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Abstract. We provide an equational theory forRestricted Broadcast Process Theoryto reason about
ad hoc networks. We exploit an extended algebra calledComputed Network Theoryto axiomatize
restricted broadcast. It allows one to define the behavior ofan ad hoc network with respect to the
underlying topologies. We give a sound and ground-completeaxiomatization forCNT terms with
finite-state behavior, modulo what we call rooted branchingcomputed network bisimilarity.

1. Introduction

In Mobile Ad hoc Networks (MANETs), nodes communicate directly with each other using wireless
transceivers (possibly along multihop paths) without the need for a fixed infrastructure. The primitive
means of communication in MANETs is local broadcast; only nodes located in therange of a transmitter
receive data. Thus nodes participate in a broadcast according to the underlying topology of nodes. On
the other hand, nodes move arbitrarily, and the topology of the network changes dynamically. Local
broadcast and topology changes are the main modeling challenges in MANETs.

We introducedRestricted Broadcast Process Theory(RBPT) in [6], to specify and verify ad hoc net-
works, taking into account mobility.RBPTspecifies a MANET by composing nodes using a restricted
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(local) broadcast operator, and by specifying a protocol deployed at a node using a process algebraic
notation. Topology changes are modeled implicitly in the semantics, and thus one can verify a net-
work with respect to different topology changes. An advantage ofRBPTcompared to similar algebras
is that the specification of a MANET does not include any specification about changes of underlying
topologies. The behavior of an ad hoc network is equivalent to its behaviors with respect to all possible
topologies. We provided an equational system to reason aboutRBPTterms in [7], which is complete for
the recursion-free part ofRBPT. Our axiomatization borrows from the process algebraACP [3] auxil-
iary (left merge and communication merge) operators to axiomatize the interleaving behavior of parallel
composition. These equations need to take into account not only their observational behaviors, but also
the set of topologies for which such behaviors are observed. To this aim,we first extendedRBPTwith
new terms, calledComputed Network Theory(CNT), because the extended terms contain a specification
of a set of topologies, and their observed behavior is computed with respect to those topologies. Network
restrictions on the underlying topology are expressed explicitly in the syntax. The operational semantics
of CNT is given by constrained labeled transition systems, in which the transitions aresubscripted by a
set of network restrictions.

In this paper, to illustrate the applicability of our framework in the verification ofMANETs, we
extendRBPTwith new operators for verification purposes:encapsulationandabstraction. The encapsu-
lation operator, parameterized by a set of messages, disallows communications on a set of messages. The
abstractionor hideoperator, hides communications on a set of messages from the external observer by
turning them into the unobservable actionτ . We extend our equational system given in [7] with axioms
for the new operators (encapsulation, abstraction and recursion), and two proof principles to reason about
recursive behaviors with finite-state models. We introduce a behavioral equivalence relation, so-called
rooted branching computed network bisimilarity, which we prove to be an equivalence relation and a
congruence with respect to allCNToperators. Then we provide a sound axiomatization ofCNTmodulo
rooted branching computed network bisimilarity, which is ground-complete forCNT terms with finite-
state behaviors. We prove that aCNTterm has finite-state behavior if its syntax isessentially finite-state.
The application of our equational system is illustrated with a simple routing protocol.

The reminder of the paper is structured as follows. First it is explained howwe model MANETs
in Section 2. In Section 3 we briefly explainRBPT, and then introduceCNT, an extension ofRBPT, in
Section 4. We present the semantics ofCNTin Section 5, and develop our behavioral equivalence relation
on CNT terms in Section 6. In Section 7, we provide a sound axiomatization forCNT. In Section 8, we
show that our axiomatization is ground-complete for a subset ofCNT terms with finite-state behaviors.
We give an overview on related work in Section 9, and finally we present our conclusions and future
plans in Section 10. The proofs are presented in the appendix.

2. Concepts for Modeling MANETs

In this section, it is explained how we model mobility, the dynamics of the underlying topology, and
local broadcast communication [6, 7].

In wireless communication, nodes are equipped with wireless transceivers, by which they send and
receive information. For each (sender) node, a transmission range is considered, which is an area in
which the strength of emitted signals (of data) from the node is strong enoughto be sensed by other
nodes. The transmission range is not the same for different nodes and itdepends on the power used to
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emit the signal. A nodeB is connected toa nodeA, if B is located within the transmission range ofA. It
is said thatB is in the vicinity ofA. This connectivity relation between nodes, which is not necessarily
symmetric, introduces atopologyconcept. LetLoc denote a finite set of logical addresses, ranged over
by ℓ, which models the hardware addresses of nodes. Moreover,A, B, C denote concrete addresses. A
topology is a functionγ : Loc → IP (Loc), whereγ(ℓ) denotes the set of nodes connected toℓ. This
function models unidirectional connectivity between nodes.

Since nodes in MANETs are mobile, the underlying topology changes. There are two approaches
in modeling of topology changes; in one approach, mobility is modeled explicitly in the specification,
like in [5, 20, 11, 26, 13], while in the other approach, it is modeled in the semantics [24, 6]. The latter
approach provides us with a natural way to model and verify MANETs, since the mobility specification
is not a part of MANET protocols. Similarly there are two approaches to modelmobility in the seman-
tics; one models it explicitly by defining a set of mobility rules, while the other modelsnode mobility
implicitly. In explicit modeling of mobility in the semantics, the underlying topology is modeled as a
part of the semantics state, and mobility is modeled by performing transitions (with an unobservable
action) between states, by the application of mobility rules which manipulate the topology model. In
implicit modeling, each state is a representative of all possible topologies a networkcan meet and a net-
work can be at any of these topologies. We have modeled mobility implicitly in the semantics, since this
approach releases us from encoding the underlying topology as a partof the specification, which also
allows modular specification of MANETs.

When a node broadcasts, all nodes in its vicinity are potential receivers.However, local broadcast is
non-blocking and lossy, which means the sender broadcasts irrespective of who is going to receive, and a
receiver may lose the message due to signal interference. If two nodes with a common vicinity broadcast
simultaneously, the emitted signals may interfere at the receiver. MAC-layer protocols, at each node,
are responsible to prevent such interferences in MANETs. However,interferences cannot be avoided
completely; for instance IEEE 802.11 exploits a schema to reduce interferences, but does not offer any
MAC-layer recovery on broadcast frames. We model unreliable local broadcast in our calculus, but
we abstract away from interferences and only consider successfulreceive actions. Thus our framework
is only suitable to specify MANET protocols above the MAC-layer. The process calculi dealing with
interferences in wireless systems are [22, 21], while the latter is in a timed setting.

The modeling approach of the underlying topology and mobility affects the definition of the local
broadcast semantics. Generally speaking, when mobility is modeled explicitly in the semantics, the
behavior of a network in a local broadcast communication is defined in terms of the underlying topology;
the (subset of) nodes that are connected to the sender will take part in the communication. However, in
our approach, the behavior of the network defines the set of topologiesunder which such behavior is
possible. Consequently our approach results in a compact labeled transitionsystem, as illustrated in
Figure 1. Since our broadcast is unreliable, a behavior is possible for the set of topologies in which
nodes that have participated in the communication should be connected to the sender, while the other
connections between nodes can be anything. We introduce network restrictions to formally specify the
set of topologies involved in a transition. Their computation can be automated easily, which is helpful
for verifying an application using e.g. model checking. Furthermore we exploit them to axiomatize our
algebra.

Let an unknown address be represented by?. The unknown address is used in the semantics of a
receiving node. Furthermore, an unknown address is used for a node whose address is concealed from an
external observer. The set of addresses extended with the unknownaddress is denoted asLoc?, which by
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Figure 1. Comparison of the semantics models of local broadcast communication in explicit (at the left) and
implicit (at the right) modeling of mobility.

abuse of notation is also ranged over byℓ. We assume a binary relation onLoc×Loc?, which imposes
connection relations between addresses. The direction of relation explains the direction of data flow in a
transmission. A relation?  A denotes that a node with logical addressA should be in the range of a
node with an unknown address, whileA B denotes that a node with addressB is connected to a node
with addressA, or A can transmits data toB. The relation need not be symmetric and transitive. By
default each node is connected to itself:ℓ  ℓ. A network restrictionis a set of relationsℓ  ℓ′. The
network restrictionC[B/A] is obtained from the network restrictionC by substitutingB for A in C.
Each network restrictionC represents the set of topologies that satisfy the relations inC. In particular,
the empty network restriction{} denotes all possible topologies.

3. Restricted Broadcast Process Theory

Network protocols (in particular MANET protocols) rely on data. To separate the manipulation of data
from processes, we make use of equational abstract data types [4]. Data is specified by equational
specifications: one can declare data types (so-calledsorts) and functions working upon these data types,
and describe the meaning of these functions by equational axioms. Followingthe approach of [16, 18],
we consider Restricted Broadcast Process Theory with equational abstract data types. The semantics of
the data part (of a specification) is defined the same way as in [18]. It should contain theBool domain
with distinctT andF constants.

Before going through the formal syntax definitions ofRBPT, we define some notations applied in
these definitions. LetV denote a countably infinite set of data variables ranged over byx, y, andD a
data sort name. Letu andw range over closed and open data terms, respectively. We useŵ and〈x : D〉
to denote finite sequencesw1, . . . , wk andx1 : D1, . . . , xk : Dk for somek ∈ IN , |ŵ| and |〈x : D〉|
for their lengthk, and{ŵ/x̂} for simultaneous substitutions{w1/x1}, . . . , {wk/xk}. Let Msg denote
a set of message types communicated over a network and ranged over bym. For each message typem,
domainm : IP (D1 × . . .×Dk) declares the parameters of messagem. LetA denote a countably infinite
set of process names which are used as recursion variables in recursive specifications. This set can be
split into two disjoint subsetsAP andAN , and is ranged over byAp andAn respectively. Moreover, let
X ∈ Ap andZ ∈ An.

Restricted Broadcast Process Theory(RBPT) [6] provides a two-level syntax to define a set of pro-
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cesses deployed at a node, also called protocols, and a set of MANETscomposed of singleton nodes:

P ::= 0 | α.P | P + P | [w]P, P | Ap(ŵ)

N ::= 0 | [[P ]]ℓ | N ‖ N | (νℓ)N | ∇M (N) | ∂M (N)

A protocol can be a deadlock, modeled by0. α.P is a process that performs actionα and then behaves
as processP . The actionα can be a send actionm(ŵ)! or a receive actionm(ŵ)? where parameters of
the receive action can be only (free) variables. The processP1 + P2 behaves non-deterministically as
processP1 or P2. The guarded command[w]P1, P2 defines process behavior based on the data termw of
sortBool ; if it evaluates to true in the data semantics model, the protocol behaves asP1, and otherwise

asP2. A process is declared byAp(〈x : D〉)
def
= P whereAp is a protocol name andx is the variable

that appears free inP ; for an instantiationAp(ŵ), it is required that|ŵ| = |〈x : D〉|. An occurrence of
variablex is bound inP , if it is the parameter of a receive action, or the occurrence is in the scopeof a
receive action that carriesx as a parameter. We restrict to process definitions where each occurrence of
Ap(x̂) in P is in the scope of an action prefix.

Let {0, 1} ∈ D, domainreq : IP (D) anddomainrep : IP (D) respectively. As a running exam-

ple,Xp(x : D)
def
= req(x)!.Xp(x) declares a process that broadcasts a messagereq(x) recursively, and

Xq
def
= req(y)?.rep(y)!.Xq a process that recursively receives a messagereq(u) and replies by sending a

messagerep(u). A MANET can be composed of several nodes using the parallel composition operator,
where each node is provided with a unique address (ℓ 6=?) and deploys a protocol, and nodes communi-
cate via restricted broadcast. For instance, the network process[[Xp(0)]]A ‖ [[Xq]]B specifies a MANET
composed of two nodes with logical addressesA andB deploying processesXp(0) andXq, respectively.
The address of a node can be hidden from an external observer using the restriction operator. For ex-
ample, in(νA)[[Xp(0)]]A ‖ [[Xq]]B the activities of nodeA are hidden from the external observer, and
only the activities performed atB can be observed. The abstraction operator∇M (N) restricts the com-
munications ofN (with other MANETs) to messages not included inM ⊆ Msg: the transmission of
messagesm ∈ M are hidden from the external observer. The encapsulation operator∂M (N) disallows
communications ofN on messages inM ⊆ Msg, and consequently∂M (N) cannot communicate with
other MANETs by receiving these messages.

In the following section the syntax of MANETs is extended with new terms, to obtain the class of
what we call computed network terms. As the semantics ofRBPTis subsumed by the one ofCNT, we
postpone an exposition on the formal semantics ofRBPTuntil Section 5.

