grid jobs is assumed to be submitted to

the grid environment to be serviced. Assume a possible

scheduling of n grid jobs on m grid resources named

S. Applying the algorithm shown in Algorithm 1 to

each grid resource, the makespan of the resource in ser-

vicing grid jobs assigned to it can be computed. Hav-

ing this measure for all resources, we can compute the

total makespan of the entire grid environment, called

Makespan, using Equation (7).

Makespan = max
i
Makespani (7)

where 1 ≤ i ≤ m, and m is the number of all grid

resources available in the environment. Changing the

scheduling string S results in different makespans for

the grid environment. Since our aim is minimizing the

measure Makespan, we present a SA-based scheduling

algorithm to appropriately dispatch grid jobs to grid

resources to minimize this measure.

The most important part in the application of SA

is the generation of the initial solution, and creation

of a set of neighbors. To generate an initial solution,

a representation of the problem should be defined. In

this problem, we use an integer encoding in which each

possible solution is represented by a vector of integers.

For a problem with n jobs and m resources, the length

of the possible solution is n and each integer number

can take a value between 1 and m, where each number

represents the resource which is allocated to the cor-

responding job. As an example, if we have four jobs

(n = 4) and two resources (m = 2) in the environ-

ment, a possible scheduling string can be as S = 1221

which assigns jobs J1 and J4 to resource R1, and jobs

J2 and J3 to resource R2. It is worthwhile to mention

that although assigning all jobs to a single resource (the

fastest resource here) is a valid solution for the prob-

lem, we avoid this situation because it generates a sin-

gle point of failure in which failing a resource causes the

execution of all jobs fails. Therefore, to generate more

balanced and fair scheduling, we define a low threshold

factor called l for a possible solution to represent the

minimum number of jobs assigned to each resource in

a valid solution. It turns out that the maximum value

for low threshold is l = b nmc. In the example mentioned

above with four jobs and two resources, the low thresh-

old factor can take values 0 to 2 (l = 0, 1, 2). We avoid

l = 0, which generates a single point of failure, but

l = 1 and l = 2 are two valid values for l in scheduling

strings of this example. For the scheduling string men-

tioned above (S = 1221), l is 2, and for a new scheduling

string named S′ = 1121, which can be generated from

S, the low threshold factor is 1, which shows that for

each resource it has been assigned at least one job.

In order to generate a neighbor of a solution namely

a new solution, a simple modification on the old solu-

tion is done in which a random cell of the old solution

is selected and its value is exchanged with a random

number in range {1, 2, ...,m}, where m is the number

of resources in the grid environment. We name this

modification as exchange method in the proposed al-

gorithm. In exchange method, we randomly change the

resource allocated to execute a randomly selected job. It

is worthwhile to state that the exchange method should

preserve the solution validity satisfying the low thresh-

old factor in each step. As an example, consider the

scheduling string S = 12211 wherein n = 5 and m = 2.

In the first step, we should choose a random number in

range {1, ..., n}
(
R1 ∈ {1, 2, ..., 5}

)
, since the solution

contains 5 cells. Afterwards, another random number in

range {1, ...,m}
(
R2 ∈ {1, 2}

)
should be selected. Let

R1 = 3 and R2 = 1 denote the first and second random

numbers generated for this reason. According to the ex-

change method explained above, we should change the

3rd number of solution S = 12211 with number 1, which

generates a new solution S′ = 12111. As mentioned ear-

lier, the exchange method should preserve the validity

of the new solution. For example, if we consider the low

threshold factor as l = 1, the newly generated schedul-
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ing string S′ = 12111 will be a valid solution, but if

we consider l = 2, it will be an invalid solution. In this

situation (l = 2), R1 = 4 and R2 = 2 for example, can

generate a new valid solution as S′′ = 12221.

After generating a new solution (S′), its makespan

is computed using Algorithm 1 and Equation (7) as

done for old solution (S). To do this, all grid jobs as-

signed to resource Ri, i ∈ {1, ...,m}, in the new solution

are specified, and then, the measure Makespani is ob-

tained by applying Algorithm 1 to resource Ri. After

finding makespans of all resources
(
Makespani,∀i ∈

{1, ...,m}
)
, the total makespan of the new solution is

computed using Equation (7). Now, having both makes-

pans,Makespan(S) andMakespan(S′), the acceptance

test can be applied. The acceptance test for a solution

in each step works as follows: if the new solution is

better than the old one, then the proposed SA-based

algorithm will replace it, if it is worse, the algorithm

replaces it with probability P . The probability P de-

pends on the difference between the total makespans

of old and new solutions, and the control parameter

T named temperature. It is expected that the prob-

ability of moving to the new solution decreases when

the difference between two total makespans gets mag-

nified (the total makespan of new solution gets worse).

