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• An analytical model is proposed for Infrastructure-as-a-Service (IaaS) clouds taking several details of such systems into consideration.
• A self-adaptive power-aware and Service Level Agreement (SLA)-aware resource management scheme is presented for cloud systems.
• The presented scheme adjusts the number of powered-on Physical Machines (PMs) according to the input workload.
• A validation of the proposed model and scheme against the CloudSim framework is presented.
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a b s t r a c t

In this paper, Stochastic Activity Networks (SANs) are used to model and evaluate the performance and
power consumption of an Infrastructure-as-a-Service (IaaS) cloud. The proposed SAN model is scalable
and flexible, yet encompasses some details of an IaaS cloud, such as Virtual Machine (VM) provisioning,
VM multiplexing, and failure/repair behavior of VMs. Using the proposed SAN, a power-aware self-
adaptive resourcemanagement scheme is presented for IaaS clouds that automatically adjusts the number
of powered-on Physical Machines (PMs) regarding variable workloads in different time intervals. The
proposed scheme respects user-oriented metrics by avoiding Service Level Agreement (SLA) violations
while taking provider-oriented metrics into consideration. The behavior of the proposed scheme is
analyzed when the arriving workload changes, and then its performance is compared with two non-
adaptive baselines based on diverse performance and power consumption measures defined on the
system. A validation of the proposed SANmodel and the resourcemanagement scheme against an adapted
version of the CloudSim framework is also presented.

© 2018 Published by Elsevier B.V.

1. Introduction

Cloud computing has attracted great popularity in recent years.
Infrastructure as a Service (IaaS) is one of the most popular types
of services that clouds offer. In IaaS, low-level computing resources
are delivered to customers in the form of Virtual Machines (VMs).
IaaS cloud providers require to monitor, measure, and manage
Quality of Services (QoS) delivered to their customers in order to
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meet Service Level Agreements (SLAs). SLAs specify QoS targets,
economical revenues, and penalties associated with SLA viola-
tions [1]. Cloud providers should prevent SLA violations as much
as possible if they want to maximize their profit. Amazon and
Google reported a revenue loss of 1% and 20%, respectively, due
to small additional response delays [2]. On the other hand, to-
day’s cloud data centers consume a huge amount of power. The
power consumption of cloud infrastructures in 2020 is estimated
to be 1, 963.74 TW [2]. Therefore, concerns about electricity costs
and environmental impacts of cloud data centers are intensifying.
Some of the big cloud providers, such as Amazon, have recently
started to generate the power required to operate their data cen-
ters. At the end of 2016, more than 40% of the power consumed
by Amazon’s global infrastructure came from their wind and solar
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farms, and the company set a goal to be powered by 50% renewable
energy by the end of 2017 [3]. Therefore, to achieve the goal
of maximizing the SLAs revenue while minimizing energy costs,
simultaneous modeling and evaluation of performance and power
consumption of cloud systems are of utmost importance inmodern
data centers.

Another critical challenge in the context of cloud computing is
resiliency. Resiliency is briefly defined as the capacity of a system
to remain reliable, failure tolerant, and dependable in case of
any changes or failures that result in a temporal or permanent
service disruption [4]. On the one hand, hardware and software
resources in cloud infrastructures are subject to failure. According
to the Information Week, IT outages cause more than $26.5 bil-
lion revenue loss each year [5]. On the other hand, non-periodic
workload bursts, which are sudden temporary increases in us-
age of shared resources, are also common in large-scale systems
like clouds [6]. Workload burstiness usually leads to performance
degradation in terms of uncontrolled response time, server over-
loading, service unavailability, and SLA violation [7]. The dynamic
and unpredictable nature of non-periodicworkload bursts hardens
performance evaluation of large-scale cloud systems [8]. Therefore,
modeling and quantification of resiliency in cloud systems, includ-
ingmodeling of failure/repair of resources andworkload bursts, are
among the foremost concerns in cloud environments.

On the one hand, providing IaaS cloud services that ensure
users’ QoS requirements by avoiding SLA violations is a big chal-
lenge in the cloud computing paradigm [9]. The probability of a
request being accepted by the system as a result of availability
of resources is an example of user-oriented requirements. Cloud
providers should rapidly adjust their resources with workload
changes and failures of cloud components to meet QoS require-
ments. On the other hand, provider-oriented measures such as
utilization of resources and power consumption can affect the
profit margin of cloud providers [10,11]. However, most of current
cloud computing systems and their management techniques are
not able to react efficiently at runtime [9]. Hence, they cannot
appropriately meet both user-oriented and provider-oriented re-
quirements at the same time. To do so, cloud systems require self-
management of resources without human involvement. Hence,
modeling and analysis of autonomic self-adaptive resource man-
agement schemes can be useful in terms of provider achievement
and user satisfaction.

In this paper, an IaaS cloud architecture is modeled in which
the switching on/off of Physical Machines (PMs), VM multiplex-
ing, provisioning and servicing steps of requested VMs, and fail-
ure/repair behaviors of VMs are taken into account. Using the
model proposed for such a cloud architecture, a self-adaptive re-
source manager is presented wherein status data collected from
the cloud environment is used through a four-step cycle of auto-
nomic systems includingmonitoring, analyzing, planning, and exe-
cution [12,13]. Appropriate actions are carried out by the proposed
management scheme to respond to the environmental changes.
The actions are in the form of PM switch on/off commands that
cause some VMs to be added to or removed from the available
resources. The commands are issued so that violations of crucial
metrics from both user and provider perspectives are prevented.
After proposing the self-adaptive resource management scheme,
the behavior of the proposed scheme is evaluated and compared
with two non-adaptive baselines based on diverse performance
and power consumption measures. The formalism used for mod-
eling is Stochastic Activity Network (SAN) [14]. Generally, SANs
are probabilistic extensions of activity networks that are equipped
with a set of activity time distribution functions, reactivation pred-
icates, and enabling rate functions. The nature of the extension
is similar to the one that constructs Stochastic Petri Nets (SPNs)
from classical Petri Nets (PNs). SANs were developed to facilitate

unified performance/dependability evaluation and have features
which permit the representation of parallelism, timeliness, fault
tolerance, and degradable performance [15]. More detailed infor-
mation about SANs can be found in [14–17]. After proposing a SAN
model, the validation of the proposed model and the management
scheme is performed against an extension of a well-known cloud
simulator, the CloudSim framework [18]. The main contribution of
this paper is to propose a scalable and flexible SAN model for IaaS
clouds that encompasses details of such systems. The proposed
model allows us to present our power-aware and SLA-aware self-
adaptive cloudmanagement schemewhich can adjust the number
of powered-on PMs with respect to the input workload to meet
both user- and provider-oriented requirements.