4. Computed Network Theory

As mentioned before, to give the axioms of the equational theoryRBPT, we use an extension ofRBPT,
calledComputed Network Theory(CNT). This process theory exploits network restrictions, which define
a set of topologies; the behavior of process terms is computed with regard tosuch network restrictions.

CNT extendsRBPTwith new terms called computed networks. A computed network termCη.t
denotes a network whose behavior, with respect to the set of topologies defined by the network restriction
C, is performing the actionη and then behaving ast. Parallel composition and restriction are defined over
computed networks in the same way asRBPTterms. Moreover,CNTextendsRBPTwith new operators;
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choice(+), left merge( ), communication merge(|) andrecursionrecAn.t:

t ::= 0 | [[P ]]ℓ | Cη.t | t + t | t ‖ t | t t | t|t | (νℓ)t | ∇M (t) | ∂M (t) | An | recAn.t

whereη can bem(û)!{ℓ} or m(û)?, andC is a network restriction. The choice operator+ defines
a non-deterministic choice betweenCNT terms, and parallel composition defines computed networks
communicating via restricted broadcast. The restriction operator(ν)ℓ conceals the address of a node
with logical addressℓ from the external observer as before. The abstraction operator∇M (t) restricts
the communications oft to messages not included inM and the encapsulation operator∂M (t) disallows
communications of networkt on messages inM as before. In left merge , the left operand is succeed
to perform the initial action. In the communication merge operator|, both operands are succeed to be
synchronized on their initial actions. The network nameAn denotes a specific computed network. The
recursion operatorrecAn.t represents a solution of the equationAn = t. This solution is unique ifAn

is guarded int. As far as unguarded recursions are concerned, following the approach ofCCSandACP,
we consider the solution from the set of solutions that has the least set of transitions. In Section 7, we
will explain about the guardedness criterion.

The occurrence of an addressℓ is bound in aCNT term t by the restriction operator,(νℓ)t. Bound
addresses can beα-converted, meaning that(νℓ)t equals(νℓ′)t[ℓ′/ℓ] if t does not containℓ′ as a free
address. We define functionsfl(t) andbl(t) to denote sets of free and bound addresses in a computed
network termt, respectively. An occurrence of a network nameAn is bound in aCNTtermt if it occurs
in a subterm of the formrecAn.t′. A computed network term is called closed if its sets of free names
and of free variables are empty. We will useP, Q to range over protocols,s, t, u, v to range overCNT
terms, andN ,M to range over terms representing processes, i.e. closedCNTterms. We use≡ to denote
syntactical equivalence between two terms (protocols andCNT terms) and≡α to denote two terms are
α-convertable to each other.α-conversion may include renaming of bound addresses, variables and
names.

By abuse of notation, we uset{t′/An} for expressing replacement of a termt′ for every free occur-
rence of nameAn in t, if necessary renaming bound names int in order to ensure that no free occurrence
of a name int′ becomes bound int{t′/An}.

5. Operational Semantics ofCNT

A specificationconsists of three parts; data, protocol and network specifications. We can define the
static semantics of a specification as in [18], which describes the static requirements under which a
specification is defined correctly. For instance, each object should be declared once, and process names,
variables, and networks cannot be mixed up. A specification is calledwell-formed if it is statically
semantically correct, and its data part has no empty sort and Booleans are defined. For any well-formed
specification, the algebraic semantics of its data part must be defined and its equations must constitute a
confluent and terminating term rewriting system.

The behavior of protocols and networks is defined using structural operational semantics. The op-
erational semantics ofCNT is given at two levels (similar to the syntax), in terms of the operational
semantics of protocols and of computed network processes.

Given some data modelID and a protocol, the operational rules of Table 1 induce a labeled transition
system, in which the transitions are of the formP

α
−→ P ′ with α of the form{m(û)? or m(û)!}, for some



F. Ghassemi, W. Fokkink, A. Movaghar / Equational Reasoning on Mobile Ad Hoc Networks 7

sequencêu of closed data terms. They are standard operational rules for basic process algebras. The
Pre1 andPre2 rules indicate execution of receive and send actions. After a process gets a message (of
the same type it was ready to receive), values of message parameters arereplaced by the corresponding
parameters.Choice specifies the choice operator; its symmetric version also holds, but is omitted here.
Usually, ad hoc network protocols set timers to perform an action. We can use non-deterministic choice
to model time-outs and alternative behaviors of a protocols against external events. A guarded process
behaves asP1 if the guard condition evaluates to true (Then), otherwise it behaves asP2 (Else). Process
invocation is specified in the standard fashion inInv , whereP{û/x̂} is obtained fromP by replacing all
occurrences of variablesxi by ui.

Table 1. Semantics of protocols

m(x̂)?.P
m(bu)?
−−−→ P{û/x̂}

: Pre1

m(û)!.P
m(bu)!
−−−→ P

: Pre2

P{û/x̂}
α
−→ P ′

Ap(û)
α
−→ P ′

: Inv , Ap(〈x : D〉)
def
= P

P1
α
−→ P ′

1

P1 + P2
α
−→ P ′

1

: Choice

P1
α
−→ P ′

1

[u]P1, P2
α
−→ P ′

1

: Then, ID ⊢ u = T
P2

α
−→ P ′

2

[u]P1, P2
α
−→ P ′

2

: Else, ID ⊢ u = F

Generally the behavior of a computed network is defined in terms of a set of topologies; a transition,
in which a set of nodes participate in a communication, is possible for all topologies in which the receiv-
ing nodes are connected to the sending node. Therefore in the operational semantics it is defined for each
state which transitions are possible for which sets of topologies (out of all possible topologies). Network
restrictions are used to define the set of underlying topologies for each transition.

Given some data modelID and a computed network, the operational rules in Table 2 induce a con-
strained labeled transition system of transitionsN

η
−→C N ′, whereC is a network restriction defining

a set of topologies under which this transition is possible, andη is a send/receive action orτ action.
The operational rules of computed networks are shown in Table 2. The symmetric counterparts of rules
Choice ′, Bro, Sync2 andPar have been omitted. Lethide(C, ℓ) denote{ℓ1  ℓ2 ∈ C[?/ℓ] | ℓ2 6= ?}
andObj (η) return the message type ofη if η 6= τ , otherwiseτ . TheδM (η) is defined such that it returns
η if Obj (η) 6∈ M , otherwiseτ . Moreover, letη[ℓ′/ℓ] denoteη with all occurrences ofℓ replaced byℓ′.

Inter1 denotes that a single node can perform the send actions of a protocol atthis node under any
valid topology, and its network address is appended to this action.Inter2 denotes a single node per-
forming a receive action, under the restriction that the node must be connected to some sender (denoted
by ?). Pre ′ indicates execution of a prefix action.Choice ′ defines that a computed network can behave
non-deterministically.Exe indicates that if a transition is possible forC, then it is also possible for any
more restrictiveC ′. Recv allows to group together nodes that are ready to receive the same message. Bro

indicates the actual synchronization in local broadcast among a transmitter and receivers. This transition
is valid for all topologies in which the transmitter is connected (not necessarilybidirectionally) to the
receivers, which is captured byC1 ∪ C2[ℓ/?]. The communication results in a transition labeled with
m(û)!{ℓ}, so the messagem(û)! remains visible to be received by other computed networks.

As the communication merge operator defines a successful synchronization between two computed
networks, its behavior is defined bySync1 andSync2, indicating synchronization on a receive action
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(sent by the context) or a communication.LExe defines that in a term composed by the left merge, the
left computed network is succeed to perform the initial action, and then the resulting term proceeds as
in parallel composition.Par defines locality for a computed network; an event in a computed network
may result from this same event in a sub-network.

Table 2. Semantics ofCNT terms

P
m(bu)!
−−−→ P ′

[[P ]]ℓ
m(bu)!{ℓ}
−−−−−→{} [[P ′]]ℓ

: Inter1
P

m(bu)?
−−−→ P ′

[[P ]]ℓ
m(bu)?
−−−→{? ℓ} [[P ′]]ℓ

: Inter2

Cη.N
η
−→C N

: Pre ′
N1

η
−→C N ′

1

N1 + N2
η
−→C N ′

1

: Choice ′
t{recAn.t/An}

η
−→C N

recAn.t
η
−→C N

: Rec

N
η
−→C N ′

N
η
−→C′ N ′

: Exe, C ⊆ C ′ N1
m(bu)?
−−−→C1

N ′
1 N2

m(bu)?
−−−→C2

N ′
2

N1 ‖ N2
m(bu)?
−−−→C1∪C2

N ′
1 ‖ N ′

2

: Recv

N1
m(bu)!{ℓ}
−−−−−→C1

N ′
1 N2

m(bu)?
−−−→C2

N ′
2

N1 ‖ N2
m(bu)!{ℓ}
−−−−−→C1∪C2[ℓ/?] N

′
1 ‖ N ′

2

: Bro
N1

η
−→C N ′

1

N1 ‖ N2
η
−→C N ′

1 ‖ N2

: Par

N1
m(bu)?
−−−→C1

N ′
1 N2

m(bu)?
−−−→C2

N ′
2

N1 | N2
m(bu)?
−−−→C1∪C2

N ′
1 ‖ N ′

2

: Sync1

N1
η
−→C N ′

1

N1 N2
η
−→C N ′

1 ‖ N2

: LExe

N1
m(bu)!{ℓ}
−−−−−→C1

N ′
1 N2

m(bu)?
−−−→C2

N ′
2

N1 | N2
m(bu)!{ℓ}
−−−−−→C1∪C2[ℓ/?] N

′
1 ‖ N ′

2

: Sync2

N
η
−→C N ′

(νℓ)N
η[?/ℓ]
−−−→hide(C,ℓ) (νℓ)N ′

: Rest

N
η
−→C N ′

∇M (N )
δM (η)
−−−→C ∇M (N ′)

: Abs
N

η
−→C N ′

∂M (N )
η
−→C ∂M (N ′)

: Encap,Obj (η) 6∈ M ∨ η is a send action

Rest makes sure that restrictions over invisible addresses are removed and theaddress of a sender
with hidden address is concealed from the external observer by converting its address to?. By using
network restrictions, we can easily define the set of topologies over visiblenodes under which such a
transition is possible (by removing restrictions imposed on hidden nodes).Abs restricts communications
of a computed network to a set of messages not included inM . In other words, if the message type of
actionη belongs toM , Obj (η) ∈ M , the action is converted toτ , otherwiseη is performed unchanged.
TheEncap closes the communications of∂M (N ) on messages inM : receive actions over message types
m ∈ M are prohibited. Recursion is defined in the standard fashion inRec.

We consider the running example introduced in Section 3. The transition belowresults from appli-
cations ofInter1, Inter2 andBro:

[[Xp(0)]]A ‖ [[Xq]]B
req(0)!{A}
−−−−−−→{A B} [[Xp(0)]]A ‖ [[rep(0)!.Xq]]B

In this transition, nodeA broadcasts a messagereq(0) and nodeB receives it, so that the parameterx
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is substituted by0. This transition is possible for topologies in whichB is connected toA, i.e. the ac-
companying network restriction is{A B}. Another possible transition of[[Xp(0)]]A ‖ [[Xq]]B, resulting
from an application ofInter1 andPar , is:

[[Xp(0)]]A ‖ [[Xq]]B
req(0)!{A}
−−−−−−→{} [[Xp(0)]]A ‖ [[Xq]]B

In this transition, nodeA sends butB does not participate in communication. This transition is possible
for all topologies (for instanceB may be connected toA, but it has lost the message), denoted by{}.

If we hide nodeA, then the possible transitions whenA broadcasts (resulting fromInter1,2, Rest ,
Bro or Par ) are:

(νA)[[Xp(0)]]A ‖ [[Xq]]B
req(0)!{?}
−−−−−−→{? B} [[Xp(0)]]A ‖ [[rep(0)!.Xq]]B

(νA)[[Xp(0)]]A ‖ [[Xq]]B
req(0)!{?}
−−−−−−→{} [[Xp(0)]]A ‖ [[Xq]]B

Here the observer cannot see who has performed the send action.

6. Branching Computed Network Bisimulation

We define the notion of computed network bisimilarity between nodes in a constrained labeled transi-
tion system, based on the notion of branching bisimilarity [10]. To define our equivalence relation, we
introduce the following notations:

• ⇒ denotes the reflexive and transitive closure of unobservable actions:

– N ⇒ N ;

– if N
τ
−→C N ′ for some arbitrary network restrictionC andN ′ ⇒ N ′′, thenN ⇒ N ′′.

•
〈η〉
−→C denotes that either

η
−→C , or η is of the formm(û)!{?} and

η[ℓ/?]
−−−→C[ℓ/?].