On the other hand, the temperature parameter plays

a crucial role in controlling the evolution process in

which cooling the temperature slowly causes the up-

hill movements becomes less and less as the run pro-

gresses [24,41]. Therefore, we need a formula to de-

crease probability P by increasing the difference be-

tween total makespans of old and new solutions, and de-

creasing the temperature parameter T . The exponential

function as P = exp
(Makespan(S)−Makespan(S′)

T

)
where

Makespan(S) < Makespan(S′) can help us to reach

this goal, but generally, any function which satisfies

aforementioned conditions can be used. It is worthwhile

to mention that the mechanism of replacing a good so-

lution with a worse solution in the proposed SA-base

algorithm with small probability P is done to prevent

the algorithm to get stuck in local optimal points, and

provide it with the chance of achieving global optimal

solution. However, it should be done very intelligently

to be able to finally reach a good enough solution in a

timely manner.

This procedure is continued until the termination

condition is satisfied. In our proposed algorithm, the

number of iterations is used to specify the termination

condition, but in general, other criteria such as allo-

cation constraints (e.g. time required to run the algo-

rithm), difference between makespans of two consecu-

tive runs, manual inspection, combination of the condi-

tions and so forth can be used as the termination con-

Algorithm 2: The proposed SA-based schedul-

ing algorithm to minimize the total makespan of

a grid environment

1 Generate a random initial solution named S according
to the representation method

2 FinalS ← S

3 FinalMakespan←Makespan(S),
where Makespan(S) computes the total makespan of
the environment under scheduling string S using
Algorithm 1 and Equation (7)

4 i← 0

5 ti ← 10000

while (the termination condition is not met ) do

6 Generate new solution S′ using exchange method

7 Calculate Makespan(S′)

8 P ← exp
(Makespan(S)−Makespan(S′)

ti

)
9 r ← random[0, 1]

if
(
Makespan(S′) < FinalMakespan

)
or(

r < P
)
then

10 S ← S′

11 FinalS ← S′

12 FinalMakespan←Makespan(S′)

end

13 ti+1 ← ti × 0.99

14 i← i+ 1

end

15 Return FinalS as the good enough scheduling string
found by the proposed algorithm and FinalMakespan
as its related total makespan.

dition. The above-mentioned procedure is summarized
in Algorithm 2.

5 An Illustrative Example

In this section, a simple grid environment with only

two resources which aims to service four grid jobs is

presented to show how the proposed approach can be

used. Afterwards, an inclusive analysis on the effect of

internal configuration of a resource on the makespan of

the resource is done.

5.1 A Simple Example

Assume a grid environment with two resources R1 and

R2. The configuration of the resources is shown in Ta-

ble 2. The numbers used for input parameters of the

SAN model shown in Table 2 are selected randomly,

and can be replaced with any real value.
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Table 2 Configuration of grid resources considered in the
illustrative example

Parameters R1 R2

Grid tasks arrival rate (λG)
15.0 40.0

(tasks per second)

Local tasks arrival rate (λL)
10.0 10.0

(tasks per second)

Processor service rate (µ)
4.0 6.0

(tasks per second)

Grid queue size (MG)
15 20

(tasks)

Local queue size (ML)
5 20

(tasks)

Number of processors (N)
4 3

(processors)

Failure rate of an idle processor (γi)
0.05 0.08

(processors per second)

Failure rate of a busy processor (γb)
0.3 0.1

(processors per second)

Repair rate of a processor (δ)
3.0 5.0

(processors per second)

Moreover, suppose there are four grid jobs named

J1, J2, J3, and J4 with sizes 5, 10, 9, and 6 tasks, respec-

tively, which should be scheduled on resources R1 and

R2. Let S = 1212 denote a possible scheduling string

in this environment which assigns jobs J1 and J3 to

resource R1, and jobs J2 and J4 to resource R2. After

modeling both resources R1 and R2 using the proposed

SAN, throughputs of them are computed using Möbius

by applying Equation (1). The values gained from solv-

ing the corresponding SAN models of resources R1 and

R2 together with the functions fitted to these values are

presented in Fig. 3 and Fig. 4, respectively.