The remainder of this paper is organized as follows. A literature
review on cloud performance and power consumption analysis is
given in Section 2. The system description and main assumptions
about the reference architecture considered in this paper are in-
troduced in Section 3. In Section 4, the proposed model for an IaaS
cloud is presented. Section 5 introduces various measures of inter-
est and the methods for computing them using the proposed SAN
model. Details of the proposed self-adaptive resourcemanagement
scheme are presented in Section 6. Numerical results obtained
from the proposed SAN model and the management scheme are
provided in Section 7. In Section 8, a model validation against the
CloudSim framework is presented. Finally, the paper is concluded
in Section 9 with some notes for future work.

2. Related work

Evaluation of performance and power consumption of cloud
systems using analytical models is an emerging topic. The Markov
reward approach has been employed in [19] to develop an an-
alytical model to quantify the power-performance trade-offs in
IaaS clouds. In this model, physical machines were grouped into
three different pools with different VM provisioning delays and
operational costs: hot (i.e., running), warm (i.e., turned on, but
not ready), and cold (i.e., turned off). Interacting stochastic sub-
models were used to cope with the largeness problem, and the
final solution was obtained by applying the fixed-point iteration
on individual sub-models. Then, the effect of pool configurations
on the power consumption, job rejection probability, and mean
response time was studied. It should be noted that the depend-
ability of the cloud system was not considered in [19]. SANs have
been used in [20] for modeling and evaluation of performance
and power consumption of PMs in an IaaS cloud. In the proposed
SAN, PMs were modeled in three different power consumption
and provisioning delay modes. In order to control the supply
voltage of CPUs, and consequently, manage the power consumed
by PMs, a Dynamic Voltage and Frequency Scaling (DVFS) tech-
niquewas investigated. Using the proposedmodel, severalmetrics,
e.g., waiting time, instant service availability, blocking probability,
and power consumption, were defined and evaluated. Although
theworkpresented in [20] does not take the failure/repair behavior
of VMs into account, the DVFS technique modeled in [20] can be
complementary to our work. Stochastic Reward Nets (SRNs) have
been employed in [21] to model and evaluate an IaaS cloud at
different levels. For this purpose, an SRN was presented to model
a cluster of PMs within a cloud data center that captures several
aspects of cloud systems. Afterwards, the SRN model was used
in a hierarchical manner to propose a monolithic model for an
entire cloud system. Since the monolithic model does not scale
well, two approximate models based on folding and fixed-point
techniques were proposed to evaluate availability, response time,
and power consumption of the IaaS cloud system. The sensitivity
of output measures to the variation of input parameters was also
analyzed. An analytical framework has been presented in [10] to
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analyze the cost andbenefit of different resource allocationpolicies
in an IaaS cloud. Based on the separation of concerns, one sub-
model for each resource management layer, physical and virtual
layers, was proposed using SRNs, and the interaction between two
sub-models was specified by applying guard functions. As a use
case, two sample policies were defined and compared in terms
of different measures, such as blocking probability, performance
degradation, and power consumption. In contrast to our work, the
failure/repair process of VMs was not considered in that work.

The problem of data center right-sizing to achieve energy-
efficiency has been addressed in [22] while taking into consid-
eration different factors such as PM failures and the overhead
introduced by virtualization. The authors presented a stochastic
model for cloud data centers based on Queuing theory to analyze
and understand the dynamic nature of data centers. Themodelwas
then implemented and deployed in a real-world cloud data center.
The results of the experiments were compared with state-of-the-
art in terms of various metrics e.g., SLA violation and energy con-
sumption. An analytical model has been proposed in [23], based on
Continuous Time Markov Chains (CTMCs), for IaaS cloud systems.
The model incorporated several aspects of cloud systems such as
compound user requests, different servicing steps, and migration
of PMs between different pools. The cloud manager considered
in [23] consists of differentmodules, and each onewasmodeled by
a separate CTMC sub-model. The interdependencies between sub-
modelswere resolved via the fixed-point iterationmethod. Finally,
the authors evaluated the effects of various input parameters,
e.g. service time and virtualization degree, on output measures
including probability of task rejection, servicing delay, and power
consumption. A hierarchical correlation model has been proposed
in [24] for evaluation of three correlated metrics of a large online
service in an IaaS cloud named performance, reliability, and power
consumption. The modeling approach integrates Queuing theory,
Markov models, and a Bayesian approach. In the model proposed
in [24], different characteristics of a cloud system such as multiple
VMs hosted on the same server, common cause failures of co-
located VMs, and logicalmappingmechanisms formulti-core CPUs
were investigated.