Definition 6.1. A binary relationR on computed network terms is a branching computed network sim-
ulation, ifN1RN2 implies wheneverN1

η
−→C N ′

1:

• η is of the formm(û)? or τ , andN ′
1RN2;

• or there areN ′
2 andN ′′

2 such thatN2 ⇒ N ′′
2

〈η〉
−→C N ′

2, whereN1RN ′′
2 andN ′

1RN ′
2.

R is a branching computed network bisimulation ifR andR−1 are branching computed network simu-
lations. Computed networksN1 andN2 are branching computed network bisimilar, writtenN1 ≃b N2,
if N1RN2 for some branching computed network bisimulation relationR.

Theorem 6.1. Branching computed network bisimilarity is an equivalence.

The proof of above Theorem is given in Appendix A. Computed network bisimilarity is not a con-
gruence with respect to the choice, left merge and communication merge operators. For example the
computed networks{}req(u)?.{}rep(u)!.0 and{}rep(u)!.0 are branching computed network bisimilar,
but their congruence is not preserved when they are added with{}req(u)!.0, since the former can only
sendsrep(u) while the latter can also sendsreq(u). To obtain a congruence relation, we need to add a
root condition.
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Definition 6.2. Two computed networksN1 andN2 arerooted branching computed network bisimilar,
writtenN1 ≃rb N2,

• if N1
η
−→C N ′

1, then there is anN ′
2 such thatN2

〈η〉
−→C N ′

2, andN ′
1 ≃b N

′
2;

• if N2
η
−→C N ′

2, then there is anN ′
1 such thatN1

〈η〉
−→C N ′

1, andN ′
1 ≃b N

′
2.

Corollary 6.1. Rooted branching computed network bisimilarity is an equivalence.

Theorem 6.2. Rooted branching computed network bisimilarity is a congruence onCNT terms.

The corollary is an immediate result of Theorem 6.1 and Definition 6.2. The proof of Theorem 6.2
is given in Appendix B.

We will also exploit strong bisimilarity [25, 18] to reason about protocol processes:

Definition 6.3. Two protocol processesP1 andP2 are strong bisimilar, notationP1 ≃ P2, iff there is a
strong bisimulation relationR over protocol processes such that

• (P1, P2) ∈ R,

• for each pair(P ′
1, P

′
2) ∈ R:

– P ′
1

α
−→ P ′′

1 ⇒ ∃P ′′
2 · P ′

2
α
−→ P ′′

2 and(P ′′
1 , P ′′

2 ) ∈ R,

– P ′
2

α
−→ P ′′

2 ⇒ ∃P ′′
1 · P ′

1
α
−→ P ′′

1 and(P ′′
1 , P ′′

2 ) ∈ R.

The following proposition, relating strong bisimilarity to rooted branching computed network bisim-
ilarity, is straightforward to prove by application ofInter1,2 (see Appendix C).

Proposition 6.1. Let P1 andP2 be two protocol processes, such thatP1 ≃ P2. Then[[P1]]ℓ ≃rb [[P2]]ℓ,
whereℓ is an arbitrary location.

7. Protocol and Computed Network Axiomatizations

Table 3 provides standard axioms for closed protocols [17]. AxiomsPr0−3 are standard for the choice
operator. AxiomsPr4,5 define the guarded command behavior regarding condition[u]. It can be proved
easily that the axiomatization given in Table 3 is sound for the term algebra of protocols modulo strong
bisimilarity (cf. [8]), and thus by Proposition 6.1 modulo≃rb.

Table 3. Axiomatization of protocol terms

0 + P = P Pr0 P1 + P2 = P2 + P1 Pr1

P1 + (P2 + Q) = (P1 + P2) + Q Pr2 P + P = P Pr3

[u]P1, P2 = P1, ID ⊢ u = T Pr4 [u]P1, P2 = P2, ID ⊢ u = F Pr5

Ap(û) = P{û/x̂}, Ap(〈x : D〉)
def
= P Pr6
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Table 4. Axiomatization ofCNT terms

P1 = P2 ⇒ [[P1]]ℓ = [[P2]]ℓ P0 [[0]]ℓ = 0 P1

[[m(û)!.P ]]ℓ = {}m(û)!{ℓ}.[[P ]]ℓ P2 [[m(û)?.P ]]ℓ = {? ℓ}m(û)?.[[P ]]ℓ P3

[[m(ŷ)?.P ]]ℓ = P4 [[P1 + P2]]ℓ = [[P1]]ℓ + [[P2]]ℓ P5∑
bu∈domainm

[[m(û)?.P{û/ŷ}]]ℓ

N + N = N Cho1 N1 ‖ N2 = N1 N2 + N2 N1 + N1 | N2 Br

N1 + N2 = N2 + N1 Cho2 Cη.N1 N2 = Cη.(N1 ‖ N2) LEx 1

N1 + (N2 + N3) = (N1 + N2) + N3 Cho3 (N1 + N2) N3 = N1 N3 + N2 N3 LEx 2

N + 0 = N Cho4 0 N = 0 LEx 3

0 = (νℓ)0 Dead Cη.(C ′m(û)?.N + N ) = Cη.N T1

C1η.N + C2η.N = C1η.N , (C1 ⊆ C2) Con Cη.(C ′τ.(N1 + N2) + N2) = Cη.(N1 + N2) T2

N1 | N2 = N2 | N1 S1 0 | N = 0 S3

(N1 + N2) | N3 = N1 | N3 + N2 | N3 S2 Cτ.N1 | N2 = 0 S4

Cm(û)!{?}.N + C[ℓ/?]m(û)!{ℓ}.N = C[ℓ/?]m(û)!{ℓ}.N Obs

C1m(û)!{ℓ}.N1 | C2m(û)?.N2 = C1 ∪ C2[ℓ/?]m(û)!{ℓ}.(N1 ‖ N2) Sync1

C1m(û1)!{ℓ}.N1 | C2n(û2)?.N2 = 0 (m 6= n ∨ û1 6= û2) Sync2

C1m(û)?.N1 | C2m(û)?.N2 = C1 ∪ C2m(û)?.(N1 ‖ N2) Sync3

C1m(û1)?.N1 | C2n(û2)?.N2 = 0 (m 6= n ∨ û1 6= û2) Sync4

C1m(û1)!.N1{ℓ1} | C2n(û2)!{ℓ2}.N2 = 0 Sync5

(νℓ)(N1 + N2) = (νℓ)N1 + (νℓ)N2 Res1

(νℓ)η.N = hide(C, ℓ)η.(νℓ)N (η = m(û)!{ℓ′} ∧ ℓ 6= ℓ′) ∨ η = τ Res2

(νℓ)Cm(û)!{ℓ}.N = hide(C, ℓ)m(û)!{?}.(νℓ)N Res3

(νℓ)Cm(û)?.N = hide(C, ℓ)m(û)?.(νℓ)N Res4

∂M (Cη.N ) = Cη.∂M (N ),Obj (η) 6∈ M ∨ η is a send Ecp1

∇M (Cη.N ) = CδM (η).∇M (N ) Abs1 ∂M (Cm(û)?.N ) = 0,m ∈ M Ecp2

∇M (N1 + N2) = ∇M (N1) + ∇M (N2) Abs2 ∂M (N1 + N2) = ∂M (N1) + ∂M (N2) Ecp3

∇M (0) = 0 Abs3 ∂M (0) = 0 Ecp4

recAn.t = t{recAn.t/An} Unfold

s = t{s/An} ⇒ s = recAn.t,An guarded int Fold

recAn.(An + t) = recAn.t Ung

recAn.(Cτ.(C ′τ.t′ + t) + s) = recAn.(Cτ.(t′ + t) + s),An unguarded int′ WUng1

recAn.(Cητ .(An + t) + s) = recAn.(Cητ .(t + s) + s), ητ ∈ {m(û)?, τ} WUng2

∇M (recAn.t) = recAn.∇M (t),An is serial int Hid
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We proceed to present an axiomatization for the process theoryCNT, modulo rooted branching com-
puted network bisimilarity. The axioms are given in Table 4.P0 says that two equal protocols, when
deployed at the same node, result in equal networks. AxiomsP1−5 relate the behavior of a protocol
deployed at a node to a computed network term. InP4, summation

∑
is used to denote a choice over

a finite set of data elements, in this casedomainm; summation over an empty set denotes 0.Dead
explains that hiding an address in a deadlock computed network has no effect. Con expresses that if
the same behavior happens under two different sets of topologies, and one set is included in the other
set, then from the view point of an external observer, the behavior occurs for the superset of topologies.
Obs expresses when a send from a node with a hidden address has no effect and can be equated to any
send from a node with a visible address.Cho1−4 define idempotency, commutativity, associativity and
unit element for the choice operator. The parallel composition of two computednetworks is defined in
an interleaving semantics, as in the process algebraACP [3], by the axiomBr ; in a network composed
of two computed networksN1 andN2, each network may perform a local action (since they are not in
the range of each other or due to noise in the environment they do not succeed to synchronize), or they
may communicate via local broadcast.LEx 1−3 define axioms for the left merge: the left operand can
perform an action (LEx 1), the choice operator can be distributed over the left merge (LEx 2), and when
the left operand cannot do any action, then the left merge results into a deadlock (LEx 3). S1 andS2

define commutativity and distributivity of choice over the communication merge operator, respectively.
S3 defines that when an argument in a communication merge composition is a deadlock, then the result
of the composition is a deadlock. When an argument in a communication merge composition can only
performsτ , then the result is deadlock as explained inS4 (because theτ action originates from a wireless
communication which occupies the common communication medium, and therefore it cannot be ignored
as in [3]). Sync1−5 define synchronization between two computed network terms. Generally speaking,
two terms can be synchronized if they send/receive the same message with thesame parameter values.
T1 andT2 express when a receive andτ action can be removed respectively.Res1 defines distribution
of restriction over the choice operator.Res2−4 express the effect of the restriction operator: network
restrictions over hidden addresses are removed. InRes2, restriction has no effect onτ or send actions
from visible addresses, except for removing restrictions over hidden addresses. InRes3, the address of
a hidden sender is converted to?. Abs1 explains the effect of the abstraction operator on a computed
network: each actionη is converted toτ by δM (η) if Obj (η) ∈ M , otherwiseη is unchanged.Abs2

defines distribution of abstraction over the choice operator.Ecp1 andEcp2 explain that an encapsula-
tion operator parameterized by a set of messagesM prohibits a computed network to communicate with
other networks by receiving a messagem ∈ M . Ecp3 defines distribution of abstraction over the choice
operator.Abs3 andEcp4 defines the effect of abstraction and encapsulation operators on deadlock.

We define a guardedness criterion for network names to ensure that a network nameAn specified
by An = t has a unique solution, denoted byrecAn.t. A free occurrence of a network nameAn in t
is calledguardedif this occurrence is in the scope of an action prefix operator (notτ prefix) and not in
the scope of an abstraction operator [1]; in other words, there is a subterm Cη.t′ in t such thatη 6= τ ,
andAn occurs int′. An is (un)guardedin t if (not) every free occurrence ofAn in t is guarded. ACNT
termt is guardedif for every subtermrecAn.t′, An is guarded int′. This guardedness criterion ensures
that any guarded recursive term has a unique solution. To understandwhy Cτ does not ensure that a
recursion has one solution, consider the following example:recZn.(Cτ.Zn) has solutions likeCτ.0 and
Cτ.C ′req(u)!.0, while they are not rooted branching computed network bisimilar.

