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a b s t r a c t

This paper presents a probabilistic task scheduling method to minimize the overall mean response
time of the tasks submitted to the grid computing environments. Minimum mean response time of a
given task can be obtained by finding a subset of appropriate computational resources to service the
task. To achieve this, a discrete time Markov chain (DTMC) representing the task scheduling process
within the grid environment is constructed. The connection probabilities between the nodes representing
the grid managers and resources can be considered as transition probabilities of the obtained DTMC.
Knowing the mean response times of the managers and resources, and finding fundamental matrix of
the DTMC, the mean response time related to each of the absorbing DTMCs existing inside the overall
DTMC can be computed. Minimizing the obtained mean response times and taking into account the
probability constraints in each of the absorbing DTMCs, a nonlinear programming (NLP) problem is
defined. Solving the NLP problem, the connection probabilities between the managers and resources are
obtained. Finally, using the connection probabilities, the best scheduling pathwithin the environment and
the minimum mean response time of a particular task can be achieved. In a case in which there is only
one optimal scheduling choice within the environment, the proposed method can deterministically find
such scheduling by assigning zero or one to the connection probabilities. Results obtained from evaluating
the proposed method on the hypothesis and real grid environments show the preference of the proposed
method compared to the other methods in minimizing both the overall mean response time of the tasks
and total makespan of the environment.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Task scheduling is one of the well-known problems in dis-
tributed computing systems such as grid environments [1–3].
Since the grid resources are very heterogeneous and have differ-
ent processing capabilities, the task scheduling problem becomes
more important in grids. Many static and dynamic scheduling al-
gorithms have been proposed to schedule grid tasks among the
resources to achieve the required amount of quality of service
(QoS) [3,4]. Themost importantQoSparameterswhich canbe stud-
ied in grid environments are as follows: performance of the envi-
ronment, availability of the resources, service reliability, security of
the grid services, throughput of the grid systems, overall comple-
tion time of the tasks, tasks’ execution times, tasks’ waiting times
and so forth [2,4–6].

As one of the most important QoS measures in grid environ-
ments, the response time of a task needs to be studied. Response
time of a specific task is important, because of its ability to describe
the performance of the system from the user’s perspective. Since
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the success ofmost of the services provided by distributed systems
depends on user satisfaction, such a user-orientedmetric may be a
more appropriateway to rate a system’s effectiveness [7–9]. There-
fore, minimizing the response time of a particular task can be con-
sidered as a goal of scheduling algorithm in grid environments. But,
on the other hand, in grid environments, it may bemore important
that the system’s behavior be consistent, rather than faster over-
all but occasionally inconsistent [7]. Hence, considering the mean
response time of the tasks [8,10–12] in grid environments can be
more interesting than considering the response time of the tasks.
In addition to the mean response time of the tasks which is one
the user-oriented performance metrics in grid environments, to-
tal makespan of the grid environment can be considered in the
scheduling algorithms [4–6,12–15]. The total makespan of the grid
environment is one of the system-oriented performance measures
which is defined as a largest makespan of the grid resources ex-
isting in the environment. The makespan of a resource is also
defined as the total completion time of the tasks assigned to that
resource. Minimizing the total makespan of the grid environment,
the throughput of the environment is increased, accordingly.

Because of resource heterogeneity and application diversity in
grid environments, discovering available resources and selecting a
suitable subset of those resources are very important to achieve
high performance and high throughput computing. Searching
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for suitable resources to service the submitted tasks is critical
mission for scheduling algorithms in grid environments. Definition
of the suitable resource is very depended on the goal of the
scheduling. In this paper, the goal of the scheduling is to minimize
the overall mean response time of the submitted tasks and total
makespan of the environment. Therefore, grid manager should
find an appropriate resource to service the tasks, considering the
completion times of them. The gridmanager in a grid environment
is responsible for locating, reserving, allocating, monitoring,
and de-allocating one or more computational resources for an
application [4,10,13,16]. The proposed scheduling method can be
used in each of the gridmanagers to find a resourcewith lowmean
response time for the tasks submitted to the grid environment.
To achieve this, a state transition diagram representing the grid
environment is constructed. Grid managers and resources are
shown by vertices and communication links among the managers
and resources are shown by edges in the state transition diagram.
Each of the edges is labeled by a real number between zero and
one to show the connection probability between vertices. If a
probability of the edge between node a and node b becomes one,
then node a can send data to node b and if this number becomes
zero, there is no data transmission between these nodes. Based
on the special conditions existing in the state transition diagram
representing the grid environmentwhich is further explained later,
the state transition diagram can be considered as an absorbing
discrete time Markov chain (DTMC) [17,18]. Applying quantitative
analysis to the absorbing DTMC and considering the aim of the
proposed method which is finding the connection probabilities
to minimize the mean response times of the tasks, a nonlinear
programming (NLP) problem is defined. Solving this problem, the
path of the scheduling, probability matrix of the DTMC, target
resource(s) for executing the tasks, the minimum mean response
time of the tasks andminimum totalmakespan of the environment
can be found.

The remaining part of the paper is organized as follows.
Section 2 introduces the related research works done on the
probabilistic scheduling in various systems. In Section 3, the basic
model of the grid environment used in this paper is presented.
Section 4 proposes the probabilistic task scheduling method
and Section 5 provides two illustrative examples to show the
application of the proposed method. In Section 6, performance
evaluation is done to compare the proposed method against to the
other similar scheduling approaches. Finally, Section 7 concludes
the paper and presents future work.

2. Related work

A lot of probabilistic scheduling algorithms have been proposed
to schedule jobs and requests among various servers. Considering
the architecture and characteristics of the grid environments, these
probabilistic algorithms cannot be applied to the grids properly.
In the follow, we describe some of the probabilistic scheduling
schemes proposed for different environments.

Bestavros and Spartiotis [19] have presented a probabilistic
job scheduling heuristic in distributed systems to meet tasks’
deadlines. The algorithm tries to schedule a submitted task locally
to meet its deadline. If that is not possible, it tries to find
another node with high probability of success. To do this, when
a sporadic task arrives at a node and the node cannot guarantee
the execution of the task, it starts looking for a suitable node. First,
it selects probabilistically a node from the light-load category or
the medium-load category. After a category has been selected, the
nodes in this category are considered to be allocated to the task.
In some situations, there is a probability to find more than one
suitable node for executing the submitted task. In this case, the
target node is selected probabilistically. The algorithm presented
in [19] only tries to increase the number of the sporadic tasks
which are accepted for execution. In other words, it does not
consider response time of a particular task or completion time of
a bag of tasks which are very interesting issues in grid computing
environments.