In addition to the above-mentioned research work, there are
also other research papers focusing on modeling and quantifying
the resiliency of cloud systems through analytical models. An SRN
model has been proposed for an IaaS cloud in [25] with the aim of
resiliency quantification in these environments. Physicalmachines
in such a cloud were grouped into three different pools. Then, the
effect of changing the arrival rate of jobs on the job rejection rate
and the mean number of jobs in a resource provisioning decision
engine were studied by transiently analyzing the proposed model.
A simple but scalable analytical model based on SRNs has been
presented in [26] which can model different cloud strategies and
policies. Several performance measures were defined and evalu-
ated using the proposed model including availability, utilization,
service and waiting times, and responsiveness. The author has
performed a resiliency analysis through a transient solution of
the proposed model to consider how a workload burst affects the
availability and instant service probability of the system. However,
adaptation of cloud resources was not studied in [25] and [26].

There are also approaches that model autonomic and adaptive
resource management in cloud systems. An SRN-based model has
been proposed in [27] for an IaaS cloud data center in which
the load conditions can suddenly change. In order to alleviate
the effects of load bursts, the proposed reactive autonomic cloud
manager adopted the PM overcommitting technique wherein dif-
ferent VMswere allowed to bemultiplexed on the same PM.When
the load burst ended, the PM overcommitting was gradually re-
duced and finally disabled. Several performance measures includ-
ing instant service probability, blocking probability, utilization,

and service time were evaluated through transient analysis of the
system under-study. In contrast to our work, constant times have
been considered in [27], for detecting burst arrival and expiration.
Moreover, while overcommitting of physical resources has been
employed in [27] to withstand the burst, we propose switching
PMs on/off to react to workload changes.

An autonomic cloud manager has been proposed in [28] for
supporting proactive management of applications in a geograph-
ically distributed cloud system. The goal is to redirect the load
to healthy machines and cloud regions by predicting the mean
time to failure of VMs. The predictions were carried out using
machine learning techniques. A model based on Colored Petri Nets
(CPNs) has been presented in [29] for cloud platforms in which
migration of VMs between PMs can take place dynamically. Then,
a method was proposed for calculating energy and transmission
costs of VM migration. Using the proposed model and method,
two migration policies were compared in terms of the energy and
transmission costs. Adaptive energy-aware algorithms have been
presented in [30] for maximizing energy efficiency while mini-
mizing SLA violations. In order to adapt to unpredictable work-
loads, the proposed algorithms used an adaptive three-threshold
framework for the classification of data center hosts into four
different classes, i.e., less loaded, little loaded, normally loaded, and
overloaded hosts. Moreover, the application types and the CPU and
memory resourceswere taken into account during the deployment
of VMs. An experimental analysis using real-world workloads was
performed to demonstrate the efficacy of the proposed approaches.

3. System architecture

The general structure of the IaaS cloud system under-study is
represented in Fig. 1. We consider an IaaS cloud in which user
requests are received in the form of VM instantiation requests. The
requests are enqueued in the input queue, which has a limited size.
An incoming request is rejected from the system if there is not
enough capacity in the input queue or no resources available in the
system. Otherwise, the request is admitted and can be served by an
available VM. The cloud system considered in this paper contains
Npm physical machines, assumed to be homogeneous for the sake
of simplicity [10,11,20,22,23,26], which compose a virtual resource
pool initially containing Npm · L instances of VMs. The multiplexing
factor, L, indicates the number of VMs that can be simultaneously
provisioned on a single PM by sharing its resources.

The resource manager processes queued requests in a First In
First Out (FIFO) order. To this end, a PM with enough resources
should be chosen by the resource manager to host the VM re-
quest at the front of the input queue. The requested VM can be
immediately provisioned if there is an available VM in the virtual
resource pool, which indicates that there is at least one powered-
on PM with sufficient resources. If all PMs of the data center are
fully occupied by serving VMs, the request has to wait until one
of the VMs finishes its associated job and is released. If there are
more than one PM capable to host the requested VM, dispatching
policies can be adopted to decide on which PM the request should
be provisioned. Since our focus in this paper is not on request
dispatching policies, we assume a random dispatching policy that
randomly selects one of the candidate PMs to host the request,
but generally, any dispatching policy can be considered. Once the
target PM is specified by the resource manager to host the VM
request, the request is sent to the hypervisor of that PM to get the
resources required for the VM. Herein, we assume that each IaaS
request needs only one VM, and all VMs are homogeneous. These
assumptions were also made in previously presented approaches
in this area [10,19,23,26,31].

The proposed resource management scheme obeys the general
structure of a four-step control loop of self-adaptive systems [12].
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Fig. 1. Self-adaptive resource management architecture for an IaaS cloud.

In order to prevent violations of crucial metrics, the system is con-
tinuouslymonitored by amonitoring component, which is a part of
the self-adaptive resource management scheme. The monitoring
component checks the state of the system by gathering important
status data, such as the size of the input queue and the number of
available and provisioned VMs. Then, these status data are used
by another part of the self-adaptive scheme, named the analyzer
component, to compute performance measures of interest. In this
paper, the performance measures that should not be violated are
the blocking probability and the utilization of resources. Applying
these performance measures, the planner component of the self-
adaptive scheme decides how to reconfigure the system. If the
blocking probability increases to a predefined threshold T1, the
self-adaptive scheme reacts by switching a PM on, resulting in L
new VMs to be added to the virtual resource pool. On the other
hand, if the utilization of resources drops below a given threshold
T2, the self-adaptive scheme reacts by switching a PM off, resulting
in L available VMs being eliminated from the virtual resource
pool. These reactive reconfigurations are performed by another
component of the self-adaptive scheme, called executer, which is
actually a powermanager responsible for switching PMson andoff.
Using this control loop model of self-adaptive systems, a couple of
PMs are kept in powered-off mode to save power unless they are
needed to be switched on to enhance the QoS delivered to cloud
users. Herein, it is assumed that power consumption of a powered-
off PM is small enough to be neglected, and power consumption of
a powered-on PM is a function of the number of both available and
provisioned VMs running on top of that PM.