Unfold andFold express existence and uniqueness of a solution for the equationAn = t, which



F. Ghassemi, W. Fokkink, A. Movaghar / Equational Reasoning on Mobile Ad Hoc Networks 13

correspond to Milner’s standard axioms, and theRecursive Definition Principle(RDP) andRecursive
Specification Principle(RSP) in ACP. Unfold states that each recursive operator has a solution (whether
it is guarded or not), whileFold states that each guarded recursive operator has at most one solution.So
[[Xp(0)]]A and[[Xq]]B, by application ofPr6, P0,2−4 andUnfold , can be converted to

[[Xp(0)]]A = {}req(0 )!{A}.[[Xp(0)]]A ⇒ [[Xp(0)]]A = recXn.({}req(0)!{A}.Xn)

[[Xq]]B =
∑

i=0,1{? B}req(i)?.{}rep(i)!{B}.[[Xq]]B ⇒

[[Xq]]B = recXm.
∑

i=0,1({? B}req(i)?.{}rep(i)!{B}.Xm)

It should be noted that protocol names with recursive definitions, when deployed at a node, result
in computed network terms with recursive behaviors. Protocol names with definitions in which protocol
names prefixed by actions, can be easily turned into a guarded recursionoperator by application of
axiomsPr4−6, P1−5 andUnfold (see above example). However, a recursive term in the scope of an
abstraction would become unguarded, as we will explain below. AxiomsUng , WUng1 andWUng2

make it possible to turn each unguarded recursion into a guarded one.
A complete axiomatization of finite-state behaviors in the context of branching bisimilarity has given

in [8]; four axioms for removal of unguardedness were provided, asshown below:

µX(X + E) = µXE R3

µX(τ(τE + F ) + G) = µX(τ(E + F ) + G), providedX is unguarded inE R4

µX(τ(X + E) + τ(X + F ) + G) = µX(τ(X + E + F ) + G) R5

µX(τ(X + E) + F ) = µX(τ(E + F ) + F ) R6

whereE, F, G are meta-variables that range over open terms,X a variable, andµXE represents a
solution of the equationX = E. Our axiomsUng , WUng1 andWUng2 correspond to the axiomsR3,
R4 andR6, respectively. Besides axiomWUng2 removes self-loop receive action, as a receiving node is
equivalent to an empty computed network. AxiomR5 is derivable fromR4 andR6 as shown below:1

µX(τ(X + E) + τ(X + F ) + G) =R6

µX(τ.(τ(X + F ) + G + E) + τ(X + F ) + G) =R4

µX(τ.(X + F + G + E) + τ(X + F ) + G) =R6

µX(τ.(τ(X + F + G + E) + F + G) + τ.(X + F + G + E) + G) =R4

µX(τ.(X + F + G + E) + G) =R6

µX(τ.(F + G + E) + G) =R6

µX(τ.(X + F + E) + G)

Axiom Hid expresses that the abstraction operator can be moved inside and outside of a recursion
operator, whenAn is serial int. The free network nameAn is serial in t, if it does not occur in the
scope of parallel, communication merge, left merge, restriction, encapsulation, and abstraction operators
in t. This side condition is required to preserve the soundness of axiom as explained in [1] (This axiom

1Personal communication with Rob van Glabbeek learned us that he is aware of this, but never wrote it down.
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was also considered in [9], which needs a side condition to be sound in the context ofCCS). It should
be noted that the abstraction operator can make a guarded recursion unguarded. Thus by applying axiom
Hid , we can move the operator inside the recursion operator and apply its effect, which may result in
unguarded recursion. Then by moving it out and applyingWUng1 andWUng2, we can convert it to a
guarded one. Finally, by applyingUnfold , we can remove the abstraction operator completely.

Theorem 7.1. The axiomatization is sound for the term algebraIP (CNT )/ ≃rb, i.e. for all closed com-
puted network termsN1 andN2, if N1 = N2 thenN1 ≃rb N2.

The proof of this theorem is presented in Appendix D. Using the given axioms in Table 4, we
can derive sound axioms overRBPTterms given in Table 5. AxiomPar1−3 explain commutativity,
associativity and unit element for parallel composition for the parallel operator as expected.Res5,6

explain that number of repeats and the order of the restriction operator have no effect on the behavior of
computed network terms.Res7 explains scope extrusion of the restriction operator.

Table 5. Sound axioms overRBPTterms

N1 ‖ N2 = N2 ‖ N1 Par1 (νℓ)N = N, ℓ 6∈ fl(N) Res5

N1 ‖ (N2 ‖ N3) = (N1 ‖ N2) ‖ N3 Par2 (νℓ1)(νℓ2)N = (νℓ2)(νℓ1)N Res6

N1 ‖ 0 = 0 Par3 (νℓ)N1 ‖ N2 = (νℓ)(N1 ‖ N2), ℓ 6∈ fl(N2) Res7

We apply the axioms in Table 4 to the running example. The following equations indicate that the
behavior of[[Xp(0)]]A ‖ [[Xq]]B, when its communication to receivereq andrep is restricted, is:A can
broadcast a message butB does not participate, orA can broadcast a message andB receives it for a set
of topologies in whichB is connected toA.

M1 ≡ [[Xp(0)]]A = {}req(0)!{A}.recXn.({}req(0)!.Xn) ≡ {}req(0)!{A}.M1

M2 ≡ [[Xq]]B =
∑

i=0,1{? B}req(i)?.{}rep(i)!{B}.

recXm.
∑

i=0,1({? B}req(i)?.{}rep(i)!{B}.Am)

≡
∑

i=0,1{? B}req(i)?.{}rep(i)!.M2

∂{req,rep}(M1 ‖ M2) = ∂{req,rep}(M1 M2 + M2 M1 + M1 | M2)

= ∂{req,rep}({}req(0)!{A}.M1 M2 +
∑

i=0,1{? B}req(i)?.{}rep(i)!.M2 M1

+ {}req(0)!{A}.M1 |
∑

i=0,1{? B}req(i)?.{}rep(i)!.M2)

= {}req(0)!{A}.∂{req,rep}(M1 ‖ M2) + {A B}req(0)!{A}.∂{req,rep}(M1 ‖ {}rep(i)!.M2).

Let C be a hidden node that relaysreq messages that it receives:Xm
def
= req(x)?.req(x)!.Xm.

Consider a network consisting of nodesA, B andC where the address ofC is hidden. For such a
network, we can derive∂{req,rep}([[Xp(0)]]A ‖ [[Xq]]B) = ∂{req,rep}([[Xp(0)]]A ‖ [[Xq]]B ‖ (νC)[[Xm]]C), since
both are a solution of the following recursive term:

recZn.({}req(0)!{A}.Zn + {A B}req(0)!{A}.recZn0
.({}req(0)!{A}.Zn0

+ {}rep(0)!{B}.Zn)).

Thus a node that relays messages has no effect on the behavior of the network.
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ProtocolsXp, Xq andXm can be a part of a simple routing protocol, each specifying the behavior
of a node as the initiator (to find a route to a specific destination), destination, and middle node (which
relays messages from the initiator toward the destination) respectively. We complete the definitions of

these protocols as given below. To increase the readability of code, we writeAp0

def
= m(u)?.Ap1

instead

of Ap0

def
= m(x)?.[x == u]Ap1

,Ap0
. ProcessXp0

keeps the address of the next hop on a route to the
destination by the variablenext . When it does not know any path to the destination, it broadcastsreq
recursively until it finds a route by receivingrep(x ) from the next hop with an addressx. Otherwise when
Xp0

knows the address of the next hop, it sends data through the next hop tothe destination. However,
it may receive anerror message from the next hop, which indicates it cannot be used as a routerto the
destination (due to link breakage or some failure at the node). In this case the process will setnext to the
unknown address?.

Xp0
(next : Loc, addr : Loc)©0

def
=

[next ! =?]data(next)!.Xp0
(next , addr) + error(next)?.Xp0

(?, addr)

, req !.©1 Xp1
(addr)

Xp1
(addr : Loc)

def
= rep(x)?.Xp0

(x, addr) + req !.Xp1
(addr)

Xm0
(next : Loc, addr : Loc)©0

def
=

[next ! =?](data(addr)?.©1 data(next)!.Xm0
(next , addr)+

error(next)?.©2 error(addr)!.Xm0
(?, addr)+

error(addr)!.Xm0
(?, addr))

, req?.©3 req !.Xm0
(next , addr) + rep(x)?.©4 rep(addr)!.Xm0

(x, addr)

Xq0
(addr : Loc)©0

def
=

req?.©1 rep(addr)!.Xq0
(addr) + data(addr)?.Xq0

(addr) + error(addr)!.Xq0
(addr)

The behavior of a middle node,Xm0
, when it does not know a path to the destination is the same as

before (i.e. relayingreq , and alsorep messages), but when it receives arep message, it will keep this
address to reply toreq messages in the future. When a middle node finds a route to the destination, it
also relaysdata anderror message. In this case, it also non-deterministically sendserror to model link
breakage between itself and next hop. The process of a destination node, Xq0

, replies toreq messages
by sendingrep as before, and receivesdata. It also sendserror in occurrence of a failure at the node.

We are going to examine if this simple protocol, when its processes are deployed on nodes in a
MANET, i.e. [[Xp0

(?, A)]]A ‖ (νC)[[Xm0
(?, C)]]C ‖ [[Xq0

(B)]]B, then data messages are correctly routed
from the initiator to the destination. The specification of the MANET in which data messages are routed
from the source addressA to the destination addressB is:

{}τ.recZn0
.({}data(B)!{A}.Zn0

+ {}data(?)!{A}.Zn0
+

{}data(?)!{A}.recZn1
.({}data(?)!{A}.Zn1

+ {}data(B)!{?}.Zn0
))

which indicates (after finding the route modeled by the initialτ action)A sends its data toB directly, or
A sends its data to an unknown location, which will send data toB. We can use our axioms to examine if
∇{req,rep,error}(∂{rep,rep,error ,data}([[Xp0

(?, A)]]A ‖ (νC)[[Xm0
(?, C)]]C ‖ [[Xq0

(B)]]B)) is a solution forZn0
.

Let χ(sA,nextA, sB, sC ,nextC) stand for

∂{rep,rep,error ,data}([[PsA
{nextA/next}]]A ‖ [[PsB

]]B ‖ (νC)[[PsC
{nextC/next}]]C)
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wherePi is a subprocess ofP after the©i indicator in previous specifications. It can be proved that (see
Appendix F):

∇{req,rep,error}(χ(0, ?, 0, 0, ?)) = ∇{req,rep,error}(recZ.{}τ.χ(0, B, 0, 0, ?) + {}τ.χ(0, C, 0, 0, B)) (1)

whereχ(0, B, 0, 0, ?) specifies the scenario in whichXp0
has a direct route toB at the beginning (since

in future it may use another paths) and consequently sends its data directly toB, while χ(0, C, 0, 0, B)
specifies the scenario in whichXp0

has found a route viaC to B at the beginning and consequently sends
its data viaC to B. By application of axioms, it can be proved that the following equations hold:

{}τ.∇{req,rep,error}(χ(0, B, 0, 0, ?)) =

{}τ.∇{req,rep,error}(recZB .{}data(B)!{A}.ZB + {B  A}τ.χ(0, ?, 0, 0, ?)) (2)

{}τ.∇{req,rep,error}(χ(0, C, 0, 0, B)) =

{}τ.∇{req,rep,error}(recZC .{}data(?)!{A}.ZC + {}τ.χ(0, ?, 0, 0, ?)+

{}data(?)!{A}.recZCB .({}data(?)!{A}.ZCB + {}data(B)!{?}.ZC)+

{}τ.recZe.({}data(?)!{A}.Ze + {? A}τ.χ(0, ?, 0, 0, ?)+

{}τ.recZd.{}data(?)!{A}.Zd)).

(3)

By application of axiomsWUng1−2, UnFold , Hid and equations 1-3, it can be proved that:

∇M (χ(0, ?, 0, 0, ?)) = {}τ.(

{}data(B)!{A}.∇M (χ(0, ?, 0, 0, ?)) + {}data(?)!{A}.∇M (χ(0, ?, 0, 0, ?))+

{}data(?)!{A}.recZCB .({}data(?)!{A}.ZCB + {}data(B)!{?}.∇M (χ(0, ?, 0, 0, ?)))+

{}τ.recZd.{}data(?)!{A}.Zd).

(4)

which is very similar to the specification of a MANET. However, there is a loop defined byZd in which
A recursively sends data to some unknown node (i.e.C), but that node does not route data toB. This
scenario happens whenA routes data through a middle node. If the link between the middle node and
B breaks down, then it broadcastserror message. IfA loses this error message, it never finds out about
the invalidity of its next hop and continues to forward its data to the next hop. One of the solutions
is to assign a timer to each route, which becomes invalid when the timer times out. However, if we
change the definition ofXm0

such that it retransmitserror even after its next hop is unknown, thenZd

is removed from the above equation. We can also prove such a property by adding more middle nodes
while their addresses are hidden. The restriction operator helps to specify behaviors for a number of
unknown locations.

8. Completeness of the Axiomatization for Finite-state Behaviors

We prove that the axiomatization in Table 3 and 4 is ground-complete forCNT terms with finite-state
models, modulo rooted branching computed network bisimilarity. Following the approach of [1], to
restrict toCNT terms with finite-state constrained labeled transition systems, we provide a syntactical
restriction for recursive termsrecAn.t. We consider so-calledfinite-state Computed Network Theory
(CNTf ), which is obtained by restricting the closed computed networks in theCNT syntax: every re-
cursive termrecAn.t must beessentially finite-state, which means that its bound network names do not
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occur in the scope of parallel, communication merge, left merge, restriction, encapsulation, and abstrac-
tion operators int. Recall thatAn is serial int whenrecAn.t is essentially finite-state. For instance,
recZn.({}req(0)!{A}.0 ‖ {?  B}req(x)?.Zn) is not essentially finite-state; it produces an infinite-
state transition system, since at each recursive call, a new parallel operator is generated.