Anand et al. [20] have presented a probabilistic load scheduling
algorithm within distributed systems. The proposed algorithm
in [20] considers local and global tasks for each of the systems
existing in the network and tries to find the best distribution of
the tasks among the resources. Since different priorities for each
of the local and global tasks are considered, the model uses a
priority queuing optimization model to formulate a NLP problem
to find the scheduling probabilities. Applying the scheduling
probabilities obtained from solving the NLP problem to the global
tasks arrival rate, load distributed among the resources can be
balanced. The algorithm proposed in [20] cannot be applied to
the grid environments with distributed managers, because in this
model, all of the global tasks are submitted to one of the managers
and users are forced to deliver their own tasks to the central
terminal.

Jiang et al. [21,22] have presented two probabilistic priority
scheduling disciplines for high speed and multi-service networks.
In [21], the starvation of low priority packets against to the high
priority ones is considered and a solution to avoid this problem is
presented. To achieve this, a parameter is assigned to each of the
priority queues in each of the servers. This parameter determines
the probability in which its corresponding queue is served when
the queue is sampled by the server. Using this mechanism, a
new packet scheduling discipline named probabilistic priority
(PP) is presented. The PP improves the performance and average
throughput of the scheduling by probabilistically assigning input
tasks to the servers. Similar to the discipline proposed in [21],
another PP scheduling for multi-service networks has been
presented in [22]. Tham et al. [23] have extended the PP scheduling
discipline to the multi class cases. In this version of PP scheduling
discipline, various classes for each of the input queues are
considered and relationship between the average queuing delay
for each class and its probabilities are derived.

Salami and Chan [24], Salami et al. [25] have presented
two probabilistic scheduling algorithms for IP traffic. In [24],
an iterative probabilistic scheduling (IPS) algorithm has been
presented to model virtual output queuing strategy in each of
the input queues implemented in routers. IPS algorithm considers
the first in first out (FIFO) mechanism for each of the output
queuing strategies. First, IPS orders the packets using estimating
the transmission bandwidth and thewaiting time. Then theweight
of each packet is calculated using these two parameters. The
algorithm uses these weights to determine the probability of
transmitting each of the packets retrieved during a specific time
slot. After determining the related probabilities for each of the
packets, the packets can be scheduled among output ports. In [25],
the proposed IPS is extended to support other mechanisms such as
PIM and iSLIP in addition to FIFO. The analytical model presented
in [25] shows that IPS can improve the limitations of the FIFO
mechanism by implementing the deterministic schemes such as
the iSLIP and PIM. Although the IPS presented in [24,25] can be
applied to the routers appropriately, none of them can be used
in grid environments because of the different structures of the
router systems and grid environments. In [24,25], it is assumed
that all of the output queues can be accessed from all of the input
ones, but in grid environments, the grid resources are belonged
to the various administrative domains and cannot be accessed by
all of the managers. In other words, the scheduling scheme in grid
environments should be considered in two different levels; within
the gridmanagers in the first level andwithin the grid resources in
the second level.
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Zhou and Beard [26] have introduced an adaptive probabilistic
scheduling scheme for dealing with admission control in a cellular
emergency network. The proposed method in [26] dynamically
adjusts the scheduling probability regarding the arrival rates of the
different classes of traffic. Moreover, the admission of emergency
traffic and public originating traffic can be adjusted in thismethod.
Rao and Huh [27] have proposed a probabilistic and adaptive job
scheduling algorithm using system generated predictions for grid
systems. The proposed algorithm first uses system-generated job
execution time estimates without actually submitting jobs to the
target resource. Then, this estimation is used to predict the job
scheduling feasibility on the target system.

3. The systemmodel

3.1. Grid environments

The grid computing environment considered in this paper is
composed of a number of virtual organizations (VOs) in which
share their own resources to shape a powerful computational sys-
tem. The VOs which we are concerned can be small or large, short-
or long-lived, and homogeneous or heterogeneous [3,11,12,16].
Individual VOs may be structured hierarchically from smaller sys-
tems and may overlap in membership. Each of these VOs is com-
posed of several computational resources and a manager that
manages the scheduling of the applications inside a VO. The man-
ager of a VO is responsible for executing the tasks submitted to that
VO and delivering the results of the execution to the correspond-
ing user. Since VOs may overlap in membership [1,16], a manager
belonging to a specific VO can administer the resources existing
inside other VOs, and therefore a resource can be administered by
more than one manager.

In grid environments, all of the resources are autonomous
and unpredictable. They can be added to or taken away from
the environment continuously [1,2]. Therefore, none of the
managers have any control over the resources. Managers can
only control the scheduling of the tasks and some administrative
issues over member resources. Resource sharing, coordination,
management and agreement negotiation among different VOs are
to be conducted between managers. Actually, the relationship
between VOs is made by connection through their managers. Fig. 1
shows the structure of the grid environment described above. As
it is shown in Fig. 1, grid users submit their own tasks to one of
the grid managers. The manager is responsible for execution of
the submitted tasks. To execute a given task, the manager contacts
its own resources to find a suitable resource to service the task. If
the manager finds such resource, then it assigns the task to that
resource, otherwise, the manger contacts other mangers within
other VOs to find the suitable resource to service the submitted
task. Since the goal of the scheduling in this paper is to minimize
the overall mean response time of the tasks and total makespan
of the grid environment, the grid managers should search the
environment to find a path with minimum routing time (within
managers) and a resource which can complete a given task in
minimum possible time.

As shown in Fig. 1, a time label is assigned to each of the
managers and resources. The time in a manager shows the mean
time required to service a task in themanager. This service contains
the entire search of the related domain to find the best suitable
resource to execute the submitted task. The time associated to a
resource shows themean service time of the resource for executing
a particular task, as well. Therefore, when a task is transferred
between managers to reach a suitable resource for execution, the
mean response times of the managers in which the task passed
them are added to the overall response time of the task. Hence,
Fig. 1. A simple structure of the grid environment considered in this paper.

the mean response time of the task t assigned to the resource Rj,
shown by T tj , can be calculated by Eq. (1).

T tj =

−
i; task t is passed through manager Mi

RT i +

ST j + Readyj


(1)

where RT i denotes themean response time of themanagerMi, and
ST j and Readyj denote the mean service time and ready time of the
resource Rj, respectively. It is necessary to mention that the ready
time of a resource which show the time at which the resource is
ready to execute the assigned task should be updated after each
assignment. Therefore, the ready times are set to zero for all of
the resources in beginning of the scheduling, and then they are
updated after each assignment.

3.2. Assumptions

The following are some assumptions, which are used in the
proposed scheduling method.

Assumption 1. The communication between various VOs is pro-
vided by communicating their managers. All of the managers can
be fully connected to each other, but it is also possible to forbid
some transitions.