VMs are subject to failures during their continuous execution.
The source of such failures could be software aging, failure in the
network, failure in the shared storage system, and so forth [32–
36]. When a failure occurs, the monitoring component detects
the failure and possibly the failed component, and then notifies
the system administrator who investigates the cause of failure
and recovers the failed component. A failed VM will be available
again after recovery/restart by the system administrator. Since the
failure rate of a provisioned VM is larger than that of an available

Fig. 2. SAN model proposed for a data center.

Table 1
Elements of the SAN model presented in Fig. 2.

Name Description Rate or initial number of tokens

Pq Input queue of requests 0
Pa Available VMs Npm · L
Pp Provisioned VMs 0
Pf Failed VMs 0
TAin Arrival of requests λin
TAp Provisioning VMs for requests Min(#[Pq],#[Pa]).λp
TAs Serving requests #Pp.λs
TApf Failure of provisioned VMs #Pp.λpf
TAaf Failure of available VMs #Pa.λaf
TAr Repair of failed VMs λr

VM, the Mean Time To Failure (MTTF) of a provisioned VM is
smaller than that of an available VM. Since we assume that VMs
are stateless, the applications running onVMs are stateless, or their
states are managed out of the VMs through a cloud data store [37–
39], the request corresponding to a failed provisioned VM can be
restarted on another available VM. Hence, such a request is sent
back to the input queue to receive service later.

4. Proposed SAN model

The SAN model proposed for analyzing an IaaS cloud is pre-
sented in Fig. 2. It is assumed that the times assigned to all timed
activities follow exponential distribution [10,23,40,41]. The de-
scription of all elements of this SAN is given in Table 1. Timed
activity TAin models the request arrival process to the cloud data
center.When it completeswith rateλin, one token is deposited into
place Pq by output gate OG1. Place Pq represents the input queue of
the data center. A token in this place serves as a request waiting in
the queue. When the number of tokens inside place Pq reaches Qin,
input gate IG1 prevents activity TAin from completion.

Place Pa serves as the virtual resource pool of the system. The
tokens inside place Pa represent available VMs that can be provi-
sioned and assigned to incoming requests. The initial number of
tokens in place Pa is Npm · L, where Npm is the initial number of
powered-on PMs, and L is the maximum number of VMs that can
be simultaneously provisioned on a single PM. If there is at least
one token in both places Pq and Pa, timed activity TAp is activated
and can complete. Upon completion of this activity, one token is re-
moved from both places Pq and Pa by input gate IG2, and one token
is deposited into place Pp by output gate OG2. Since multiple VMs
can be provisioned at the same time, the actual completion rate of
activity TAp isMin([#Pq], [#Pa]) ·λp which expressesmultiplication
of the minimum number of tokens inside places Pq and Pa by λp,
where λp is the provisioning rate of a single VM.
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Table 2
Gate predicates/functions of the SAN model represented in Fig. 2.

Gate Predicate Function

IG1 ([#Pq] < Qin) && ([#Pa] > 0)
OG1 [#Pq] + +;

IG2 ([#Pq] > 0) && ([#Pa] > 0) [#Pq] − −;

[#Pa] − −;

OG2 [#Pp] + +;

IG3 [#Pp] > 0 [#Pp] − −;

OG3 [#Pa] + +;

IG4 [#Pp] > 0 [#Pp] − −;

OG4 [#Pq] + +;

[#Pf ] + +;

IG5 [#Pa] > 0 [#Pa] − −;

OG5 [#Pf ] + +;

IG6 [#Pf ] > 0 [#Pf ] − −;

OG6 [#Pa] + +;

The existence of a token in place Pp indicates that a VMhas been
provisioned for a request. The actual servicing step is modeled by
timed activity TAs. If there is a token in place Pp, then timed activity
TAs is activated and can complete. When this activity completes,
one token is moved from place Pp to place Pa through gates IG3 and
OG3. This shows that a VM has finished serving a user and it can
be allocated to serve another request later. The completion rate of
activity TAs is [#Pp]·λs, where [#Pp] indicates the number of tokens
inside place Pp and λs denotes the service rate of a single VM.

Since provisioned VMs are failure-prone, timed activity TApf is
used to model these failures. Upon completion of this activity, a
token is removed from place Pp by input gate IG4, and a token
is added to both places Pq and Pf by output gate OG4. Using this
mechanism, the request associated to a failed VM returns to the
input queue to be provisioned on another VM later. The completion
rate of TApf activity is [#Pp] · λpf , where 1/λpf represents the
MTTF of a provisioned VM. Tokens in place Pf represent failed VMs
waiting to be repaired. In addition to provisioned VMs, available
VMs may also fail. This failure event is modeled by timed activity
TAaf . Upon completion of activity TAaf , one token is moved from
place Pa to place Pf through gates IG5 and OG5. The completion rate
of activity TAaf is [#Pa] · λaf , where [#Pa] is the number of tokens
inside place Pa, and 1/λaf is the MTTF of an available VM.

Timed activity TAr represents the repair process of failed VMs.
This activity is activated when at least one token exists in place
Pf . When TAr completes, a token is removed from place Pf by
input gate IG6 and deposited into place Pa by output gate OG6.
The completion rate of TAr is λr . The predicates and functions
corresponding to all input and output gates of the proposed SAN
are represented in Table 2.

5. Performance measures

In this section, several measures which can be obtained by
analytically solving the SAN model presented in Section 4 are
introduced. These measures can be computed using the Markov
reward approach [42]. In this approach, appropriate reward rates
are assigned to each feasiblemarking of a SANmodel, and then, the
expected reward rates at a given timepoint, t , or in the steady-state
are computed.

Let S denote all possible configurations in which the system can
perform its function, and {X(t), t ≥ 0} on S define a continuous
time stochastic process describing the structure of the system at
time t . Letπi(t) denote the probability that the system is inmarking
i ∈ S at time t , and πi denote the probability that the system is
in marking i at the steady-state. If r denotes the reward function
that associates a reward rate ri to each feasible marking i ∈ S
of a SAN model, then the expected reward rate at time t , E[rX(t)],
can be computed by

∑
iri · πi(t). Moreover, the expected steady-

state reward rate, E[rX ], can be computed by
∑

iri · πi [43]. We

can also associate impulse rewards to the activities of SAN models
in a similar way, which results in calculation of the expected
throughput of activities at a given time or in the steady-state. In
the following, some of the interesting measures are defined over
the SAN model represented in Fig. 2.