It is trivial to see that each finite-state process can be described by an essentially finite-state recursive
term. Conversely we can show that everyCNTf term has finitely many states in the transition system
generated by the operational rules. See Appendix E for the proof.

Proposition 8.1. Let N be a closedCNTf term such that every subtermrecAn.t is essentially finite-
state. Given a data modelID with finite data domains, the transition system forN generated by the
operational rules has only finitely many states.

Theorem 8.1. Given a data modelID with finite data domains, the axiomatization is ground-complete
for the term algebraIP (CNTf )/ ≃rb, i.e. for all closed finite-state computed network termsN1 andN2,
N1 ≃rb N2 impliesN1 = N2.

The proof of the above theorem is presented in Appendix G.

9. Related Work

Related calculi to ours are CBS#, CWS, CMAN, CMN,ω-calculus and SCWN [24, 22, 11, 12, 20,
26, 13]. In all these related approaches, the only equations between networks were defined by using
structural congruence. None of these papers provides a complete axiomatization for their algebra of
MANETs. We shortly go through these calculi, with a focus on their approach in modeling topology and
mobility, and on their purpose of verification.

CBS# [24], an extension of CBS, provides a framework for specificationand security analysis of
communication protocols for MANETs. In this approach, the mobility is modeled implicitly in the
semantics. The operational semantics is parameterized by a set of connectivity graphs, each imposing
a set of connections between nodes in a network. Each transition of a MANET is parameterized by a
connectivity graph. In other words, the connectivity graph defines thebehavior of a network at each
step, while in our approach the behavior of a network defines the set of topologies under which such a
behavior can occur. Consequently we merge all transitions, and their corresponding topologies leading
to the same state, into a transition subscripted by a network restriction. Thus our approach results in a
more compact labeled transition system.

CWS [22] (Calculus for Wireless Systems) is a channel-based algebra for modeling MAC-layer
protocols, for which interferences are an essential aspect. In this approach the physical characteristics of
nodes such as their physical location and transmission ranges are considered, while locations of nodes
are static. CMN [20] (Calculus of Mobile ad hoc Networks), inspired by CWS to model MANETs above
the MAC-layer, concerns modeling the mobility of nodes explicitly in the semantics.To this aim, for
each node a physical location is specified and the underlying topology is derived by a functiond, which
takes two locations and computes their distance. If the distance is smaller than a pre-defined value, nodes
at those locations are connected. Mobility is modeled by changing the location of the node to an arbitrary
location, which may lead to state space explosion if locations are drawn from areal coordinate system.
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CMAN [11] (Calculus of Mobile Ad hoc Networks) provides an approachfor modeling of MANETs
where for each node, a connectivity set (its neighbors) is specified. Mobility of a node is modeled
explicitly in semantics by manipulation of the connectivity set of all effected nodes, by adding/removing
this node from/to their connectivity set. In a more recent work [12], CMAN has been extended by a static
location binding operator to limit the arbitrary mobility of nodes in the scope of the operator, so that a
MANET can be verified for a specific mobility scenario.

The ω-calculus [26], a conservative extension of theπ-calculus, provides an approach to specify
MANETs in the same vein as CMAN, but models connectivity information, called process interface,
at the specification level by a group concept; a group is a maximal clique in a connectivity graph, and
two nodes can communicate if they belong to the same group. Node mobility is captured through the
dynamic creation of new groups and dynamically changing process interfaces, using appropriate rules
in the semantics. By defining a mobility invariant which constrains node mobilities, one can derive the
model of a MANET and verify it against a mobility scenario. In contrast, using our approach, one can
verify the model of a MANET against different mobility scenarios by defining predicates over network
restrictions.

Recently in [13], a simple process calculus with broadcast operator was extended by realistic mo-
bility models in an orthogonal way, so-called SCWN (a Simple Calculus for Wireless Networks). This
approach, which can be understood as a generalization of CWS, is appropriate to verify properties under
a specific mobility model, in contrast to the arbitrary mobility model. To this aim, the specification of
a node is equipped with a mobility function which determines the movement trajectories of a node over
time and consequently its neighbors; the semantics incorporates a notion of global time passing and is
parameterized by a mobility model which manipulates the mobility function of a node. This method is
based on computations of the transmission range of a sender using physical locations of nodes to derive
the real underlying topology. This approach suffers from state explosion because of its real-time delay
transitions, which may be resolved by using a discrete time delay (as proposed by its inventors). In

Table 6. Comparison between related algebras

Node specification Connectivity Mobility

CBS# ℓ[p, s] − implicit

CWS n[p]cl,r derived byd(l, l′) −

CMN n[p]cl,r derived byd(l, l′) explicit

CMAN [p]σℓ σ explicit

ω-calculus p : g g explicit

RBPT [[p]]ℓ − implicit

SCWN ℓ[p]Tf derived byarean(f(t)) explicit

Table 6, we have compared our core algebra,RBPT, with the related ones in terms of node specification,
how connectivity information is specified or derived, and how mobility is modeled, wheren refers to the
name of the node,ℓ to the logical address,l to the physical location,r to the transmission range,σ to
the connectivity set, andg to the connected groups of a node. Finally,f denotes the mobility function,
which defines the location of a node at timet, andT is a timeout when the mobility function is updated.

A behavioral congruence is based on an external observer that observes a system through a limited set
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of observables (called barbs). A MANET consists of nodes that each have a (physical or logical network)
location/address and a transmission range. Different observables aredefined based on how the address
of nodes, the transmitted values and the transmission range of nodes are considered [14]. However,
it is not obvious to decide what are adequate observables for mobile and local wireless broadcasting
calculi [22, 14]. In CBS#, two networks are distinguished in terms of their capability to store data terms
in a network location: the pairs of data terms and network locations are the observables. In CMN, two
networks are distinguished in terms of transmissions over a channel name and the possible receivers on
that channel: message transmission, communication channel and the range of a transmitter are taken into
the account. The behavioral congruence in CMAN is defined in terms of locality of transmissions. Thus
two process with the same number of transmissions deployed at the same network location are equivalent
irrespective of the values transmitted: this framework is intended for the detection of intruders which
cause some extra transmissions from some locations. Inω-calculus two MANETs are distinguished in
terms of their capability to send or receive data values from a set of groups. The behavioral congruence
is defined by a bisimulation relation and does not offer an explicit definition ofobservables, but since
it is a conservative extension of theπ-calculus at least contains the observables of theπ-calculus, i.e.
channel names [14]. In SCWN, two MANETs, each under a mobility model, are distinguished in terms
of their capability to send and receive data terms over an area in a time interval.In RBPT, two networks
are distinguished in terms of their capability to transmit data from a location for a set of topologies.
Our behavioral congruence is defined by a bisimulation relation, but at least the locations of nodes and
connectivities of nodes (i.e. range) are observables. In Table 7, we used our notation for send and receive
actions as a unifying notation to show that an equivalence relation holds in each framework under the
corresponding behavioral congruence, denoted by=, between the basic networks consisting of one node.

Table 7. Comparison of behavioral congruence relations

Observables Equivalent MANETs Distinguished MANETs

CBS# data, location ℓ[m(x)?.0, s] = 0 ℓ[m(x)?.store.0, s] 6= 0,
ℓ[p, s] 6= ℓ′[p, s]

CWS - - -

CMN channel, range n[p]l,r = n[p]l′,r, -
n[m(x)?.0]l,r = 0

CMAN location [m(u)!.0]σ1

ℓ = [n(u)!.0]σ2

ℓ , [p]σℓ 6= [p]σℓ′
[m(u)?.0]σℓ = 0

ω-calculus channel p : g1 = p : g2 m(x)?.0 : g 6= 0

RBPT range, location [[m(x)?.0]]ℓ = 0, [[p]]ℓ 6= [[p]]ℓ′

(νℓ′)[[p]]ℓ′ = (νℓ)[[p]]ℓ (νℓ′)[[p]]ℓ′ = [[p]]ℓ

In [14], different observables for process calculi for mobile and wireless broadcasting systems in the
context of weak barbed congruences are discussed. The observables consider location, data and channel
names (which is applicable to channel-based process calculi). It is proved that behavioral congruence
based on location observables is included in the one based on data, which coincides with the one based
on channel and location observables. It should be noted that in our framework for properties, when
locations are not needed to be considered, the restriction operator can be used. These properties are more



20 F. Ghassemi, W. Fokkink, A. Movaghar / Equational Reasoning on Mobile Ad Hoc Networks

related to the overall behavior of a MANET. In this case, our behavioralcongruence is based on range
observables and it coincides with the one in CMN (since broadcast is the only communication channel
in RBPT). On the other hand, for properties related to some specific nodes (identified by their locations)
in a MANET, like finding a route between two nodes, the observability of localityis helpful.

10. Conclusion and Future Work

We introduced Restricted Broadcast Process Theory (RBPT) to specify and verify MANETs, taking into
account local broadcast communication and mobility. We modeled mobility implicitly in semantics,
by allowing arbitrary switches between topologies in each state. Our approach to model mobility and
formalize behavior of a network with respect to the set of topologies, modeled by network constraints,
leads to a compact labeled transition. Moreover, by transferring mobility concepts to the semantics,
our process algebra provides a natural way to model MANETs, because topologies are not a part of the
network specification.

To axiomatizeRBPTterms, we extended it with new terms and operators, to obtain Computed Net-
work Theory (CNT). The behavior ofCNT terms is computed with respect to a set of topologies, spec-
ified by a network restriction. We gave an operational semantics, and defined an equivalence notion
between computed networks, called rooted branching computed network bisimilarity. We provided a
sound axiomatization forCNT terms modulo rooted branching computed network bisimilarity. Our ax-
iomatization is ground-complete forCNT terms with a finite-state model; we have classified such terms
by imposing restrictions on recursive terms.

We are going to use mCRL2 [15] to write an interpreter based on our axiomatization, following the
approach of [19], which converts the specifications written in our algebra to its corresponding constrained
labeled transition system. We can analyze a MANET by model checking using the modalµ-calculus.
We would like to extend our framework with proof techniques to reason about protocols with an infinite
data domain. Following [12], we intend to add an operator which abstracts away from the movements we
are not interested in. Finally, want to extend our calculus with stochastic concepts to evaluate MANET
protocols. Since the communication media is not reliable (and so MAC-layer protocols), performance
evaluation of protocols above the MAC layer is important to measure their quality. The main challenge is
how to incorporate the rate of delays from the upper network layer (e.g. protocol) with ones in the lower
layer network (e.g. the MAC-layer).
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A. Branching Computed Network Bisimilarity is an Equivalence

To prove that branching computed network bisimilarity is an equivalence, weexploit semi-branching

computed network bisimilarity, following [2]. In the next definition,N
(η)
−→C N ′ denotes eitherN

η
−→C

N ′, or η ∈ {m(û)?, τ} andN = N ′.

Definition A.1. A binary relationR on computed network terms is a semi-branching computed network
simulation, ifN1RN2 implies wheneverN1

η
−→C N ′

1:

• there areN ′
2 andN ′′

2 such thatN2 ⇒ N ′′
2

(〈η〉)
−−→C N ′

2, whereN1RN ′′
2 andN ′

1RN ′
2.

R is a semi-branching computed network bisimulation ifR andR−1 are semi-branching computed
network simulations. Computed networksN1 andN2 are semi-branching computed network bisimilar if
N1RN2, for some semi-branching computed network bisimulation relationR.

Lemma A.1. Let N1 andN2 be computed network terms, andR a semi-branching computed network
bisimulation such thatN1RN2.

• If N1 ⇒ N ′
1 then∃N ′

2 · N2 ⇒ N ′
2 ∧N ′

1RN ′
2

• If N2 ⇒ N ′
2 then∃N ′

1 · N1 ⇒ N ′
1 ∧N ′

1RN ′
2

Proof:
We only give the proof of the first property. The second property canbe proved in a similar fashion. The
proof is by induction on the number of⇒ steps fromN1 toN ′

1:

• Base: Assume that the number of steps equals zero. ThenN1 andN ′
1 must be equal. Since

N1RN2 andN2 ⇒ N2, the property is satisfied.

• Induction step: AssumeN1 ⇒ N ′
1 in n steps, for somen ≥ 1. Then there is anN ′′

1 such that
N1 ⇒ N ′′

1 in n − 1 ⇒ steps, andN ′′
1

τ
−→C N ′

1. By the induction hypothesis, there exists anN ′′
2

such thatN2 ⇒ N ′′
2 andN ′′

1 RN ′′
2 . SinceN ′′

1
τ
−→C N ′

1 andR is a semi-branching computed
network bisimulation, there are two cases to consider:

– there is anN ′
2 such thatN ′′

2 ⇒ N ′
2, N ′′

1 RN ′
2, andN ′

1RN ′
2. SoN2 ⇒ N ′

2 such thatN ′
1RN ′

2.