Assumption 2. The communication links between the grid man-
agers are bilaterally. In otherwords, if themanagerMi is connected
to Mj, then Mi can send data to Mj and vice versa. This assumption
is necessary to allowusers to be in touchwith grid environment via
all of themanagers. Actually, there is no central terminal to deliver
user tasks, and therefore users can submit their own tasks to each
of the managers.

Assumption 3. The communication links between the managers
and resources are unilaterally. This means that, if the gridmanager
Mi is connected to the grid resource Rj, then onlyMi can send data
to Rj.

Assumption 4. There is no communication links between the grid
resources. The relationship between the grid resources can only be
provided by their managers.

Assumption 5. Tasks submitted to themanagers have no data and
control dependences on each other. Therefore, a grid resource can
start the execution of the assigned task immediately after it gets
the task data from the manager.

4. The proposed method

In this section, the proposed probabilistic scheduling method is
presented. In order to present the method, some preliminaries of
Markov chains [17,18] should bementioned. Therefore, we explain
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Fig. 2. A simple grid environment with three managers and four resources.

the required equations and formulas of Markov chains and then
map the grid scheduling problem to the appropriateMarkov chain.
More details about the definitions and prove of the theorems can
be found in Refs. [17,18,28].

Based on the concepts explained in Section 3, the connection
among the managers and between a manger and its resources
is very important, because it forms the topology of the state
transition diagram representing the grid environment. As an
example, consider a simple grid environment with three grid
managers and four grid resources. Suppose all of the managers are
connected to each other, but the connection between themanagers
and resources is different. Such that the manger M1 is connected
to the resources R1 and R2, the manager M2 is connected to the
resources R1, R2 and R3, and finally the manager M3 is connected
to the resources R1, R3 and R4. Fig. 2 shows this simple grid
environment in which the managers and resources are depicted in
different boxes.

For the grid environment described in Section 3, a matrix
representing the connection between the managers and resources
can be defined. This matrix, named connectivity matrix, shows the
topology of the grid environment. In general, a connectivity matrix
for a grid environment withm number of managers and r number
of resources can be represented as Eq. (2)

Conn =



M1 ··· Mm R1 ··· Rr

M1 c11 c12 c1(m+r)

··· · · ·

Mm c21 c22 c2(m+r)

R1

.

.

.
. . .

.

.

.

···

Rr c(m+r)1 c(m+r)2 · · · c(m+r)(m+r)


(2)

where cij =


1; there is a connection between node i and node j,
0; otherwise, ∀i, j; 1 ≤

i, j ≤ (m + r).
In addition, the connection probability between managers and

resources can be represented by a rowmatrix for each of the nodes
(managers and resources) in the grid environment. The connection
probability matrix for node i can be represented as Eq. (3).

Probi =

pi1 pi2 · · · pi(m+r)


, ∀i; 1 ≤ i ≤ (m + r) (3)

0 ≤ pij ≤ 1, ∀i, j; 1 ≤ i, j ≤ (m + r)
(m+r)−
j=1

pij = 1, ∀i; 1 ≤ i ≤ (m + r)
where pij denote the probability that node i establish a connection
with node j and sends a task to the node j. Actually, the aim of the
proposed method is to find pij for all i and j in which the overall
mean response time of the tasks is minimized.

Using Eqs. (2) and (3) for all of the nodes (managers and re-
sources), one can obtain the probability matrix of the environment
by multiplying Probi to the corresponding row in matrix Conn.
Eq. (4) shows the probability matrix of a grid environment with
m number of managers and r number of resources.

P =


p11 p12 p1(m+r)

· · ·

p21 p22 p2(m+r)
...

. . .
...

p(m+r)1 p(m+r)2 · · · p(m+r)(m+r)

 (4)

0 ≤ pij ≤ 1, ∀i, j; 1 ≤ i, j ≤ (m + r)
m+r−
j=1

pij = 1, ∀i; 1 ≤ i ≤ (m + r).

Since none of the nodes representing the grid managers have self-
loop transitions, we can replace pii with zero for 1 ≤ i ≤ m.
Moreover, since there is no communication links among the grid
resources, without loss of generality, we can suppose that there is
a self-loop transition on each of the nodes representing the grid
resources. Therefore, the entry pjj of matrix P can be replaced with
one for m + 1 ≤ j ≤ m + r . In our work, this modification is nec-
essary to model the task scheduling process using Markov chains.
Considering aforementioned modifications, matrix P shown in
Eq. (4) can be rewritten as Eq. (5).

P =


p11 p12 p1(m+r)

· · ·

p21 p22 p2(m+r)
...

. . .
...

p(m+r)1 p(m+r)2 · · · p(m+r)(m+r)

 (5)

pii = 0, ∀i; 1 ≤ i ≤ m
0 ≤ pij ≤ 1, ∀i; 1 ≤ i ≤ m, ∀j; 1 ≤ j ≤ (m + r)
m+r−
j=1

pij = 1, ∀i; 1 ≤ i ≤ m

pii = 1, ∀i; (m + 1) ≤ i ≤ (m + r)
pij = 0, ∀i; (m + 1) ≤ i ≤ (m + r) ,

∀j; 1 ≤ j ≤ (m + r) , i ≠ j.

Matrix P shown in Eq. (5) specifies a state transition diagram (or
finite directed graph), where state i in the graph is shown by a ver-
tex, and a one-step transition from state i to state j is illustrated by
an edge labeled by transition probability pij. Based on definition, a
finite state discrete time Markov chain (DTMC) graphically can be
shown by such state transition diagram [17]. Therefore, matrix P
shows the one-step transition probability matrix of the (m + r)-
state DTMC [17,18]. DTMCs can be used to effectively model and
analyze the various performance measures of computer systems.
DTMCs are categorized based on the classification of their con-
stituent states [17,18,28].

Definition 1. A state si of aMarkov chain is called absorbing state if
it is impossible to leave it. In otherwords, state si is called absorbing
state if and only if no other of the DTMC can be reached from it (i.e.,
pii = 1).

Definition 2. A Markov chain is absorbing if it has at least one
absorbing state, and if from every state, it is possible to go to
an absorbing state (not necessarily in one step). In an absorbing
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Markov chain, a state which is not absorbing is called transient
state.

Considering Eq. (5), Definitions 1 and 2, it can be expressed
that DTMC representing the grid task scheduling is an absorbing
DTMC. Actually, the nodes representing the grid resources form
absorbing states in the related DTMC. Transition probabilitymatrix
of an arbitrary absorbing DTMC can be split into four sub-matrixes.
If there are r absorbing states, representing grid resources, and
m transient states, representing grid managers, the transition
probability matrix of the DTMC can be shown using following
canonical form:

P =

TS AbS
TS
AbS


Q R
0 I


(6)

where I is an r-by-r identity matrix, 0 is an r-by-m zero matrix,
R is a nonzero m-by-r matrix, and Q is an m-by-m matrix. The
firstm states are transient, shown with TS, and the last r states are
absorbing which is demonstrated with AbS.