As can be seen in Fig. 3 and Fig. 4, functions found

to approximate throughputs of resources R1 and R2

which are 2.72+2.03e(−0.58t) and 7.63+1.69e(−1.87t), re-

spectively, can appropriately estimate these measures.

Since the results reported in both Fig. 3 and Fig. 4 are

very close to each other, we use the Normalized Root

Mean Squared Error (NRMSE) as Equation (8) to show

how the fitted functions can estimate the results gained

from SAN models.

NRMSE =
1
M

∑M
k=1

(
MRTfunc(k)−MRTSAN (k)

)
MRTmax

SAN −MRTmin
SAN

(8)

where M is the number of observations which is equal

to 20 in both Fig. 3 and Fig. 4, and MRTfunc and

MRTSAN are the throughputs gained from the fitted

Fig. 3 The throughput of resource R1 for grid jobs gained
from the proposed SAN and its fitted function

Fig. 4 The throughput of resource R2 for grid jobs gained
from the proposed SAN and its fitted function

function and the proposed SAN model, respectively.

Moreover,MRTmax
SAN (MRTmin

SAN ) shows the greatest (sm-

allest) throughput gained from the SAN model amongst

all M = 20 samples. Using Equation (8), the NRMSEs
are computed as 0.023 and 0.014 for Fig. 3 and Fig. 4,

respectively, which show very good fits between the ob-

served and estimated data in both cases.

According to Equation (5) and the scheduling string

considered for this example (S = 1212), we can find the

time required for servicing job J1 by resource R1, called

t111 , as Equation (9) considering that the ready time of

resource R1 is 1 in the beginning (t110 = 1).

∫ t111

t110 =1

(
2.72 + 2.03e−0.58t

)
dt = 5 (9)

Solving Equation (9) results in t111 = 2.43. Hence,

the ready time of resource R1 when it starts to service

job J3 should be updated to 2.43 (t130 = t111 = 2.43).

Solving the corresponding equation for job J3, the time

required for servicing job J3 after job J1 by resource R1

is computed as t131 = 5.48. Therefore, the makespan of

resource R1 can be computed as Makespan1 = t131 =

5.48.
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Applying the same procedure to resource R2 which

intends to execute jobs J2 and J4, the makespan of

this resource is computed as Makespan2 = 3.06. Using

Equation (7), the total makespan of the assumed grid

environment can be found as follows.

Makespan = (10)

max(Makespan1,Makespan2) = 5.48

Changing the scheduling string S = 1212, the mea-

sureMakespan will change. Applying the proposed SA-

based algorithm, we can find a suitable scheduling with

the minimumMakespan in this example, since the state

space is limited. For example, the scheduling string

S′ = 1221 is one of the best possible schedules of jobs J1
to J4 on resources R1 and R2 with low threshold l = 2,

which results in Makespan = max(4.42, 3.47) = 4.42.

5.2 Sensitivity Analysis

In order to study the impact of internal configuration

of a resource on its makespan, and the total makespan

of the environment, we consider different scenarios in

this subsection which combine different forms of failure-

repair behavior of processors and execution priority be-

tween grid and local tasks. In the original SAN model

shown in Fig. 2, it has been considered that there are

both grid and local tasks’ arrivals to a grid resource,

and the resource services local tasks with higher prior-

ity compared to the grid tasks. Moreover, it has been

assumed that processors inside a grid resource can fail

when they are in both idle and busy states. Now, we

consider seven further scenarios to study the impact of

failure-repair behavior of processors and the execution

priority of tasks on the makespan of a single resource,

and consequently, the total makespan of the grid envi-

ronment. In each scenario, we change the SAN model

presented in Fig. 2 by easily adding (removing) some

components to (from) the original SAN, or modifying

the predicates/functions of input/output gates to sat-

isfy the desired properties.