– or there areN ′′′
2 andN ′

2 such thatN ′′
2 ⇒ N ′′′

2
τ
−→C N ′

2, whereN ′′
1 RN ′′′

2 andN ′
1RN ′

2. By
definition,N ′′′

2
τ
−→C N ′

2 yieldsN ′′′
2 ⇒ N ′

2. ConsequentlyN2 ⇒ N ′
2 such thatN ′

1RN ′
2.

⊓⊔
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Proposition A.1. The relation composition of two semi-branching computed network bisimulations is
again a semi-branching computed network bisimulation.

Proof:
Let R1 andR2 be semi-branching computed network bisimulations withN1R1N2 andN2R2N3. Let
N1

η
−→C N ′

1. It must be shown that

∃N ′
3,N

′′
3 : N3 ⇒ N ′′

3
(〈η〉)
−−→ N ′

3 ∧N1R1 ◦ R2N
′′
3 ∧N ′

1R1 ◦ R2N
′
3

SinceN1R1N2, there existN ′
2, N ′′

2 such thatN2 ⇒ N ′′
2

(〈η〉)
−−→C N ′

2, N1R1N
′′
2 andN ′

1R1N
′
2. Since

N2R2N3 andN2 ⇒ N ′′
2 , Lemma A.1 yields that there is anN ′′

3 such thatN3 ⇒ N ′′
3 andN ′′

2 R2N
′′
3 .

Two cases can be distinguished:

• η ∈ {m(û)?, τ} andN ′′
2 = N ′

2. It follows immediately thatN3 ⇒ N ′′
3

(〈η〉)
−−→C N ′′

3 ,N1R1◦R2N ′′
3

andN ′
1R1 ◦ R2N

′′
3 .

• AssumeN ′′
2

〈η〉
−→C N ′

2. SinceN ′′
2 R2N

′′
3 andR2 is a semi-branching computed network bisimu-

lation, there areN ′′′
3 andN ′

3 such thatN ′′
3 ⇒ N ′′′

3

(〈η〉)
−−→C N ′

3, N ′′
2 R2N

′′′
3 andN ′

2R2N
′
3. Since

N3 ⇒ N ′′
3 , we haveN3 ⇒ N ′′′

3

(〈η〉)
−−→C N ′

3. Furthermore,N1R1 ◦ R2N
′′′
3 andN ′

1R1 ◦ R2N
′
3.

⊓⊔

Corollary A.1. Semi-branching computed network bisimilarity is an equivalence relation.

Proposition A.2. Each largest semi-branching computed network bisimulation is a branching computed
network bisimulation.

Proof:
SupposeR is the largest semi-branching computed network bisimulation for some given constrained
labeled transition systems. LetN1RN2, N2 ⇒ N ′

2, N1RN ′
2 andN ′

1RN ′
2. We show thatR′ = R ∪

{(N ′
1,N2)} is a semi-branching computed network bisimulation.

1. If N ′
1

η
−→C N ′′

1 , then it follows from(N ′
1,N

′
2) ∈ R that there areN ′′′

2 andN ′′
2 such thatN ′

2 ⇒

N ′′′
2

(〈η〉)
−−→C N ′′

2 with (N ′
1,N

′′′
2 ), (N ′′

1 ,N ′′
2 ) ∈ R. AndN2 ⇒ N ′

2 yieldsN2 ⇒ N ′′′
2

(〈η〉)
−−→C N ′′

2 .

2. If N2
η
−→C N ′′

2 , then it follows from(N1,N2) ∈ R that there areN ′′′
1 andN ′′

1 such thatN1 ⇒

N ′′′
1

(〈η〉)
−−→C N ′′

1 with (N ′′′
1 ,N2), (N

′′
1 ,N ′′

2 ) ∈ R. Since(N1,N
′
2) ∈ R andN1 ⇒ N ′′′

1 , by

Lemma A.1, there is anN2
′′′ such thatN ′

2 ⇒ N2
′′′ and(N ′′′

1 ,N2
′′′) ∈ R. SinceN ′′′

1

(〈η〉)
−−→C N ′′

1 ,

there areN ∗∗
2 andN ∗

2 such thatN2
′′′ ⇒ N ∗∗

2

(〈η〉)
−−→C N ∗

2 with (N ′′′
1 ,N ∗∗

2 ), (N ′′
1 ,N ∗

2 ) ∈ R. Since
N ′

2 ⇒ N2
′′′ andN2

′′′ ⇒ N ∗∗
2 , we haveN ′

2 ⇒ N ∗∗
2 . By assumption,(N ′

1,N
′
2) ∈ R, so by Lemma

A.1 there is anN ∗∗
1 such thatN ′

1 ⇒ N ∗∗
1 and(N ∗∗

1 ,N ∗∗
2 ) ∈ R. SinceN ∗∗

2

(〈η〉)
−−→C N ∗

2 , there
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areN ∗∗∗
1 andN ∗

1 such thatN ∗∗
1 ⇒ N ∗∗∗

1

(〈η〉)
−−→C N ∗

1 with (N ∗∗∗
1 ,N ∗∗

2 ), (N ∗
1 ,N ∗

2 ) ∈ R. And

N ′
1 ⇒ N ∗∗

1 yieldsN ′
1 ⇒ N ∗∗∗

1

(〈η〉)
−−→C N ∗

1 .

(N ∗∗∗
1 ,N ∗∗

2 ) ∈ R ∧ (N ∗∗
2 ,N ′′′

1 ) ∈ R−1 ∧ (N ′′′
1 ,N2) ∈ R

⇒ (N ∗∗∗
1 ,N2) ∈ R ◦ R−1 ◦ R

(N ∗
1 ,N ∗

2 ) ∈ R ∧ (N ∗
2 ,N ′′

1 ) ∈ R−1 ∧ (N ′′
1 ,N ′′

2 ) ∈ R

⇒ (N ∗
1 ,N ′′

2 ) ∈ R ◦ R−1 ◦ R

By Proposition A.1,R ◦ R−1 ◦ R is a semi-branching computed network bisimulation. SinceR
is the largest semi-branching computed network bisimulation, and clearlyR ⊆ R ◦ R−1 ◦ R, we

haveR = R ◦R−1 ◦ R. Concluding,N ′
1 ⇒ N ∗∗∗

1

(〈η〉)
−−→C N ∗

1 with (N ∗∗∗
1 ,N2), (N ∗

1 ,N ′′
2 ) ∈ R.

SoR′ is a semi-branching computed network bisimulation. SinceR is the largest semi-branching com-
puted network bisimulation,R′ = R.

We will now prove thatR is a branching computed network bisimulation. LetN1RN2, andN1
η
−→C

N ′
1. We only consider the case whenη is of the formm(û)? or τ denoted byητ , because for other cases,

the transfer condition of Definition 6.1 and Definition A.1 are the same. So thereareN ′′
2 andN ′

2 such

thatN2 ⇒ N ′′
2

(ητ )
−−→C N ′

2 with N1RN ′′
2 andN ′

1RN ′
2. Two cases can be distinguished:

1. N ′′
2 = N ′

2: SinceN1RN2, N1RN ′
2, andN ′

1RN ′
2, we proved above thatN ′

1RN2. This agrees
with the first case of Definition 6.1.

2. N ′′
2 6= N ′

2: This agrees with the second case of Definition 6.1.

ConsequentlyR is a branching computed network bisimulation. ⊓⊔

Lemma A.2. LetR be the largest branching computed network bisimulation given for some constrained
labeled transition systems. If there existN1

τ
−→C0

N ∗
1

τ
−→C1

· · ·
τ
−→Cm−1

N ∗
m

τ
−→Cm N ′

1, wherem ≥ 0,
such thatN1RN2 andN ′

1RN2, then∀1≤i≤m : N ∗
i RN2.

Proof:
SupposeR is the largest semi-branching computed network bisimulation for the given constrained la-
beled transition systems. We show thatR′ = R

⋃
1≤i≤m{(N ∗

i ,N2)} is a semi-branching computed
network bisimulation. To this aim, it suffices to show that each pair(N ∗

i ,N2) ∈ R′, i ≤ m, satisfies the
transfer condition of Definition A.1

• If N ∗
i

η
−→C N ∗′

i , thenN1
τ
−→C N ∗

1
τ
−→C1

· · ·
τ
−→i−1 N ∗

i
η
−→C N ∗′

i , and since(N1,N2) ∈ R, there
is a sequenceN2 ⇒ N ∗∗

1 ⇒ · · · ⇒ N ∗∗
i such that(N ∗

1 ,N ∗∗
1 ), · · · , (N ∗

i ,N ∗∗
i ) ∈ R. It follows

from (N ∗
i ,N ∗∗

i ) ∈ R that there existN ∗∗′′
i andN ∗∗′

i such thatN ∗∗
i ⇒ N ∗∗′′

i

(〈η〉)
−−→C N ∗∗′

i with

(N ∗
i ,N ∗∗′′

i ), (N ∗′
i ,N ∗∗′

i ) ∈ R. HenceN2 ⇒ N ∗∗′′
i

(〈η〉)
−−→C N ∗∗′

i with (N ∗
i ,N ∗∗′′

i ), (N ∗′
i ,N ∗∗′

i ) ∈
R′ as required.

• If N2
η
−→C N ′

2, then it follows from(N ′
1,N2) ∈ R that there existN ′′′

1 andN ′′
1 such thatN ′

1 ⇒

N ′′′
1

(〈η〉)
−−→C N ′′

1 with (N ′′′
1 ,N2), (N

′′
1 ,N ′

2) ∈ R. Hence, there is a pathN ∗
i ⇒ N ′′′

1

(〈η〉)
−−→C N ′′

1

with (N ′′′
1 ,N2), (N

′′
1 ,N ′

2) ∈ R′.
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ThusR′ is a semi-branching computed network bisimulation, and since it is the largest, wehaveR = R′.
Using Proposition A.2, we conclude the proof. ⊓⊔

Since any branching computed network bisimulation is a semi-branching computed network bisim-
ulation, this yields the following corollary.

Corollary A.2. Two computed network terms are related by a branching computed network bisimulation
if and only if they are related by a semi-branching computed network bisimulation.

Corollary A.3. Branching computed network bisimilarity is an equivalence relation.

Corollary A.4. Rooted branching computed network bisimilarity is an equivalence relation.

Proof:
It is easy to show that rooted branching computed network bisimilarity is reflexive and symmetric. To
conclude the proof, we show that rooted branching computed network bisimilarity is transitive. Let

N1 ≃rb N2 andN2 ≃rb N3. SinceN1 ≃rb N2, if N1
η
−→C N ′

1, then there is anN ′
2 such thatN2

〈η〉
−→C N ′

2

andN ′
1 ≃b N

′
2. SinceN2 ≃rb N3, there is anN ′

3 such thatN3
〈η〉
−→C N ′

3 andN ′
2 ≃b N

′
3. Since branching

computed network bisimilarity is an equivalence,N3
〈η〉
−→C N ′

3 with N ′
1 ≃b N

′
3. The same argumentation

holds whenN3
〈η〉
−→C N ′

3. Consequently the transfer conditions of Definition 6.2 hold andN1 ≃rb N3.
⊓⊔

B. Rooted Branching Computed Network Bisimilarity is a Congruence

Theorem B.1. Rooted branching computed network bisimilarity is a congruence with respectto the
protocol and computed network operators.