Matrix P shows the one-step transition probability between
states of a DTMC. Repeatedly applying one-step transitions gen-
eralizes directly to n-step transition probabilities. More precisely,
let p(n)

ij (k, l) denote to the probability that the DTMC transits from
state i at time k to the state j at time l in n = l − k steps. Eq. (7)
shows this more accurately.

p(n)
ij (k, l) = P (Xl = j|Xk = i) , 0 ≤ k ≤ l. (7)

Now, the theorem of total probability applies for any given state
i and any given time values k and l such that

∑
j p

(n)
ij (k, l) = 1,

where 0 ≤ p(n)
ij (k, l) ≤ 1 [17].

Considering above definitions and concepts, following theorem
can be written:

Theorem 1. Let P be the transition probability matrix of a DTMC. The
(i, j)th entry, p(n)

ij , of thematrix Pn gives the probability that the DTMC,
starting in state si, will be in state sj after n steps.

Now, using a standardmatrix algebra argument, one can obtain
Pn as following form:

Pn
=


Q n

∗

0 I


(8)

where the asterisk shows the m-by-r matrix in the upper right
hand corner of Pn. The form of Pn shows that the entries of Q n

present the probabilities of being in each of the transient states
after n steps for each possible transient starting state [18]. Using
probability of absorption theorem [18,28], it can be proved that in
an arbitrary absorbing DTMC, the probability that the process will
be absorbed is 1 (i.e., Q n

→ 0 as n → ∞).
As mentioned before, the (i, j)th entry in Q k denotes the

probability of arriving in state sj after just k steps, starting from
state si. Therefore, we can define the matrix N as the inverse of
matrix I − Q . It can be proved that the matrix N is equal to [18]:

N = I + Q + Q 2
+ · · · =

∞−
k=0

Q k. (9)

Definition 3. For an absorbing Markov chain MC , the matrix N =

(I − Q )−1 is called the fundamental matrix for MC . The entry nij of
N shows the expected number of times that the process is in the
transient state sj if it is started in the transient state si.

IfXij is a randomvariable denoting the number of times the state
sj is visited starting from si, before entering the absorbing state,
then
E

Xij


= nij, 1 ≤ i, j ≤ m (10)

where nij is the (i, j)th entry in N .
The visit number of a specific transient state is very useful

for estimating QoS measures in a system such as the average
time spent in the system, the overall reliability of the system and
so forth. As an example, one can find the mean response time
of a system by multiplying the average service times of nodes
represented by transient states (sj) to the expected number of
times that the process is in the transient state sj if it is started in
the transient state si.

Having mean response time of the grid manager Mi and the
mean service time of the grid resource Rj, the expected response
time to a particular task can be estimated. To achieve this,
the overall DTMC representing the grid environment should be
split into small DTMCs (sub-DTMCs) with exactly one absorbing
state. This means that, we can construct r distinct DTMCs
from the primitive DTMC in which each of the new generated
DTMCs consists of exactly one absorbing state representing its
corresponding grid resource.

Now, the expected response time for each of the new generated
DTMCs can be calculated. To do this, suppose task t is submitted
to the grid manager Mk, and therefore this manager should find
the appropriate path for scheduling the submitted task among the
grid resources. To achieve this, Mk contacts other managers and
its own resources to find a suitable resource for executing the
submitted task. Suppose RT i represents the mean response time of
the managerMi existing in the scheduling path and ST j represents
the mean service time of the resource Rj allocated to service the
task t . Therefore, having Eq. (1) and considering the sub-DTMC
consisting of resource Rj, the mean response time of the task t
assigned to the resource Rj, shown by T tj , can be calculated by
Eq. (11).

T tj =

m−
i=1


nki × RT i


+


ST j + Readyj


(11)

where nki is the kth row of m-by-m matrix N .
Note that Eq. (11) can be written for each of the sub-DTMCs

which can be generated inside the overall DTMC. In addition, the
probability constraints, shown in Eq. (5), should be considered
individually for each of the sub-DTMCs. In other words, only the
probabilities of the edges existing in sub-DTMC j, 1 ≤ j ≤ r , will
be taken into account in the related Eq. (11). Now, the aim is to
find probabilities of the edges existing in sub-DTMC j such that the
related mean response time, represented by T tj , is minimized. To
achieve this, considering Eq. (11) for each of the sub-DTMCs and its
related probability constraints, a NLP problem will be defined for
each of the sub-DTMCs. Solving the NLP problem for sub-DTMC j
using methods such as branch and bound techniques [29], the
probabilities of the edges existing in sub-DTMC j can be estimated.
Since the aim of the proposed method is to find matrix P , we need
to solve r numbers of these NLP problems to find the best solution.
After that, the mean response time to the task t can be found by
getting minimum of T tjs. This minimization is shown in Eq. (12).

T t = Min

T tj


, ∀j, 1 ≤ j ≤ r (12)

where T t denote the minimum mean response time of the task
t submitted to the grid manager Mk. Knowing the minimum T tj ,
which is equal to T t , and the related probabilities, one can shape
the connection probability matrix of the grid environment for a
given task. In some cases, a number of the entries in the probability
matrix are left as unknown values. Actually, these values are not
necessary for finding the optimal scheduling path. In these cases,
mean response time of the scheduling, the path of the scheduling
and the related probabilities can be found only using the computed
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values. Finally, after finding the optimal scheduling path, the
suitable resource for executing the submitted task is determined.
After determining the destination resource, the task is assigned to
that resource, and then the ready time of the resource is updated.
After that, the method can be applied to schedule next tasks.

There are two points which should be emphasized. First, there
is a probability that T t be equal to more than one T tj . In this
situation, one of the scheduling paths determined by one of the
T tjs can be chosen stochastically. Also, one can choose more
than one path in each of the valid nodes with probability of
(1/number of the valid paths from that node). Second, if T t is equal
to exactly one T tj , our proposed method can find a deterministic
scheduling path for the submitted task. In this case, the path of
the scheduling and the resource allocated to the submitted task
are specified deterministically. These two points are illustrated in
the next section.

5. Illustrative examples

In order to show the applicability of the proposed method to
the grid environments with different number of managers and
resources, two simple grid environments with different topologies
are presented, in this section. The first environment is composed
of two managers and two resources with different processing
speeds. In the second example, the grid environment depicted in
Fig. 2 is considered and the probability matrix of this environment
is calculated for different processing speeds of the managers
and resources. In both examples, the parametric inverse of the
fundamental matrix N is computed and the NLP problem obtained
from optimization problem in each of the cases is solved using the
LINGO optimization modeling software [30].