In scenarios 1 and 2, local tasks have higher prior-

ity over grid tasks, and in scenarios 5 and 6 grid tasks

have higher priority against local ones. The same execu-

tion priority has been considered for both grid and local

tasks in scenarios 3 and 4, and finally, a grid resource

without local tasks has been considered in scenarios

7 and 8. In scenarios with odd numbers (scenarios 1,

3, 5, and 7), the failure-repair behavior of processors

has been modeled, but in scenarios with even numbers

(scenarios 2, 4, 6, and 8), this behavior has not been

considered. As can be concluded, scenario 1 is the only

Table 3 The total makespans of the sample grid environ-
ment in eight different scenarios

Scenario Makespan1 Makespan2 Makespan

1 5.48 3.06 5.48

2 3.29 2.99 3.29

3 2.82 2.63 2.82

4 2.60 2.59 2.60

5 2.12 1.91 2.12

6 2.04 1.89 2.04

7 2.11 1.91 2.11

8 2.04 1.89 2.04

case considered in Subsection 5.1. To be able to nu-

merically compare different situations, we model both

resources R1 and R2 with the configurations given in

Table 2 in all eight scenarios. For the sake of brevity,

we do not present all plots representing the through-

puts of resources R1 and R2, and their fitted functions

here, but makespans of both resources and the total

makespan of the environment are presented in Table 3.

As can be seen in Table 3, scenarios with even num-

bers (scenarios 2, 4, 6, and 8) which do not consider the

failure-repair behavior of processors inside a resource

show smaller makespans compared to their correspond-

ing scenarios with odd numbers (scenarios 1, 3, 5, and

7), which model the failure-repair behavior of proces-

sors. It turns out that if we do not consider the failure

property of processors in the model, the makespan of

a resource for both grid and local tasks will decrease,

since all processors will be fully reliable and they can

service grid and local tasks without any failure. As a

result, the makespan of a single resource for grid tasks,

and consequently, the total makespan of the entire en-

vironment decreases in this situation.

Scenarios 3 and 4 show the case in which the same

priority is considered for executing both grid and local

tasks. As expected, the makespan of a resource for a

grid task in this case is less than that of the resource

when higher execution priority is assigned to local tasks

against grid tasks (scenarios 1 and 2). Hence, for re-

source R1 as an example, the makespan resulted in sce-

nario 3 is 2.82, while this time in scenario 1 which as-

signs higher execution priority to local tasks over grid

ones is 5.48. Similarly, if we compare the results re-

ported for scenarios 2 and 4 which do not consider the

failure-repair behavior of processors inside a resource,

it can be seen that the makespan of resource R1 in sce-

nario 2 is 3.29, while it is 2.60 in scenario 4. Comparing

scenarios 3 and 4 shows that the total makespan of

the system decreases when the failure-repair behavior

of processors is not taken into account, as mentioned
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earlier. As shown in Table 3, the total makespan of the

environment for grid tasks is 2.12 and 2.04 in scenarios

5 and 6, respectively. These values are less than val-

ues reported for scenarios 1 to 4, since we assign higher

execution priority to grid tasks over local tasks in sce-

narios 5 and 6. Moreover, the total makespan reported

for scenario 6 is less than the makespan reported for

scenario 5, since we do not consider the failure-repair

behavior of processors in scenario 6.

In scenarios 7 and 8, we assume that there is no lo-

cal load on the resource, and all processors inside the

resource are allocated to service grid tasks. As can be

seen in Table 3, the makespans reported for scenarios 7

and 8 are very similar to the makespans of scenarios 5

and 6, respectively. Actually, this is a rational conclu-

sion, since assigning higher execution priority to grid

tasks over local tasks causes a local task to be executed

when there is no waiting grid task in the resource. In

other words, existence or nonexistence of a local task

has no effect on executing a grid task. Therefore, the

makespans reported for both resources R1 and R2 in

scenarios 7 and 8 are the same as those reported for

scenarios 5 and 6, respectively. There is a subtle point

here which can only be seen in makespans reported for

resource R1 in scenarios 5 and 7. As can be seen in Ta-

ble 3, the makespan of resource R1 in situation in which

there is a higher execution priority for grid tasks over

local tasks is 2.12, and this measure for the situation

in which there is no local task in the system is 2.11.

Although the difference is very low and it cannot be

seen in resource R2, sometimes it happens. This phe-

nomenon can be justified according to the failure rate

of idle and busy processors. Suppose in scenario 5, a

local task enters the resource and finds a processor in

an idle state (there is no waiting grid task in the sys-

tem), so the processor is allocated to the local task,

and its state is changed to busy processor. Since the

failure rate of a busy processor is more than that of

an idle processor, the processor servicing a local task

fails faster than an idle processor. So, the probability

that a newly arriving grid task finds an idle proces-

sor in an operational state is more than the probability

that it finds a busy processor servicing a local task in

an operational state, and then, preempts the servicing

processor, which causes the makespan of resource R1

in scenario 7 to be less than the makespan of R1 in

scenario 5. This is the reason behind the difference ex-

isting between total makespans of scenarios 5 and 7. It

is worthwhile to mention that it rarely happens, and its

effect on the total makespan is trivial.