Blocking probability at time t is the probability that the cloud
data center is not able to accept incoming requests at time t . This
probability is computed by Eq. (1).

BLK (t) = E[rblkX(t)] (1)

where rblkX(t) corresponds to the probability that the input queue is
full or there is no available VM at time t . rblk can be computed
through the following reward function.

rblk =

{
1, [#Pq] >= Qin or [#Pa] = 0
0, otherwise. (2)

Utilization of resources at time t is the ratio of the number
of provisioned VMs to the total number of intact VMs inside cloud
data center at time t . It is computed by Eq. (3).

UTL(t) =
E[rprvX(t)]

E[ravlX(t)] + E[rprvX(t)]
(3)

where rprvX(t) and ravlX(t) correspond to the number of provisioned
and available VMs at time t , respectively. rprv and ravl can be
respectively calculated by Eqs. (4) and (5).

rprv = [#Pp] (4)

ravl = [#Pa]. (5)

Instant service probability at time t denotes the probability
that a request is immediately served at time t , and is computed by
Eq. (6).

ISP(t) = E[r ispX(t)] (6)

where r ispX(t) is a reward function for computing the probability of
the input queue to be empty and the data center to have at least
one available VM at time t . More precisely, r isp is computed using
Eq. (7).

r isp =

{
1, [#Pq] = 0 and [#Pa] > 0
0, otherwise. (7)

Power consumption at time t is the total power consumed by
all PMs at time t , and can be computed by Eq. (8).

PWR(t) = Npm(t) · pwrb + E[rprvX(t)] · pwrp + E[ravlX(t)] · pwra (8)

where Npm(t) is the number of powered-on PMs at time t , rprvX(t)
and ravlX(t) correspond to the numbers of provisioned and available
VMs at time t , as described in Eqs. (4) and (5), respectively. Fur-
thermore, pwrb is the base power consumed by a PM excluding
the power consumed by its VMs. In Eq. (8), pwrp and pwra are
power consumption of a provisioned VM and an available VM,
respectively. Indeed, the power consumption of a powered-on PM
can be expressed as the base power consumption of that PM, plus
the power consumed by a single provisioned VM times the number
of VMs provisioned on that PM, plus the power consumed by a
single available VM times the number of available VMs on that
PM [44,45].

Waiting time at time t represents the expected time that
requests wait in the input queue of the cloud data center which
is calculated by Eq. (9).

WTT (t) =
E[rqueX(t)]

Thr(TAp)
(9)
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where Thr(TAp) represents the expected throughput of activity TAp,
and rqueX(t) corresponds to the number of enqueued requests at time
t which can be computed using the following reward function.

rque = [#Pq]. (10)

6. Proposed self-adaptive resource management scheme

In order to describe the operation of the proposed self-adaptive
resource management scheme, an event timeline is depicted in
Fig. 3 in which important time events of the general scenario
considered in this paper are shown. Suppose that before time tb,
the system is in a stable condition. In this state, IaaS requests arrive
to the system with a constant rate λ1

in and the measures blocking
probability of requests and utilization of resources, as defined in
Section 5, are not violated. Now, suppose that a workload burst
arrives at time tb which increases the request arrival rate to λ2

in.
Increasing the arrival rate, the cloud begins to become overloaded.
As a consequence, performance of the system is affected by the
burst load. Specifically, by increasing the request arrival rate, the
probability of either the input queue being full or there being no
available VM in the virtual resource pool is increased. As a result,
the blocking probability starts increasing. Suppose that at time toa1 ,
the blocking probability reaches a predefined threshold thrb. The
proposed self-adaptive scheme immediately reacts by switching a
PM on, causing L new VMs to be added to the available resources.
This adaptation results in an immediate decrease in the blocking
probability. However, if adding these new VMs is not sufficient
to overcome the system overload, this metric will increase again
after a while. Therefore, several subsequent adaptations may take
place during the burst period each one switching on one more PM
to prevent a violation of the blocking probability. These overload
adaptations are denoted by toai , 1 ≤ i ≤ Noa in Fig. 3, where Noa
is the number of adaptations performed during the burst period
when the system is overloaded. Finally, the system either reaches
a stable situation before burst expiration wherein no more adap-
tations are required, or it experiences a transient phase raised by
adaptations when burst expires.

When the burst ends at time te, the request arrival rate de-
creases to λ1

in again. In the new situation, the system starts to grad-
ually becomeunderloaded. As a consequence, performancemetrics
of the system are affected. Specifically, by decreasing the request
arrival rate, the ratio of the provisioned VMs to the available
VMs is reduced, so the system experiences an underutilization of
resources. Assume at time tua1 , the utilization of resources reaches
a predefined threshold thru. The proposed self-adaptive scheme
immediately reacts by switching a PM off, causing L available VMs
to be eliminated from the virtual resource pool. This adaptation
results in an immediate increase in utilization. However, during
the time, more provisioned VMs finish their jobs and return to the
virtual resource pool. This again causes the utilization of resources
to decrease. Hence,multiple adaptationsmay be required to switch
more PMs off and prevent the utilization from dropping under
thru. These subsequent underload adaptations are denoted by tuai ,
1 ≤ i ≤ Nua in Fig. 3, where Nua is the number of adaptations
performed after the burst period when the system is underloaded.
Finally, the system either reaches a stable situation or experiences
another burst.