5.1. Example 1

Suppose there is a grid environment with twomanagers named
M1 and M2 and two different resources named R1 and R2. Also,
suppose the mean response times of the managersM1 andM2 and
resources R1 and R2 are RT 1 = 1, RT 2 = 2, ST 1 = 9, ST 2 = 7 s
per task, respectively. Moreover, it is assumed that there is no load
on resources and both R1 and R2 can execute the assigned task
immediately after getting its data from the related manager(s).

The connection probability matrix of this environment is given
in Eq. (13).

P =

 0 p12 p13 0
p21 0 p23 p24
0 0 1 0
0 0 0 1

 (13)

0 ≤ p12, p13, p21, p23, p24 ≤ 1
p12 + p13 = 1
p21 + p23 + p24 = 1.

Using matrix P shown in Eq. (13), the state transition diagram or
DTMC of the environment can be depicted as Fig. 3.

The aim is to find matrix P such that the mean response time
to the task t submitted to M1 is minimized. To achieve this, the
fundamental matrix N should be calculated for the DTMC shown
in Fig. 3. Considering Definition 3, matrix N can be computed as
Eq. (14).

N =

[
(−1/ (−1 + p12 ∗ p21)) (−p12 / (−1 + p12 ∗ p21))

(−p21 / (−1 + p12 ∗ p21)) (−1/ (−1 + p12 ∗ p21))

]
.

(14)

As shown in Fig. 3, two distinct absorbingDTMCs can be considered
inside overall DTMC; DTMCs Chain 1 and Chain 2 consisting of
Fig. 3. DTMC representing the grid environment given in Example 1.

resourcesR1 andR2, respectively. Using Eq. (11), themean response
times of the task t can be computed when the task is assigned to
R1 (within Chain 1) and R2 (within Chain 2). Eq. (15) shows these
times.

T t1 =

(−1/ (−1 + p12 ∗ p21)) × RT 1


+


(−p12 / (−1 + p12 ∗ p21)) × RT 2


+


ST 1 + 0


(15)

T t2 =

(−1/ (−1 + p12 ∗ p21)) × RT 1


+


(−p12 / (−1 + p12 ∗ p21)) × RT 2


+


ST 2 + 0


.

The corresponding probability constraints among the entries of
matrix P , shown in Eq. (13), are listed below. These constraints are
necessary for solving Eq. (15).

Chain 1: for solving T t1 (16)
0 ≤ p12, p13, p21, p23 ≤ 1
p12 + p13 = 1
p21 + p23 = 1
Chain 2:for solving T t2

0 ≤ p12, p21, p24 ≤ 1
p12 = 1
p21 + p24 = 1.

Using Eq. (12) and considering Eqs. (15) and (16), the NLP problem
to find the minimum mean response time of the task t can be
written as Eq. (17).

T t = Min

T t1 , T t2


(17)

T t1 =

(−1/ (−1 + p12 ∗ p21)) × RT 1


+


(−p12 / (−1 + p12 ∗ p21)) × RT 2


+ ST 1

0 ≤ p12, p13, p21, p23 ≤ 1
p12 + p13 = 1
p21 + p23 = 1

T t2 =

(−1/ (−1 + p12 ∗ p21)) × RT 1


+


(−p12 / (−1 + p12 ∗ p21)) × RT 2


+ ST 2

0 ≤ p12, p21, p24 ≤ 1
p12 = 1
p21 + p24 = 1.

As it is obvious in Eq. (17), p12 is equal to one, and therefore; p21 and
p24 can be found easily. Nevertheless, this is only a simple example
and in general, solving the optimization problem and finding the
related probabilities are not easy works. Therefore, in order to
solve the NLP problems, LINGO optimization engine is used. Using
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Table 1
Results obtained from solving system (17).

Chain 1 Chain 2

Local optimal solution found Local optimal solution found

Objective value: 8.00000 Objective value: 10.00000
Model class: NLP Model class: NLP
Variable Value Variable Value
NUMBER_P 4.000000 NUMBER_P 3.000000
NUMBER_T 4.000000 NUMBER_T 4.000000
MEAN_RESPNSE_TIME 8.00000 MEAN_RESPNSE_TIME 10.00000
p12 0.000000 p12 1.000000
p13 1.000000 p21 0.000000
p21 0.0695951 p24 1.000000
p23 0.9304048 RT 1 1.000000
RT 1 1.000000 RT 2 2.000000
RT 2 2.000000 ST 1 9.000000
ST 1 9.000000 ST 2 7.000000
ST 2 7.000000

LINGO, values of p12, p13, p21 and p23 shown in Chain 1 and p12, p21
and p24 shown in Chain 2 can be calculated as Table 1.

In Table 1,Objective value denotes theminimummean response
time obtained from solving the related NLP problem in each
of the sub-DTMCs. Also, NUMBER_P denotes the number of the
probabilities which should be found during solving the problem,
and NUMBER_T represents the number of the mean response and
service times related to the managers and resources, respectively.
As shown in Table 1, the values computed for T t1 and T t2 are 8.0
and 10.0, respectively. Therefore, the value of T t will be equal to T t1
which is 8.0. Using this fact, the entries of matrix P , shown in Eq.
(13), can be calculated considering Chain 1 probability constraints.
Eq. (18) shows matrix P .

P =

 0 0 1 0
0.07 0 0.93 UN
0 0 1 0
0 0 0 1

 . (18)

As it is shown in Eq. (18), the p12 and p13 entries of matrix P
are equal to 0 and 1, respectively. Considering Fig. 3, it can be
concluded that the task t submitted to the manager M1 will be
assigned to the resource R1, and therefore the mean response
time of the task will be equal to 8.0 s. The path of the scheduling
is also shown by bold arrow in Fig. 3. Therefore, in this case,
our proposed scheduling method can find the optimal scheduling
deterministically.

After finding the scheduling path and the destination resource,
the task is assigned to the resource and ready times of the resources
are updated. In this example, the ready time of the resource R1
will be the sum of its previous ready time and its service time
(0 + 7.0 = 7.0). Therefore, in the next step, the new ready times
will be used instead of the previous ones. It is necessary tomention
that the value of the entry p24 in matrix P , shown in Eq. (18), is left
as unknown value (UN). This value is not required for finding the
optimal scheduling because the edge related to p24 does not belong
to the optimal scheduling path.