In addition to analyze the makspan of a resource in

various situations, we are also interested to study the

mean response time
(
E[R]

)
of a resource for grid tasks

Table 4 The mean response time of resource R1 for grid
tasks

(
E[R]

)
Cases first second third fourth

E[R] (sec.) 3.51 2.09 0.83 0.82

Table 5 The failure probability of grid tasks inside re-
source R1 (PF )

Cases first second third fourth

PF

(
× 10−2

)
1.2 2.6 4.1 4.1

in different cases. To achieve this, we consider four dif-

ferent combinations of local and grid tasks’ executions

inside a resource, and study the effect of local tasks on

evaluation of the steady state mean response time of a

resource for grid tasks. In the first (third) case, we as-

sign higher execution priority to local (grid) tasks over

grid (local) tasks. In the second case, the same execu-

tion priority is assigned to both local and grid tasks,

and in the fourth case, we assume that there is no lo-

cal task in the system, and a resource only services grid

tasks. In the first case, since it is preferred to execute

local tasks even when there are grid tasks in the sys-

tem, the mean response time of the resource for grid

tasks will be a big number compared to the situation

in which local and grid tasks have the same priority for

execution (second case). If we assign higher execution

priority to grid tasks against local tasks (third case), it

is obvious that the mean response time of the resource

for grid tasks will decrease compared to the situation

considered in the second case. Finally, in the fourth

case, all processing power of the resource is dedicated

to grid tasks, so the mean response time of the resource

for grid tasks will be the smallest one among all four

cases considered. According to the explanation given

about the makespans of a resource in scenarios 5 and

7, the mean response time of the resource for grid tasks

in the third and fourth cases would be very close to

each other, but it is expected for this measure to get

its minimum value in the fourth case when there is

no local task in the system. Table 4 shows the steady

state mean response time of resource R1 in four cases

discussed above.

The failure probability (PF ) of grid tasks introduced

in Subsection 4.2 is a measure which shows how many

grid tasks fail during servicing inside a resource. It turns

out that the probability PF raises if the number of

processors allocated to service grid tasks increases. Ta-

ble 5 shows probability PF for four different cases in-

troduced above. As can be seen in Table 5, PF gets

its smallest value in first case amongst all other cases

which shows that the number of processors allocated
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to service grid tasks in first case is less than the oth-

ers. Moreover, probability PF gets its maximum value

when grid tasks have higher execution priority over lo-

cal tasks or there is no local load on the resource (third

and fourth cases).

Now, having three measures Throughput, Mean Re-

sponse Time and Failure Probability of a resource to-

gether, we can make a comprehensive analysis of behav-

ior of the resource in executing grid tasks. When local

tasks have higher execution priority over grid tasks, the

Throughput of the resource for grid tasks is low (Sce-

narios 1 and 2 in Table 3), and the Mean Response

Time of the resource for grid tasks is high (first case

in Table 4). The Failure Probability of grid tasks in this

situation is a small number (first case in Table 5). It

shows that the number of processors allocated to exe-

cute grid tasks is kept as small as possible to service

local tasks faster. The situation for grid tasks gets bet-

ter, and more processors are allocated to service them if

the same execution priority is assigned to both grid and

local tasks (Scenarios 3 and 4 in Table 3, and second

case in both Table 4 and Table 5), compared to the situ-

ation in which local tasks have higher execution priority

over grid tasks. Finally, if we assign higher priority to

execute grid tasks against local ones or we totally re-

move local tasks from the system, all processors inside a

resource are allocated to service grid tasks even if there

are waiting local tasks in the resource. The measure

Throughput reported in Scenarios 5 to 8 in Table 3, and

the measure Mean Response Time shown in third and

fourth cases of Table 4 emphasize this fact that more

processors are allocated to service grid tasks in these

cases compared to two first cases discussed. Although

increasing the Failure Probability of grid tasks which is

done in third and fourth cases as shown in Table 5 is

not a good event and perhaps not a good performance,

but it is unavoidable because when the number of work-

ing processors increases, the probability of their failures

also increases.