Proof:
We need to prove the following cases:

1. [[P1]]ℓ ≃rb [[P2]]ℓ implies [[α.P1]]ℓ ≃rb [[α.P2]]ℓ

2. [[P1]]ℓ ≃rb [[P2]]ℓ and[[P ′
1]]ℓ ≃rb [[P ′

2]]ℓ implies [[P1 + P ′
1]]ℓ ≃rb [[P2 + P ′

2]]ℓ

3. [[P1]]ℓ ≃rb [[P2]]ℓ and[[P ′
1]]ℓ ≃rb [[P ′

2]]ℓ implies [[[u1 = u2]P1, P
′
1]]ℓ ≃rb [[[u1 = u2]P2, P

′
2]]ℓ

4. N1 ≃rb N2 impliesCη.N1 ≃rb Cη.N2

5. N1 ≃rb N2 andN ′
1 ≃rb N

′
2 impliesN1 + N ′

1 ≃rb N2 + N ′
2

6. N1 ≃rb N2 implies(νℓ)N1 ≃rb (νℓ)N2

7. N1 ≃rb N2 andN ′
1 ≃rb N

′
2 impliesN1 ‖ N ′

1 ≃rb N2 ‖ N ′
2

8. N1 ≃rb N2 andN ′
1 ≃rb N

′
2 impliesN1 N ′

1 ≃rb N2 N ′
2
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9. N1 ≃rb N2 andN ′
1 ≃rb N

′
2 impliesN1 | N ′

1 ≃rb N2 | N ′
2

10. N1 ≃rb N2 implies∂M (N1) ≃rb ∂M (N2)

11. N1 ≃rb N2 implies∇M (N1) ≃rb ∇M (N2)

Clearly, if N1 ≃rb N2 thenN1 ≃b N2 witnessed by the following branching computed network
bisimulation relation:

R′ = {R|N1
η
−→C N ′

1 ⇒ ∃N ′
2 · N2

〈η〉
−→C N ′

2 ∧N ′
1 ≃b N

′
2 witnessed byR}

∪{R|N2
η
−→C N ′

2 ⇒ ∃N ′
1 · N1

〈η〉
−→C N ′

1 ∧N ′
1 ≃b N

′
2 witnessed byR}

∪{(N1,N2)}.

We prove cases 1, 2, 6, 9 and 10 since the proofs of case 3 and 5 are similar to case 2, case 4 is similar
to case 1, cases 7, 8 are similar to case 9, and case 11 is similar to case 10.
Case 1. The first transitions of[[α.P1]]ℓ and [[α.P2]]ℓ are the same, and since[[P1]]ℓ ≃rb [[P1]]ℓ then
[[P1]]ℓ ≃b [[P1]]ℓ. Thus the transfer conditions of Definition 6.2 hold.
Case 2. Every transition[[P1 + P ′

1]]ℓ
η
−→C N owes to[[P1]]ℓ

η
−→C N or [[P ′

1]]ℓ
η
−→C N . Since[[P1]]ℓ ≃rb

[[P2]]ℓ and[[P ′
1]]ℓ ≃rb [[P ′

2]]ℓ, there is anN ′ such that[[P2]]ℓ
〈η〉
−→C N ′ or [[P ′

2]]ℓ
〈η〉
−→C N ′ andN ≃b N ′.

Thus[[P2 + P ′
2]]ℓ

η
−→C N ′ with N ≃b N

′.
Case 6. We prove that ifN1 ≃b N2 then (νℓ)N1 ≃b (νℓ)N2. Let N1 ≃b N2 be witnessed by the
branching computed network bisimulation relationR. We defineR′ = {((νℓ)N ′

1, (νℓ)N ′
2)|(N

′
1,N

′
2) ∈

R}. We prove thatR′ is a branching computed network bisimulation relation. Suppose(νℓ)N ′
1

η′

−→C′

(νℓ)N ′′
1 resulting from the application ofRest onN ′

1
η
−→C N ′′

1 . Since(N ′
1,N

′
2) ∈ R, there are two cases;

in the first caseη is a receive orτ action and(N ′′
1 ,N ′

2) ∈ R, consequently((νℓ)N ′′
1 , (νℓ)N ′

2) ∈ R′. In

second case there areN ′′′
2 andN ′′

2 such thatN ′
2 ⇒ N ′′′

2

〈η〉
−→C N ′′

2 with (N ′
1,N

′′′
2 ), (N ′′

1 ,N ′′
2 ) ∈ R. By

application ofRest , (νℓ)N ′
2 ⇒ (νℓ)N ′′′

2 with ((νℓ)N ′
1, (νℓ)N ′′′

2 ) ∈ R′. There are two cases to consider:

• 〈η〉 = η: Consequently(νℓ)N ′′′
2

η′

−→C′ (νℓ)N ′′
2 .

• 〈η〉 6= η: in this caseη is of the formm(û)!{?}, η′ = η andC ′ = hide(C, ℓ). If 〈η〉 = η[ℓ/?]
then 〈η〉[?/ℓ] = η andC ′ = hide(C[ℓ/?], ℓ) hold, otherwise〈η〉[?/ℓ] = 〈η〉 andC ′[ℓ′/?] =

hide(C[ℓ′/?], ℓ) hold whereℓ′ 6= ℓ. Consequently(νℓ)N ′′′
2

〈η′〉
−−→C′ (νℓ)N ′′

2 .

According to the discussion above, there areN ′′′
2 andN ′′

2 such that(νℓ)N ′
2 ⇒ (νℓ)N ′′′

2

〈η′〉
−−→C′ (νℓ)N ′′

2

with ((νℓ)N ′
1, (νℓ)N ′′′

2 ), ((νℓ)N ′′
1 , (νℓ)N ′′

2 ) ∈ R′.
Likewise we can prove thatN1 ≃rb N2 implies (νℓ)N1 ≃rb (νℓ)N2. To this aim we examine the

root condition in Definition 6.2. Suppose(νℓ)N1
η′

−→C′ (νℓ)N ′
1. With the same argument as above,

(νℓ)N2
〈η′〉
−−→C′ (νℓ)N ′

2. SinceN ′
1 ≃b N ′

2, we proved that(νℓ)N ′
1 ≃b (νℓ)N ′

2. Concluding(νℓ)N1 ≃rb

(νℓ)N2.
Case 9. First we prove that ifN1 ≃b N2, thenN1 ‖ N ≃b N2 ‖ N . Let N1 ≃b N2 be witnessed
by the branching computed network bisimulation relationR. We defineR′ = {(N ′

1 ‖ N ′,N ′
2 ‖

N ′)|(N ′
1,N

′
2) ∈ R, N ′ any computed network term}. We prove thatR′ is a branching computed net-

work bisimulation relation. SupposeN1 ‖ N
η
−→C∗ N ∗. There are several cases to consider:
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• Supposeη is a send actionm(û)! performed by an addressℓ. First let it be performed byN ′
1, and

N participated in the communication. That is,N ′
1

m(bu)!{ℓ}
−−−−−→C1

N ′′
1 andN

m(bu)?
−−−→C N ′ give rise to

the transitionN ′
1 ‖ N

m(bu)!{ℓ}
−−−−−→C1∪C[ℓ/?] N

′′
1 ‖ N ′. As (N ′

1,N
′
2) ∈ R andN ′

1

m(bu)!{ℓ}
−−−−−→C1

N ′′
1 ,

there areN ′′
2 andN ′′′

2 such thatN ′
2 ⇒ N ′′′

2

m(bu)!{ℓ′}
−−−−−→C1[ℓ′/ℓ] N ′′

2 , where(ℓ =? ∨ ℓ = ℓ′) and

(N ′
1,N

′′′
2 ), (N ′′

1 ,N ′′
2 ) ∈ R. HenceN ′

2 ‖ N ⇒ N ′′′
2 ‖ N

m(bu)!{ℓ′}
−−−−−→C1∪C[ℓ′/?] N ′′

2 ‖ N ′ with
(N ′

1 ‖ N ,N ′′′
2 ‖ N ), (N ′′

1 ‖ N ′,N ′′
2 ‖ N ′) ∈ R′.

Now suppose that the send action was performed byN , andN ′
1 participated in the commu-

nication. That is,N ′
1

m(bu)?
−−−→C1

N ′′
1 and N

m(bu)!{ℓ}
−−−−−→C N ′ give rise to the transitionN ′

1 ‖

N
m(bu)!{ℓ}
−−−−−→C1[ℓ/?]∪C N ′′

1 ‖ N ′. Since(N ′
1,N

′
2) ∈ R andN ′

1

m(bu)?
−−−→C1

N ′′
1 , two cases can be con-

sidered: either(N ′′
1 ,N ′

2) ∈ R, or there areN ′′′
2 andN ′′

2 such thatN ′
2 ⇒ N ′′′

2

m(bu)?
−−−→C1

N ′′
2 with

(N ′
1,N

′′′
2 ), (N ′′

1 ,N ′′
2 ) ∈ R. In the first case byPar andExe, N ′

2 ‖ N
m(bu)!{ℓ}
−−−−−→C1∪C[ℓ/?] N

′
2 ‖ N ′,

and(N ′′
1 ‖ N ′,N ′

2 ‖ N ′) ∈ R. In the second case,N ′
2 ‖ N ⇒ N ′′′

2 ‖ N
m(bu)!{ℓ}
−−−−−→C1∪C[ℓ/?] N

′′
2 ‖

N ′, and(N ′
1 ‖ N ,N ′′′

2 ‖ N ), (N ′′
1 ‖ N ′,N ′′

2 ‖ N ′) ∈ R′.

The cases whereN orN1 does not participate in the communication are straightforward.

• The case whereη is a receive actionm(û)? or aτ action is also straightforward; it originates from
N1, N , or both in the former case and in the latter case it originates fromN1 orN .

Likewise we can prove thatN1 ≃rb N2 impliesN ‖ N1 ≃rb N ‖ N2.

Now letN1 ≃rb N2. To proveN1|N ≃rb N2|N , we examine the root condition from Definition 6.2.

SupposeN1|N
m(bu)!{ℓ}
−−−−−→C∗ N ∗. There are two cases to consider:

• This send action was performed byN1 at nodeℓ, andN participated in the communication. That

is, N1
m(bu)!{ℓ}
−−−−−→C1

N ′
1 andN

m(bu)?
−−−→C N ′, so thatN1|N

m(bu)!{ℓ}
−−−−−→C1∪C[ℓ/?] N ′

1 ‖ N ′. Since

N1 ≃rb N2, there is anN ′
2 such thatN2

m(bu)!{ℓ′}
−−−−−→C1[ℓ′/ℓ] N

′
2 with (ℓ =? ∨ ℓ = ℓ′) andN ′

1 ≃b N
′
2.

ThenN2|N
m(bu)!{ℓ′}
−−−−−→C1∪C[ℓ′/?] N

′
2 ‖ N ′. SinceN ′

1 ≃b N
′
2, we proved thatN ′

1 ‖ N ′ ≃b N
′
2 ‖ N ′.

• The send action was performedN at nodeℓ, andN1 participated in the communication. That is,

N1
m(bu)?
−−−→C1

N ′
1 andN

m(bu)!{ℓ}
−−−−−→C N , so thatN1|N

m(bu)!{ℓ}
−−−−−→C1∪C[ℓ/?] N1 ‖ N ′. SinceN1 ≃rb

N2, there is anN ′
2 such thatN2

m(bu)?
−−−→C1

N ′
2 with N ′

1 ≃b N
′
2. ThenN2|N

m(bu)!{ℓ}
−−−−−→C1∪C[ℓ/?] N

′
2 ‖

N ′. SinceN ′
1 ≃b N

′
2, we haveN ′

1 ‖ N ′ ≃b N
′
2 ‖ N ′.

Finally, the case whereN1|N
m(bu)?
−−−→C∗ N ∗ can be easily dealt with. This receive action was performed

by bothN1 andN .
Concluding,N1|N ≃rb N2|N . Likewise it can be argued thatN|N1 ≃rb N|N2.

Case 10. We prove that ifN1 ≃b N2, then∂M (N1) ≃b ∂M (N2). Let N1 ≃b N2 be witnessed by the
branching computed network bisimulation relationR. We defineR′ = {(∂M (N ′

1), ∂M (N ′
2))|(N

′
1,N

′
2) ∈

R}. We prove thatR′ is a branching computed network bisimulation relation. Suppose that∂M (N ′
1)

η
−→C
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∂M (N ′′
1 ) results from the application ofEncap on N ′

1
η
−→C N ′′

1 such thatObj (η) 6∈ M or η is a

send action. Since(N ′
1,N

′
2) ∈ R, there areN ′′′

2 and N ′′
2 such thatN ′

2 ⇒ N ′′′
2

〈η〉
−→C N ′′

2 with

(N ′
1,N

′′′
2 ), (N ′′

1 ,N ′′
1 ) ∈ R. Consequently, by application ofEncap, ∂M (N ′

2) ⇒ ∂M (N ′′′
2 )

〈η〉
−→C

∂M (N ′′
2 ) with (∂M (N ′

1), ∂M (N ′′′
2 )), (∂M (N ′′

1 ), ∂M (N ′′
1 )) ∈ R′.

Likewise we can prove thatN1 ≃rb N2 implies ∂M (N1) ≃rb ∂M (N2). To this aim we exam-
ine the root condition in Definition 6.2. Suppose∂M (N1)

η
−→C ∂M (N ′

1). With the same argument as

above,∂M (N2)
〈η〉
−→C ∂M (N ′

2). SinceN ′
1 ≃b N ′

2, we proved that∂M (N ′
1) ≃b ∂M (N ′

2). Concluding
∂M (N1) ≃rb ∂M (N2). ⊓⊔

C. Strong versus Rooted Branching Computed Network Bisimilarity

Proposition C.1. Let P1 andP2 be two protocol processes, such thatP1 ≃ P2. Then[[P1]]ℓ ≃rb [[P2]]ℓ,
whereℓ is an arbitrary location.