5.2. Example 2

Consider the grid environment described in Section 4. This
environment consists of threemanagers namedM1,M2 andM3 and
four grid resources named R1, R2, R3, and R4. The mean response
times of the managers M1 to M3 and the mean service times of
the resources R1 to R4 are supposed to be RT 1 = 1.5, RT 2 =

1, RT 3 = 2, ST 1 = 3, ST 2 = 4, ST 3 = 1.5 and ST 4 = 0.5 s per
task, respectively. This grid environment is depicted in Fig. 2 and
the connection probability matrix of the environment is given in
Eq. (19).
Fig. 4. DTMC representing the grid environment given in Example 2.

P =



0 p12 p13 p14 p15 0 0
p21 0 p23 p24 p25 p26 p27
p31 p32 0 p34 0 p36 p37
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

 (19)

0 ≤ pij ≤ 1, ∀pij; pij ∈ P
5−

j=2

p1j = 1

7−
j=1, j≠2

p2j = 1

7−
j=1, j≠3,5

p3j = 1.

Considering matrix P , shown in Eq. (19), the related DTMC can be
depicted as Fig. 4.

In order to find matrix P , the fundamental matrix N should be
computed for the DTMC shown in Fig. 4. Applying Eq. (11) to the
fundamental matrix N for each of the sub-DTMCs, the possible
mean response times for the task t can be calculated when t
is assigned to the resources R1 to R4. For the sake of brevity,
the fundamental matrix, formulas related to the mean response
times of the sub-DTMCs and their probability constraints are not
presented here. Solving the NLP problem defined by minimizing
T ti for 1 ≤ i ≤ 4, the required entries of the transition
probabilitymatrix can be calculated. Results obtained from solving
the minimization problems using LINGO optimization engine are
summarized in Table 2.

As shown in Table 2, the values computed for T t1 , T t2 , T t3 and
T t4 are 4.5, 5.5, 4 and 4, respectively. Therefore, the value of T t will
be equal to T t3 and T t4 which are 4. Considering the probabilities
obtained fromminimizing T t3 and T t4 , two possible alternatives for
matrix P , shown in Eq. (19), can be conceived as Eqs. (20) and (21).

P =



0 1 0 UN UN 0 0
0 0 0 UN UN 1 UN
0 0 0 UN 0 1 UN
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

 (20)
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Table 2
Results obtained from optimization problem related to Example 2.

sub-DTMC1 sub-DTMC2

Local optimal solution found Local optimal solution found

Objective value: 4.500000 Objective value: 5.50000
Model Class: NLP Model Class: NLP
Variable Value Variable Value
NUMBER_P 9.000000 NUMBER_P 8.000000
NUMBER_T 7.000000 NUMBER_T 7.000000
MEAN_RESPNSE_TIME 4.500000 MEAN_RESPNSE_TIME 5.500000
p12 0.000000 p12 0.000000
p13 0.000000 p13 0.000000
p21 0.000000 p21 0.000000
p23 0.000000 p23 0.000000
p31 0.000000 p31 1.000000
p32 0.000000 p32 0.000000
p14 1.000000 p15 1.000000
p24 1.000000 p25 1.000000
p34 1.000000 RT 1 1.500000
RT 1 1.500000 RT 2 1.000000
RT 2 1.000000 RT 3 2.000000
RT 3 2.000000 ST 1 3.000000
ST 1 3.000000 ST 2 4.000000
ST 2 4.000000 ST 3 1.500000
ST 3 1.500000 ST 4 0.500000
ST 4 0.500000

sub-DTMC3 sub-DTMC4

Local optimal solution found Local optimal solution found

Objective value: 4.000000 Objective value: 4.000000
Model Class: NLP Model Class: NLP
Variable Value Variable Value
NUMBER_P 8.000000 NUMBER_P 7.000000
NUMBER_T 7.000000 NUMBER_T 7.000000
MEAN_RESPNSE_TIME 4.000000 MEAN_RESPNSE_TIME 4.000000
p12 1.000000 p12 0.000000
p13 0.000000 p13 1.000000
p21 0.000000 p21 0.000000
p23 0.000000 p23 1.000000
p31 0.000000 p31 0.000000
p32 0.000000 p32 0.000000
p26 1.000000 p37 1.000000
p36 1.000000 RT 1 1.500000
RT 1 1.500000 RT 2 1.000000
RT 2 1.000000 RT 3 2.000000
RT 3 2.000000 ST 1 3.000000
ST 1 3.000000 ST 2 4.000000
ST 2 4.000000 ST 3 1.500000
ST 3 1.500000 ST 4 0.500000
ST 4 0.500000

P =



0 0 1 UN UN 0 0
0 0 UN UN UN UN UN
0 0 0 UN 0 UN 1
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

 . (21)

Therefore, there are two optimal scheduling in this problem.

One scheduling path is M1
p12=1
−→ M2

p26=1
−→ R3 and the other one

is M1
p13=1
−→ M3

p37=1
−→ R4. Both of these scheduling paths result the

same mean response time for the submitted task. Therefore, the
grid scheduler can select one of them stochastically. Moreover, the
scheduler can use the combination of them in which each of the
paths determined by Eqs. (20) and (21) are selected with suitable
probabilities. One possible combinatorial probability matrix for
this problem can be written as Eq. (22) in which the manager M1
schedules the task to the managers M2 and M3 with the same
probability equal to 0.5. Afterward, the managers M2 and M3
schedule the task to the resources R3 and R4, respectively. Both
scheduling paths are shown by bold arrows in Fig. 4.

P =



0 0.5 0.5 UN UN 0 0
UN 0 UN UN UN 1 UN
UN UN 0 UN 0 UN 1
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

 . (22)

It should be mentioned that the numbers of the path probabilities
are different in sub-DTMCs. As it can be seen in Table 2, the
values of NUMBER_P in sub-DTMC1,sub-DTMC 2,sub-DTMC3 and
sub-DTMC4 are equal to 9, 8, 8 and 7, respectively. Similar to the
Example 1, after finding the suitable scheduling path and the target
resource, the task is assigned to the resource and the ready times
of the resources are updated.

6. Performance evaluation

In this section, performance of the proposed method is
compared to some similar scheduling algorithms regarding two
parameters: overall mean response time (OMRT) difference and
total makespan. To do this, in the first step, five scheduling
algorithms which are used as benchmarks in many research
works are introduced, and then the comparison parameters
are described. Since our proposed method schedules a task to
the appropriate resource immediately after submitting the task
to grid managers, the proposed method falls into immediate
mode scheduling scheme [31,32]. Therefore, five immediate
mode scheduling algorithms; opportunistic load balancing (OLB),
minimum execution time (MET), minimum completion time
(MCT), switching algorithm (SA), k-percent best (kPB) [31–35], are
selected to be compared with our proposed scheduling method.
The short introduction about each of the mentioned heuristics is
presented in below [32–35].