6 Case Studies

In order to apply the proposed approach to real grid

environments, two comprehensive case studies are pre-

sented in this section. In case study 1, we investigate

a real desktop grid called lri [21] with 40 resources

(m = 40). The log of the system for one month can be

downloaded from [1], but some internal specifications of

the resources considered in the proposed SAN (e.g. grid

and local queue sizes) have not been reported in the log.

Since none of the workloads and logs reported from real

grid systems contains all our required detailed infor-

mation of the resources, we set some random numbers

Table 6 Configuration of grid resources considered in com-
prehensive case studies

Parameters Ranges

Grid tasks arrival rate (λG) [5, 20]

Local tasks arrival rate (λL) [1, 5]

Processor service rate (µ) [5, 10]

Grid queue size (MG) [5, 20]

Local queue size (ML) [5, 10]

Number of processors (N) [1, 4]

Failure rate of an idle processor (γi) [0.005, 0.05]

Failure rate of a busy processor (γb) [0.01, 0.02]

Repair rate of a processor (δ) [5, 10]

to these parameters in the model regarding some re-

search papers presented in this area [3,8,9,10,11,13,17,

22,25,26,30,31,32,36,39,40]. The configuration of the

resources is shown in Table 6. As can be seen in this ta-

ble, for each parameter is specified a range which shows

that the value of the parameter is randomly selected in

the specified range by Möbius tool.

In case study 1, it is assumed that 500 independent

jobs are submitted to the grid environment to be ex-

ecuted (n = 500). The jobs are independent and their

sizes are randomly selected in range [1, 10]. For each re-

source, a SAN model is constructed and the throughput

of the resource for grid jobs is computed. Afterwards,

a function fitted to the results obtained by analyzing

each SAN model is found, and the algorithm shown

in Algorithm 1 is applied to each resource to find the

makespan of the resource for a given scheduling string.

Applying the SA-based scheduling algorithm presented

in Algorithm 2, a scheduling string which results in a

smaller makespan is achieved in each iteration. This

procedure is continued until the termination condition

is satisfied. In this case study, the number of iterations

which is used as the termination condition is set to 1000.

The makespans resulted from applying the proposed

approach to case study 1 are presented in Table 7 for

different thresholds in range l = 1 to l = b 50040 c = 12. It

is worthwhile to mention that we have run the proposed

algorithm 10 times for each value of parameter l, and

then, got average from the results to produce more de-

pendable results. The results reported in Table 7 are the

averaged results. As can be concluded from Table 7, in-

creasing the value of parameter l imposes the proposed

algorithm to assign more jobs to each resource causing

to assign more jobs to low-speed resources resulting in

higher makespans. So, the makespan of the environment

increases when the value of parameter l increases.

In case study 2, we consider a bigger grid environ-

ment with 200 resources (m = 200) and 2000 grid jobs
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Table 7 The results obtained by applying the proposed
approach to two comprehensive case studies

case study 1 case study 2

Threshold l Makespan Threshold l Makespan

1 692.86 1 2675.99

2 700.17 2 2686.88

3 707.96 3 2691.81

4 710.38 4 2698.45

5 719.73 5 2720.25

6 728.59 6 2738.94

7 735.96 7 2774.51

8 745.56 8 2782.37

9 749.70 9 2796.75

10 753.78 10 2813.08

11 755.03 - -

12 760.93 - -

(n = 2000). Configurations of the resources considered

in this case study are also taken from the ranges shown

in Table 6 by Möbius tool. The makespans resulted by

applying the proposed approach to case study 2 are also

presented in Table 7 for different thresholds in range

l = 1 to l = b 2000200 c = 10. As can be seen in Table 7, in-

creasing the value of parameter l increases the resulted

makespans as described for case study 1. It should be

mentioned that the number of iterations in this case

study is set to 200000, since the numbers of both re-

sources and jobs are bigger than those of case study 1.

Although choosing a small value for the number of iter-

ations as the termination condition of the proposed SA-

based scheduling algorithm decreases the time required

for running the algorithm, the makespan resulted from
few iterations will not be a precise result. On the other

hand, if we set the number of iterations to a very large

number, the execution time of the scheduling algorithm

will increase and it will impose an overhead on the GM.