Based on the timeline shown in Fig. 3, the SANmodel proposed
in Fig. 2 is solved in different time intervals as described in the
following. It is worth mentioning that the initial number of tokens
inside places of the SAN model of Fig. 2 for each step of analysis
is obtained using the steady-state or transient analysis performed
in its previous step. Moreover, whenever an overload adaptation is
carried out, the number of tokens in place Pa of the model of Fig. 2
increases by L at the beginning of the analysis, and in the underload

adaptation, the number of tokens in place Pa decreases by L when
analysis starts. In the following, the action performed in each time
interval is described.

• (−∞ − tb). A steady-state analysis is carried out to analyze
the behavior of the system before burst starts and to com-
pute the measures of interest.

• [tb−toa1 ). A transient analysis is carried out to analyze the
impact of the burst on the behavior of the system and to
determine when the first overload adaptation should be
performed.

• [toai−toai+1 ), 1 ≤ i ≤ Noa − 1. A transient analysis is carried
out to analyze the impact of the adaptation performed at
time toai on the system behavior and to determine when the
next overload adaptation should be performed.

• [tNoa−te). A transient analysis is carried out to analyze the
impact of the last overload adaptation on the system behav-
ior.

• [te−tuai ). A transient analysis is carried out to analyze the
impact of finishing the burst on the system behavior and to
determine when the first underload adaptation should be
performed.

• [tuai−tuai+1 ), 1 ≤ i ≤ Nua − 1. A transient analysis is carried
out to analyze the impact of the adaptation performed at
time tuai on behavior of the system and to determine when
the next underload adaptation should be performed.

• [tNua −+∞). A steady-state analysis is carried out to analyze
the behavior of the system after the last underload adapta-
tion was made.

7. Numerical results

In this section, the autonomic resource management scheme
introduced in Section 4 is analyzed and compared with two non-
autonomic schemes, based on themetrics described in Section 5. To
this end, the proposed analytical model is solved with the Möbius
tool [46] for awide range of input parameter values, fromwhichwe
just report some interesting results here. Most of the values con-
sidered as input parameters of the cloud data center investigated in
this paper are in the range of the values considered in other related
work [10,19,26,32,35,38,40,41,47,48]. These parameters are set as
follows.

The request arrival rate during time frames (−∞, tb) and
[te, +∞] is λ1

in = 13 req/hr, and during time frame [tb, te) is λ2
in =

20 req/hr indicating a workload burst. For the sake of simplicity,
we assume that only one burst occurs during the time the system
is analyzed. Time events tb and te are assumed to be 20 and 50 h,
respectively. The mean provisioning time (1/λp) and the mean
service time (1/λs) are 5 min and 5 h, respectively. The MTTF of
an available VM (1/λaf ) and a provisioned VM (1/λpf ) are 100 and
66.7 h, respectively. The mean repair time of a failed VM (1/λr )
is 30 min. The basic power consumption of a PM (powb) is set to
134 W. The power consumed by an available VM (powa) and a
provisioned VM (powp) are set to 7, and 17 W, respectively. The
size of the input queue, Qin, is set to 10. The maximum number of
VMs that can be concurrently provisioned on a PM, L, is set to 8.
The number of powered-on PMs, Npm, is initially set to 10 during
(−∞, tb). Thus, at most 80 VMs can be provisioned in the system.
During the burst and after that, the instantaneous value of Npm
changes depending on adaptations performed by the self-adaptive
management scheme, as mentioned in Section 6. The values of thrb
and thru are set to 0.1 and 0.77, respectively.

Figs. 4–8 compare the results obtained from the transient anal-
ysis of the proposed self-adaptive resource management scheme
and two non-self-adaptive schemes labeled by baseline 1 and base-
line 2. In baseline 1, 10 PMs are initially switched on, and they are
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Fig. 3. Timeline of the scenario considered in this paper.

kept powered-on during entire system analysis allowing at most
80 VMs to be concurrently provisioned independent of request
arrival rate. Therefore, our proposed scheme acts the same as
baseline 1 before the burst begins because it also starts with 10
PMs. On the other hand, baseline 2 starts with 13 PMs and keeps
them powered-on independent of system workload which means
at most 104 VMs can be concurrently provisioned during system
analysis. The number of PMs in baseline 2 is the minimum number
of required PMs in a static scenario that prevents violations of
blocking probability. In the following, each of the measures intro-
duced in Section 5 is analyzed.

7.1. Blocking probability

Fig. 4 represents the blocking probability at time t , BLK (t),
resulted from the proposed scheme and baselines 1 and 2. Through
the steady-state analysis performed before tb, it can be observed
that the blocking probability is 0.011 for both the proposed self-
adaptive scheme and baseline 1, and it is almost zero for baseline 2.
Starting from tb, BLK grows fast for the self-adaptive scheme and
baseline 1, and it reaches the stable value 0.236 for baseline 1.
However, the self-adaptive scheme reacts to theworkload increase
when BLK reaches thrb at time tb + 2 by adding 8 new VMs to
the resource pool. These additional VMs provide enough resources
for user requests for a short time which leads to a sudden drop of
blocking probability for the self-adaptive scheme.

Continuing the burst, BLK increases again for the self-adaptive
scheme since the available VMs are not still sufficient to handle
the burst. Therefore, BLK reaches thrb threshold at time tb +4.2. To
prevent SLA violations, another overload adaptation is performed,
which adds 8 new VMs to the resource pool of the system by
switching on onemore PM. The similar pattern repeats and another
PM is switched on at time tb + 9.2 when BLK reaches thrb again.
The blocking probability decreases suddenly and increases again
just like two previous occurrences of self-adaptation, but this time,
it becomes stable and reaches 0.062. Therefore, no more PMs are
needed to be switched on during the burst period. This analysis
shows that the total number of 13 PMs are required and sufficient
for our self-adaptive scheme to prevent violations of blocking
probability. This demonstrateswhywe choose baseline 2 to include
13 powered-on PMs. As can be seen in Fig. 4, after the burst starts
at tb, BLK gradually increases for baseline 2, and finally, reaches
0.062 at time te. The blocking probability at te, in both the proposed
scheme and baseline 2 are the same since the number of powered-
on PMs is the same for these schemes and both of them almost
reach their steady-state at te. This is also the case in the results
reported for other metrics.