• OLB: This algorithm assigns each task to the earliest idle
resourcewithout any consideration about the execution time of
the task on the resource. If two or more resources are idle, then
a resource is selected arbitrarily. The intuition behind OLB is to
keep all resources as busy as possible. One advantage of OLB is
its simplicity, but because OLB does not take the task execution
times into account, the resulting schedule is not optimal.

• MET : This algorithm assigns each task to a resource that results
in the least execution time for that task, regardless of that
machine’s availability. As a task arrives, all the resources in
the environment are examined to determine the resource that
gives the minimum execution time for the task. Therefore, the
motivation behind MET is to give each task to its best resource.
But, allocating task without considering resource availability
results in load imbalance on grid resources.

• MCT : This algorithm assigns a task to the resource yielding
the earliest completion time (ready time of resource + task
execution time on that resource) for that task. When a task
arrives in the environment, all available resources are examined
to determine the resource that yields the smallest completion
time for the task. In MCT, a task could be assigned to a resource
that does not have the smallest execution time for that task.
The intuition behind MCT is to combine the advantages of OLB
and MET, while avoiding their drawbacks. This method is also
knownas Fast Greedy, originally proposed for SmartNet system.

• SA: The MET method has a potential drawback in that it can
lead to load imbalance across resources by assigning many
more tasks to some resources than to the others since it blindly
looks at execution times of the tasks without considering
the ready time of the resources. On the other hand, the
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MCT heuristic assigns tasks to resources to achieve earliest
completion time thereby ensuring load balance but does not
necessarily minimize the execution times of the tasks. The SA
tries to overcome some limitations ofMET andMCTmethods by
combining their best features. Here, the idea is to first use the
MCT until a threshold of balance is obtained followed by MET
which creates the load imbalance by assigning tasks on faster
resources. More precisely, let rmax be the maximum ready time
and rmin be the minimum ready time; the load balancing factor
is then r = rmin/rmax which takes values in range [0, 1]. It is
obvious that for r = 1 we have a perfect load balancing and if
r = 0, then there exists at least one idle resource. Further, two
threshold values; rl and rh, 0 ≤ rl ≤ rh = 1 are used to control
the order in which MCT and MET are applied. Initially, r is set
to zero so that SA starts allocating tasks according to MCT until
r becomes greater than rh; after that, MET is activated so that
r becomes smaller than rl and a new cycle starts again until all
tasks are allocated.

• kPB: This method also tries to combine the best features of
MCT and MET simultaneously instead of cyclic manner. In
this method, only k percentage of best resources, considering
their service times, are chosen while assigning the tasks. For
a particular task, a resource which gives minimum completion
time is selected from of the k percent best resources instead of
all possible resources. It should be noted that for k = 100, kPB
behaves as MCT and for k = (100/total number of resources) it
acts as MET.

After introducing the benchmark algorithms, comparison pa-
rameters should be described. As mentioned above, two compar-
ison parameters; OMRT difference and total makespan are used to
compare the algorithms with each other. In order to calculate
the first parameter, mean response time of all the tasks submit-
ted to the grid environment are firstly determined in each of the
algorithms. Then, differences between the mean response times
of the comparable tasks in the proposed method and the bench-
mark algorithms are computed and summed. After that, the num-
ber obtained from previous step is divided by the total number
of tasks submitted to the environment to give our first compari-
son parameter. This parameter which is calculated for each of the
benchmark algorithms can be used as a measure to compare the
algorithms with respect to the resulting mean response times for
all of the tasks. The second comparison parameter, total makespan,
can be computed as themaximum time among all resources’ ready
times. In other words, after each assignment, the ready times of
the resources are updated. After assigning all of the tasks to the re-
sources, themaximum ready time shows the totalmakespan of the
environment. Actually, this is the time that the grid environment
finishes the execution of all the tasks submitted to the environ-
ment. Using these parameters, the performance of the proposed
method can be properly compared to the other similar scheduling
methods, because the first parameter compares the methods con-
sidering the mean response time of single tasks, and the second
one compares the methods regarding the total completion time of
all the tasks.

In order to compare the proposed method with the others,
two different case studies are considered and the results obtained
from simulations are reported. In the first case study, the simple
grid environment explained in example 2 is considered and in the
second one, themost realistic grid environmentwithmore number
of grid managers and resources is simulated.

6.1. Case study 1

Consider the grid environment described in Section 5.2 with
the same number of grid managers and resources. Moreover, the
Fig. 5. OMRT differences obtained from benchmark algorithms in case study 1.

Fig. 6. Total makespan of the grid environment considered in case study 1.

topology of the environment andmean response and service times
of the managers and resources are the same. It is supposed that
the number of tasks submitted to the manger M1 is 10, and the
comparison parameters are calculated after execution of all of the
tasks. Also, the rl and rh parameters in SA and k factor in kPB
algorithm have been set to 0.1, 0.3 and 0.5, respectively. It should
be mentioned that these values can be found in some related
references, but generally, one could use other values for these
parameters and compare the new results with our reported ones.
The aforementioned values are approximately the best ones in
which the results obtained fromapplying themare very reasonable
and acceptable.

Fig. 5 compares the proposed algorithm with the mentioned
benchmarks regarding the first comparison parameter, OMRT
difference. As it can be seen in Fig. 5, the OMRT obtained from the
proposed algorithm is less than the OMRTs of the other algorithms,
because the differences between OMRT of the benchmarks and the
proposed algorithm are positive. Moreover, considering Fig. 5, it
can be concluded that theMCT andMET heuristics are respectively
the closest and farthest methods from our proposed one regarding
the first comparison parameter.

Fig. 6 shows the total makespan of the assumed grid environ-
ment after assigning all of 10 tasks to the resources. As it is obvious
in Fig. 6, the total makespan of the environment obtained from ap-
plying the proposed method to the environment is less than other
benchmarks’ makespans. Considering Figs. 5 and 6, it is concluded
that although the OMRT of the kPB algorithm is higher than MCT
heuristic, the total makespan obtained from applying kPB is less
than MCT’s makespan.

As it is mentioned above, the grid environment in this case
study is only a simple grid with small number of managers and
resources. Furthermore, the number of the tasks submitted to the
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Fig. 7. State diagram representing the grid environment given in case study 2.

environment is equal to 10, which is very small in comparison
with real grids. For this reason, in the following case study, a most
realistic grid is considered.