Hence, it is a trade-off between the time required to ex-

ecute an heuristic method, and the precision of the final

result obtained from the method. This number can be

easily found by checking some numbers and comparing

the resulted makespans. If increasing the number of it-

erations does not affect the makespan so much, it shows

that the algorithm is converging to the suitable result,

and there is no need to increase the number of iterations

further. For example, when the number of iterations in

case study 1 reaches 1000, the algorithm terminates and

the resulting scheduling string together with its corre-

sponding total makespan is reported as the output of

the algorithm. If we set the iteration number to a big-

ger value (e.g. 2000 or 3000), the resulting value for the

final outcome (the total makespan of the environment)

will be approximately the same as that for 1000 itera-

Fig. 5 The convergence of the proposed SA-based schedul-
ing algorithm to a suitable result within 1000 iterations for
m = 40, n = 500, and l = 5

tions. It shows that the proposed SA-based scheduling

algorithm can converge to a suitable result in a timely

manner, and the number 1000 is a good choice for this

reason. Fig. 5 shows the convergence of the proposed

SA-based scheduling algorithm to a result within 1000

iterations in case study 1 for low threshold l = 5.

7 Conclusions and Future Work

The makespan of a grid environment is one of the most

important Quality of Service (QoS) factors which should

be studied in grids. Minimizing the makespan of a grid

environment, the throughput of the environment in-

creases. To minimize the total makespan of a grid, suit-

able job scheduling algorithms should be developed.

A suitable job scheduling algorithm not only should

consider the characteristics of an environment to be

able to appropriately dispatch jobs to the resources,

but also it should take into account the specification

of jobs. For this reason, a SA-based scheduling algo-

rithm is presented in this paper to dispatch grid jobs

to grid resources with the aim of minimizing the total

makespan of the grid environment. Before being able

to use the proposed scheduling algorithm, each of the

grid resources should be studied exactly to be able to

assess their actual performance. To fulfill this require-

ment, a SAN model is presented to model and evalu-

ate the performance of a single grid resource when the

failure-repair behavior of its processors is taken into

consideration. Using the proposed SAN model, we can

model more detailed inner structure of a grid resource,

and thereby, reach a more realistic estimation. In addi-

tion to the SAN model, two algorithms are presented

in this paper to calculate the makespan of a single grid

resource, and the total makespan of the whole grid en-

vironment based on the proposed SAN.
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There are numbers of research issues remaining open

for future work. The followings are some guidelines which

can be used for further research in this area.

• Considering different request classes for each of grid

and local tasks and applying a mechanism to prior-

itize them inside a single queue. This idea can be

carried out by exploiting colored versions of SANs

or PNs which let the modeler to distinguish tokens

inside a place with different types. In this case, dif-

ferent mechanisms can be applied to service the to-

kens representing various types of grid/local tasks.

• Taking into account the data and control dependen-

cies between the jobs submitted to the environment.

In our proposed approach, none of the jobs has de-

pendency to each other. All jobs are independent

and each job can be serviced by a resource as soon

as it is assigned to the resource. However, in prac-

tical systems, the jobs submitted to the system be-

long to a very big application, and therefore; there

are some dependencies among the jobs of a single

application. This practical issue can be considered

in a future research as one of the most important

extensions of the proposed approach.

• Considering other structures of grid environments and

various types of resource connections. In this paper,

it is assumed that all resources are independent and

have no interaction with each other. This is a simple

case of grid resource connection which has been as-

sumed in many research papers to relax the problem

to make it easier to solve by mathematical models,

but generally, more complicated topologies can be

considered for grid environments too.

• Modeling the possibility of the GM detecting failures

and reassigning jobs to different resources. Using

some intelligent methods, one can add the possi-

bility of detecting failures to the GM which helps a

grid environment to predict failures before happen-

ing and get the jobs from the failure-prone resource,

and then, reassign it to another resource. In this

mechanism, the new resource can execute the job

from the point where it was stopped on the failure-

prone resource.

• Applying the proposed approach to the cloud comput-

ing environments and considering the specific char-

acteristics of clouds in the proposed SAN and algo-

rithms. Since cloud systems are widely used now-a-

days, applying some modifications to the proposed

approach can help us to be able to exploit it in

analyzing cloud systems. Thinking about some im-

portant characteristics of clouds such as power con-

sumption, cloud federation, virtual machine alloca-

tion, virtual machine migration and so forth can

lead to new ideas in this research filed.
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