At the end of burst duration, the curves of both baseline 1
and baseline 2 fall down and reach their corresponding steady-
state values as they were before burst begins. However, baseline 1
needs more time to become stable because the number of waiting
requests for baseline 1 is greater than that for baseline 2 at time
te. On the other hand, the blocking probability of the self-adaptive
schemeoscillates before reaching its steady-state value. The reason
can be explained by considering the behavior of the proposed
scheme when utilization of resources changes according to Fig. 5.

Fig. 4. Transient analysis of blocking probability.

Fig. 5. Transient analysis of utilization.

7.2. Utilization of resources

The utilization of resources at time t , UTL(t), for the proposed
scheme and the two baselines is shown in Fig. 5. Before time
point tb, the steady-state utilization is 0.816 for both the self-
adaptive scheme and baseline 1, and it is 0.637 for baseline 2.
Starting from tb, UTL grows fast for the self-adaptive scheme and
baseline 1, so that it reaches the stable value 0.971 for baseline 1.
However, since the self-adaptive scheme prevents the violation of
blocking probability by adapting itself at times tb + 2, tb + 4.2,
and tb + 9.2 as mentioned before, there are three decreases and
subsequent increases in the UTL(t) curve of the proposed scheme
at those times. At each overload adaptation, adding 8 new VMs to
the resource pool causes the utilization to decrease. At the end of
burst duration te, the utilization of resources for the self-adaptive
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scheme is 0.925. On the other hand, UTL for baseline 2 reacts to the
burst by exponentially increasing its value to 0.925 at te, the same
value for the self-adaptive scheme.

After the burst finishes, the utilization of resources of both
baseline 1 and baseline 2 decreases. This is due to the reduction
of the number of provisioned VMs which causes the number of
available VMs to increase after the workload decreases. The uti-
lization of resources in both baseline 1 and baseline 2 falls down,
so that they reach their corresponding steady-state values as they
were before the burst starts. Starting from time point te, UTL for
the self-adaptive scheme acts the same as that for baseline 2 before
time te + 4. At time te + 4, an underload adaptation is performed
to prevent the utilization from falling down the threshold thru by
removing 8 VMs from the resource pool which is equivalent to
switch an idle PM off. Decreasing the number of available VMs,
a sudden increase in utilization of resources happens. As more
provisioned VMs are released and returned to the resource pool
over time, the utilization decreases. Therefore, two other under-
load adaptations are performed at time points te + 7 and te + 14,
each one removing 8more available VMs from the system.Nomore
adaptations are needed because the utilization never reaches thru
again, and it finally reaches the stable value 0.816 at the end of our
analysis period. The oscillations of the BLK (t) curve of the proposed
scheme after time te, shown in Fig. 4, are the consequences of these
underload adaptations, each of which causes a small transient
increase of blocking probability.

7.3. Instant service probability

The transient analysis of the instant service probability, ISP(t),
for the proposed scheme and the two baselines is shown in Fig. 6.
Before time tb, the steady-state instant service probability is 0.304
for both the self-adaptive scheme and baseline 1, and it is 0.312 for
baseline 2. Starting from tb, ISP decreases fast for all three schemes.
ISP decreases until it reaches 0.062 and 0.131 at te for baseline 1
and baseline 2, respectively. The ISP(t) curve for the self-adaptive
scheme has the same behavior as baseline 1, and it reaches 0.129 at
time point tb + 2 when the first overload adaptation is performed
by adding new VMs to the pool of available VMs. Unlike BLK (t)
and UTL(t) that decrease when more available VMs are provided
during an overload adaptation, ISP(t) suddenly increases in the
same situation. Continuing the burst, available VMs are gradually
consumed, and thus, the instant service probability decreases until
another adaptation is performed. The other two overload adap-
tations have similar impacts on ISP(t). Immediately after time te,
ISP(t) of the proposed scheme behaves almost the same as ISP(t)
of baseline 2. However, subsequent underload adaptations cause
the instant service probability to oscillate until it gradually reaches
its corresponding value of baseline 1. It can be seen from Fig. 6 that
ISP for our proposed scheme never becomes less than 0.115 during
the analysis period, which indicates a remarkable improvement in
contrast to baseline 1.

7.4. Power consumption

The transient analysis of the power consumption, PWR(t), is
shown in Fig. 7. Before time tb, the steady-state power consump-
tion is 2534 W for the self-adaptive scheme and baseline 1, and
3106 W for baseline 2. Starting from tb, more VMs change their
state from available to provisioned, resulting in an increase of
power consumption for all three schemes. The PWR increases until
it reaches 2654 and 3390W at time te for baseline 1 and baseline 2,
respectively. The PWR curve for the self-adaptive scheme acts
the same as that for baseline 1 and reaches 2628 at time tb + 2,
when the first overload adaptation is performed. At this time, a
stepwise increase of power consumption is made by switching a

Fig. 6. Transient analysis of instant service probability.

Fig. 7. Transient analysis of power consumption.

PM on. The newly added VMs, which are initially in the available
state, are gradually provisioned for user requests, which further
increases PWR. The other two subsequent adaptations during the
burst period affect the PWR(t) curve in the same manner. After
the burst ends, each of the three underload adaptations results
in a sudden decrease of power consumption by switching an idle
PM off. Between every two subsequent underload adaptations,
some VMs that had been provisioned during the burst are released
causing PWR to decrease further. As shown in Fig. 7, PWR of our
proposed scheme is much less than that of baseline 2 in most of
the analysis period which represents a significant improvement in
contrast to baseline 2.