6.2. Case study 2

In order to study a most practical and realistic grid, a grid
environment with 5 managers and 475 resources is considered.
The number of the resources and virtual organizations in the grid
discussed in this case study is the same as AuverGrid system [36].
Fig. 7 shows the state diagram of this environment in which
the connections among managers are shown by solid arrows and
the connections between managers and resources are shown by
dashed arrows. It should be mentioned that the topology of the
grid considered in this case study is different from the AuverGrid’s
topology, because we want to study the resource overlapping
problem among different administrative domains, which is not
a case in AuverGrid. For the sake of brevity, all the 475 grid
resources are grouped within eight circles. Each circle shows a
collection of resources which are connected to the samemanagers.
As an example, as shown in Fig. 7, there are three dashed arrows
between circles representing managers M1,M2, and M4 and the
circle representing the first group of resources named R1–R75. This
demonstrates that the managers M1,M2, and M4 are connected to
all of the resources R1–R75.

All of the settings related to the benchmark algorithms in case
study 2 are the same as those are in case study 1. Only, there are
two main differences between these two case studies:

1. As mentioned in the case study 1, all of the tasks submitted to
the grid environment are delivered to the manager M1. But, in
this case study, it is supposed that all of the five managers can
receive tasks from theusers. This assumption ismade to provide
grid users with distributed terminals to submit their own tasks.

2. The other difference between case study 2 and case study 1 is the
number of the benchmark algorithms. In case study 2, the MET
heuristic has been removed from the set of benchmarks because
of its higher OMRT andmakespan. As it can be seen in Figs. 5 and
6, the OMRT and the total makespan obtained from applying
MET heuristic to the grid environment assumed in case study
1 are significantly higher than those are in other benchmarks.
Consequently, since the number of tasks considered in case
study 2 are very larger than case study 1’s tasks, the comparison
parameters (OMRT and total makespan) obtained from MET
heuristic will be very different from the other benchmarks’
Fig. 8. OMRTs of the algorithms in case study 2.

parameters, so they cannot be appropriately justified in a chart.
Therefore, the MET heuristic is eliminated from the benchmark
algorithms and the proposed method is compared to the four
remaining benchmarks, OLB, MCT, SA and kPB, in this case
study.

In order to compare the proposed method to the aforemen-
tioned benchmarks, two different experiments are investigated
in the case study 2. In the first experiment, the OMRTs of the
algorithms are compared to each other. To do this, the number
of tasks submitted to the environment is varied from 1000 to
10000 in which 20% of all the tasks are delivered to each of the
five managers, in each case. For example, when the number of
submitted tasks is 1000, the tasks T1 to T200, T201 to T400, T401 to
T600, T601 to T800 and T801 to T1000 are submitted to the managers
M1,M2,M3,M4 and M5, respectively. Fig. 8 displays the OMRTs
obtained from the first experiment. As shown in Fig. 8, OMRT
achieved from the proposed method is the lowest one among all
of the obtained results. Moreover, although the OMRT of the MCT
heuristic is higher than the proposed method’s OMRT, the MCT
shows relatively low OMRT compared to the other benchmark al-
gorithms. Furthermore, as it can be seen in Fig. 8, theOMRTof SAdo
not follow a specific pattern and differ when the number of tasks is
varied. This is because SA alternatively changes its own strategy to
match with MCT or MET considering values of rl and rh. Since the
number of tasks effects on the values of rl and rh, SA shows various
OMRT for each number of tasks and does not obey a specific model
for all number of tasks. But, generally, it can be stated that the SA’s
OMRT is always higher than the OMRT of the proposed method.

In the second experiment, the OMRT and total makespan
obtained from applying the mentioned algorithms to the grid
environment assumed in case study 2 are compared to each
other, when the number of tasks is 400000. This experiment can
demonstrate themost realistic results because the number of tasks
is very close to the real environments. Fig. 9 shows the OMRT
differences between the benchmark algorithms and the proposed
method. As it can be seen in Fig. 9, the OMRT obtained from the
proposed method is less than the OMRTs of the other algorithms.
This result is the same as one obtained from investigating Fig. 5.
Hence, it can be concluded that the proposed method shows the
minimum OMRT compared to the other algorithms in both light
and heavy load of the system.

Fig. 10 shows the total makespan of the environment after
assigning all of 400000 tasks to the grid resources. As shown in
Fig. 10, the total makespan of the environment obtained from
applying the proposed method is less than other benchmarks’
makespans. Moreover, one can see that the total makespan
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Fig. 9. OMRT differences obtained from benchmark algorithms in case study 2.

Fig. 10. Total makespan of the grid environment investigated in case study 2.

resulted from MCT heuristic is also an acceptable value, but the
makespan of the proposed method is less than this value, too.

7. Conclusion and future work

The mean response time of a task is one of the most important
user-oriented QoSmeasures in grid environments. Minimizing the
mean response timeof the tasks submitted to the grid environment
can be useful to achieve high performance computing within
grid environment. Furthermore, the total makespan of the grid is
known as one of themost important system-oriented performance
measures in which minimizing it can help the system to seem
more effective and useful. In order to minimize the mean response
time of the tasks and total makespan of the grids, appropriate task
scheduling algorithms should be applied by the grid managers to
optimally dispatch tasks to the available resources. In this paper, a
new probabilistic scheduling method is presented to find the best
suitable scheduling path within grid environments. Our proposed
method can be run on each of the managers distributed through
the environment and find the most suitable scheduling path.
The proposed method uses DTMCs to model the task scheduling
process within grids, and then applies quantitative analysis to the
obtained DTMC. Considering the probability constraints on each
of the absorbing DTMCs existing inside the overall DTMC, a NLP
problem will be defined for each of the sub-DTMCs. Consequently,
the minimum mean response time of a task and its corresponding
scheduling path can be found by solving the NLP problems.

There are numbers of research issues remaining open for future
work. The following are some ideas that can be used for further
research in this area:

• Using other QoS measures (instead of mean response time) as the
target of the scheduling algorithm: Taking into account other
QoS measures (e.g. reliability of task execution, availability
of the resources, cost of scheduling and so forth) may result
new scheduling algorithms in grid environments. In addition,
combining two or more QoS measures to propose a general
scheduling method is an interesting issue in this field of
research.

• Applying a mechanism to select critical and impatient tasks from
the list of the submitted tasks to be rapidly executed on grid
resources: This idea can be implemented by modeling the task
scheduling using queuing networks. Afterward, applying the
various scheduling mechanisms (e.g. EDF discipline) to the
queues existing in the network and analyzing the network
in the steady state, the throughput of the environment and
performance of the scheduling can be assessed.

• Taking into account the data and control dependences between the
tasks submitted to the environment: In our proposed scheduling
method, none of the tasks have dependency to each other. But,
in more realistic grid models, it is assumed that the tasks are
dependent on each other and the execution of a particular task
can be started only after execution of its preceding tasks.

• Proposing a general model to consider the local tasks: Generally,
local tasks are submitted to the grid resources by local users
in each of the administrative domains. In most cases, local
tasks have higher priority than grid ones. Considering local
tasks in the scheduling algorithms may result most applicable
scheduling in grid environments.
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