7.5. Waiting time

The transient analysis of the waiting time, WTT (t), for the
proposed scheme and the two baselines is represented in Fig. 8.
Before time point tb, the steady-statewaiting time for both the self-
adaptive scheme and baseline 1 is 0.088 h, while it is 0.083 h for
baseline 2. Starting from time point tb, more requests are enqueued
and less VMs are in available state, resulting in an increase of wait-
ing time for all three schemes. The measure WTT increases until it
reaches 0.265 and 0.126 h at time te for baseline 1 and baseline 2,
respectively. The WTT curve for the self-adaptive scheme acts the
same as that for baseline 1 and it reaches 0.140 h at tb +2when the
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Fig. 8. Transient analysis of waiting time.

first overload adaptation is carried out. By providing new available
VMs, a sudden decrease in WTT occurs. Continuing the burst,
available VMs are gradually consumed, and thus, the waiting time
increases until another adaptation is performed. The other two
overload adaptations have similar impacts on WTT . Immediately
after time te,WTT of the proposed scheme acts the same asWTT of
baseline 2. However, subsequent underload adaptations cause the
waiting time to gradually increase to its corresponding value for
baseline 1. It can be observed from Fig. 8 thatWTT for our proposed
scheme never becomes greater than 0.152 h during the analysis
period, which indicates a remarkable improvement in contrast to
baseline 1.

7.6. Summary

Experiments show that the proposed scheme satisfies the cru-
cial user- andprovider-orientedmeasures by preventing the block-
ing probability from reaching threshold thrb and the utilization
of resources from falling below threshold thru. Meanwhile, the
proposed scheme outperforms baseline 1 in terms of the block-
ing probability, instant service probability, and waiting time, and
baseline 2 in terms of the utilization of resources and power con-
sumption. An extensive analysis conducted on the proposedmodel
and scheme indicates that the aforementioned improvements are
acquired regardless of the values of input parameters. In particular,
the number of PMs, Npm, can be set to a larger value at the expense
of some extra time for solving the model. Moreover, the blocking
probability and utilization of resources can be replaced with other
measures to capture other crucial metrics.

8. Model validation

To demonstrate the accuracy of ourmodeling technique and the
presented self-adaptive resource management scheme, we com-
pare the results obtained by analytically solving the SAN model,
used in the proposedmanagement scheme, against those obtained
from the CloudSim framework. To achieve this goal, CloudSim is
extendedwith respect to the set of functionalities already provided
in the framework by defining the input queue for the data center
and failure/repair events for VMs. Then, extensive simulation runs
are executed and the results are gathered and analyzed fromwhich
we report two important measures, the power consumption and
waiting time.

In Table 3, the PWR(t) of the analytic–numeric approach is
compared with that obtained from the simulation. Moreover, Ta-
ble 4 compares theWTT (t) acquired from the analytic–numeric ap-
proach and the corresponding values obtained from the simulation
runs for different values of t . It can be observed that the maximum
percent errors of the simulation results reported in Tables 3 and 4
are 4.2% and 6.8%, respectively. These results validate the proposed
analytical model and management scheme against the simulation.

9. Conclusion and future work

In this paper, a scalable and flexible SAN model for an IaaS
cloud, which takes details of real cloud systems into account, was
proposed. The model is scalable because the number of PMs and
VMs can be set to a large value as in real-world systems. It is
flexible since various resourcemanagement strategies and policies
can be designed and evaluated on top of this model. Applying
the proposed SAN, a resource management scheme was presented
for IaaS cloud systems equipped with a four-step control loop of
self-adaptive systems. The proposed management scheme mon-
itors status data collected from the cloud environment, analyzes
them, plans to act, and reacts by switching PMs on/off in a way
that neither user-oriented SLA metrics (e.g., blocking probabil-
ity of requests) nor provider-oriented metrics (e.g., utilization of
resources) are violated. Meanwhile, the power consumption of
the cloud system is kept small using the proposed management
scheme.

For performance evaluation, several performance measures
(e.g., blocking probability, utilization of resources, instant service
probability, power consumption, and waiting time) were defined.
Among these measures, the blocking probability of requests and
the utilization of resources are those crucial user-oriented and
provider-orientedmetrics, respectively, that shouldnot be violated
in our proposed scheme. Afterwards, a resiliency analysis was
carried out by investigating the effect of workload changes on
the behavior of the proposed self-adaptive resource management
scheme and two baselines. The results indicated that, in contrast
to our proposed scheme, the baselines violate crucial performance
measures in many situations.

For future work, combining the proposed power-aware re-
source management scheme with other power saving approaches,
one can reach a more comprehensive model. For example, the
DVFS technique could be modeled along with our self-adaptive
management scheme. In this way, VMs on top of PMs are divided
into several groups in terms of processing speed and power con-
sumption. Using colored extensions of Petri Nets, e.g., Timed Col-
ored Petri Nets (TCPNs), tokens inside places can be differentiated
by attaching type information to them. Therefore, our proposed
model extended by TCPNs can support heterogeneity by modeling
different classes of PMs, each one providing different processing,
memory, and storage capacities. Moreover, different types of VMs
with various software and hardware requirements can bemodeled
by colored extensions of Petri Nets. Taking network topology of
data centers into account and considering performance effects
due to the contention on shared resources could be other future
extensions of the proposed model and management scheme.
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Table 3
Comparison of the power consumption resulted from the proposed approach and the simulation.

Approach Power consumption (W)

20 30 40 50 60 70 80

Analytic–numeric 2534 3240 3393 3391 2767 2543 2534
Simulation 2539 3376 3411 3412 2781 2556 2550

Table 4
Comparison of the waiting time resulted from the proposed approach and the simulation.

Approach Waiting time (h)

20 30 40 50 60 70 80

Analytic–numeric 0.088 0.088 0.125 0.126 0.084 0.089 0.088
Simulation 0.088 0.094 0.118 0.119 0.086 0.090 0.086
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