Proof:
LetP1 ≃ P2 witnessed by the strong bisimulation relationR. We defineR′ = {([[P ′

1]]ℓ, [[P
′
2]]ℓ)|(P

′
1, P

′
2) ∈

R}. We prove thatR′ is a branching computed network bisimulation relation. Suppose[[P ′
1]]ℓ

η
−→C [[P ′′

1 ]]ℓ
results from the application ofInter1 or Inter2. In the former case,η is of the form m(û)!{ℓ},

C = {} and P ′
1

m(bu)!
−−−→ P ′′

1 . Since(P ′
1, P

′
2) ∈ R, then there is aP ′′

2 such thatP ′
2

m(bu)!
−−−→ P ′′

2 and
(P ′′

1 , P ′′
2 ) ∈ R. Consequently[[P ′

2]]ℓ
η
−→C [[P ′′

2 ]]ℓ and([[P ′′
1 ]]ℓ, [[P

′′
2 ]]ℓ) ∈ R′. In the latter case,η is of the

form m(û)? andC = {? ℓ}, andP ′
1

m(bu)?
−−−→ P ′′

1 . With the same argumentation,[[P ′
2]]ℓ

η
−→C [[P ′′

2 ]]ℓ with
([[P ′′

1 ]]ℓ, [[P
′′
2 ]]ℓ) ∈ R′. ThusR′ is a branching computed network bisimulation. HenceP1 ≃ P2 implies

[[P1]]ℓ ≃b [[P2]]ℓ, and since[[P1]]ℓ and [[P2]]ℓ are matched in each transition step, we can conclude that
[[P1]]ℓ ≃rb [[P2]]ℓ. ⊓⊔

D. Soundness of theCNTAxiomatization

We define branching computed network bisimilation up to≃b (in the same way as [8]). On the one hand
it is less restrictive than the notion of a branching computed network bisimulation. On the other hand,
if two computed network are related by a branching computed network bisimulation up to≃b, they are
branching computed network bisimilar (see Proposition D.1). Consequently this notion can be exploited
to alleviate soundness proofs of axioms.

Definition D.1. A branching computed network bisimilation up to≃b is a relationR such that ifN1RN2

andN1 ⇒ N ′
1

η
−→C N ′′

1 with N1 ≃b N ′
1 and(η is not a receive orτ action∨ N ′

1 6≃b N ′′
1 ) then there exist

N ∗′
1 ,N ∗′′

1 ,N ∗′
2 ,N ∗′′

2 ,N ′
2,N

′′
2 such thatN2 ⇒ N ′

2

〈η〉
−→C N ′′

2 with

N ′
1 ≃b N

∗′
1 ∧N ′

2 ≃b N
∗′
2 ∧N ∗′

1 RN ∗′
2

N ′′
1 ≃b N

∗′′
1 ∧N ′′

2 ≃b N
∗′′
2 ∧N ∗′′

1 RN ∗′′
2 .

Similarly the converse must hold ifN2 ⇒ N ′
2

η
−→C N ′′

2 .
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Proposition D.1. If R is a branching computed network bisimulation up to≃b andN1RN2, thenN1 ≃b

N2.

Proof:
It suffices to prove that the relation≃b R ≃b= {(N ∗

1 ,N ∗
2 )|∃N1,N2 : N ∗

1 ≃b N1RN2 ≃b N ∗
2 } is

a branching computed network bisimulation. So supposeN ∗
1 ,N1,N2 andN ∗

2 are as indicated, and
N ∗

1
η
−→C N ∗′′

1 . Then eitherη is a receive orτ action andN ∗′′
1 ≃b N1 which completes the proof, or

there areN ′
1 andN ′′

1 with N ′
1 ≃b N ∗

1 ≃b N1 andN ′′
1 ≃b N ∗′′

1 ( 6≃b N ′
1 if η is a receive orτ action). By

Definition D.1, there areN ′
2, N ′′

2 such thatN2 ⇒ N ′
2

〈η〉
−→C N ′′

2 with (N ′
1,N

′
2), (N

′′
1 ,N ′′

2 ) ∈ ≃b R ≃b.
SinceN ∗

2 ≃b N2, by application of Lemma A.1 and Definition 6.1, there areN ∗′
2 andN ∗′′

2 such that

N ∗
2 ⇒ N ∗′

2

〈η〉
−→ N ∗′′

2 with N ′
2 ≃b N ∗′

2 andN ′′
2 ≃b N ∗′′

2 . Consequently,N2 ⇒ N ′
2

〈η〉
−→C N ′′

2 with
(N ∗

1 ,N ∗′
2 ), (N ∗′′

1 ,N ∗′′
2 ) ∈ ≃b R ≃b. The same argumentation holds whenN ∗

2
η
−→C N ∗′′

2 ⊓⊔

To prove Theorem 7.1, it suffices to prove soundness of each axiom modulo rooted branching com-
puted network bisimilarity separately. For axiomCon, every initial transition ofC1η.N is obviously also
an initial transition ofC1η.N +C2η.N . Vice versa, ifC1η.N +C2η.N can perform an initial transition
becauseC2η.N can, then by application of thePre andExe rules in Table 2,C1η.N can perform this
initial transition too. Similarly, it is not hard to argue the soundness ofP1−5, R,Dead ,Obs,Choice1−4,
Br, LEx 1−3, S1−4, Sync1−5, Res1−4, Abs1−3, andEcp1−4, by showing that the terms on both sides of
each axiom satisfy the transfer conditions of Definition 6.2. Soundness ofaxiomP0 is the direct result
of Proposition 6.1.

We focus on the soundness ofT1 andT2. We only explain the soundnessT2, as the soundness of
T1 can be argued in a similar fashion. The only transition the termsCη.(C ′τ.(N1 + N2) + N2) and
Cη.(N1 + N2) in T2 can do is

η
−→C , and the resulting termsC ′τ.(N1 + N2) + N2 andN1 + N2 are

branching computed network bisimilar, witnessed by the relationR constructed as follows:

R = {(C ′τ.(N1 + N2) + N2,N1 + N2), (N ,N )|N ∈ CNT}.

The pair(C ′τ.(N1 + N2) + N2,N1 + N2) satisfies the transfer conditions in Definition 6.1. Because
every initial transition thatC ′τ.(N1+N2)+N2 can perform owing toN2,N1+N2 can perform too. And
after the initial

τ
−→C′-transition,(N1 + N2,N1 + N2) ∈ R holds. And every initial transitionN1 + N2

can perform,C ′τ.(N1 + N2) + N2 can mimic, by first doing its
τ
−→C′-transition.

Soundness of the axiomUnfold follows directly from the ruleRec, sincerecAn.t
η
−→C N ⇔

t{recAn.t/t}
η
−→C N . Soundness of axiomFold is a consequence of the following proposition, taken

from [8]:

Proposition D.2. If s ≃rb t{s/An} thens ≃rb recAn.t, providedAn is guarded int.

Proof:
For u, v ∈ CNT we write u(v) for u{v/An}. Assumes, t, v ∈ CNT such thatAn is guarded in
t, s ≃rb t(s) and v ≃rb t(v). We will prove that{(u(t(s))), u(t(v)))|u ∈ CNT} is a branching
computed network bisimulation up to≃b. SinceAn is guarded int and hence inu(t), the first transition
with subscriptC and labelη whereη 6= τ generated byu(t(s)) does not originate froms (which
can be easily shown by induction on the inference tree), sou(t(s)) ⇒ u′(s)

η
−→C u′′(s). Then also
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u(t(v)) ⇒ u′′′(v)
η
−→C u′′′′(v) with u′′′ ≡α u′ andu′′′′ ≡α u′′. It should be noted that since the free

network names ofs andv may be different, their substitution inu(t) may result in different renamings of
bound names inu(t). Due to congruence of rooted branching computed network bisimilarity and that≃rb

implies≃b, we getu′(t(s)) ≃b u′(s), u′′(t(s)) ≃b u′′(s), u′′′(t(v)) ≃b u′′′(v), andu′′′′(t(v)) ≃b u′′′′(v).
The requirement starting withu(t(v)) follows by symmetry, so the relation is a branching computed
network bisimulation up to≃b, and by proposition D.1,u(t(s)) ≃b u(t(v)). Work it out considering
u′(t(s)) = u(t(s)), we can prove thatu(t(s)) ≃rb u(t(v)), so sinceu is an arbitrary term, we have in
particulart(s) ≃rb t(v) and hences ≃rb t(s) ≃rb t(v) ≃rb v. Finally, takev = recAn.t; note that
recAn.t ≃rb t(recAn.t). ⊓⊔

Soundness of axiomUng follows by application ofRec: recAn.(An + t)
η
−→C t′{L/An} ⇔

recAn.t
η
−→C t′{R/An}, and proving thatt′{L/An} ≃b t′{R/An}, whereL andR are the left- and

right-hand sides ofUng2. It is straightforward to show thatR = {(t{L/An}, t{R/An})|t ∈ CNT f}
is a branching computed network bisimulation relation. In the same approach, soundness of axioms
WUng1 andWUng2 holds since the following relations are branching computed network bisimulations:

R′ = {((C ′τ.t′ + t){L/An}, (t′ + t){R/An}), (t′{L/An}, (t + t′){R/An})}∪

{(t{L/An}, t{R/An})|t ∈ CNT f}

R′′ = {((An + t){L/An}, (t + s){L/An})} ∪ {(t{L/An}, t{R/An})|t ∈ CNT f}

whereL andR are the left- and right-hand sides of corresponding axioms. To proveR′ is a branching
computed network bisimulation, it suffices to show that(t′{L/An}, (t + t′){R/An}) satisfies the trans-
fer conditions in Definition 6.1. We have(t′ + t){R/An}

η
−→C t′′{R/An}, owing to t{R/An}

η
−→C

t′′{R/An} by application ofChoice ′. SinceAn is unguarded int′, it is easy to show that

t′{L/An} ⇒ An{L/An}
τ
−→C (C ′τ.t′ + t){L/An}

and consequentlyt′{L/An} ⇒ (C ′τ.t′ + t){L/An}
η
−→C t′′{L/An}, with ((C ′τ.t′ + t){L/An}, (t

′ +
t){R/An}) ∈ R′ and(t′′{L/An}, t

′′{R/An}) ∈ R′. Conversely every transition performed byt′{L/An}
can be performed by(t + t′){R/An}, while their resulted terms are included inR′. R′′ is proved in the
same way by application ofRec.

To prove soundness of axiomHid , we show that the following relation is a branching computed
network bisimulation up to≃b:

R′′′ = {(∇M (s{recAn.t/An}),∇M (s{recAn.∇M (t)/An}))

|s, t ∈ CNT and onlyAn is free ins}

To this aim we show thatR′′′ satisfies the following transfer condition: if∇M (s{recAn.t/An})
η
−→C u

then, for someu′ and u′′, ∇M (s{recAn.∇M (t)/An})
η
−→C u′′, u′′ ≃b u′ and (u, u′) ∈ R′′′, and

symmetrically for transitions of∇M (s{recAn.∇M (t)/An}).
Being a branching computed network bisimulation up to≃b for R′′′ implies

∇M (t{recAn.t/An}) ≃b ∇M (t{An.∇M (t)/An})
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which implies∇M (recAn.t) ≃rb recAn.∇M (t), because∇M (recAn.t)
η
−→C u if and only if

∇M (t{recAn.t/An})
η
−→C u, and similarly,recAn.∇M (t)

η
−→C u if and only if∇M (t{An.∇M (t)/An})

η
−→C

u.
We prove thatR′′′ satisfies the above transfer condition, by induction on the height of the inference

tree by whichCη transitions of∇M (s{recAn.t/An}) are inferred.
The base cases of the induction are the following ones:

• if s ≡ 0 or s ≡ [[0]]ℓ, then the condition above trivially holds.

• if s ≡ [[P ]]ℓ′ , then∇M (s{recAn.t/An}) ≡ ∇M ([[P ]]ℓ′) ≡ ∇M (s{recAn.∇M (t)/An}) which
trivially holds.

• if s ≡ Cη.s′, then∇M (Cη.s′{recAn.t/An})
δM (η)
−−−→C ∇M (s′{recAn.t/An}).

Also ∇M (Cη.s′{recAn.∇M (t)/An})
δM (η)
−−−→C ∇M (s′{recAn.∇M (t)/An}), and the targets are

related byR′′′.

We now consider the inductive steps. We have the following cases, basedon the structure ofs:

• if s ≡ An, then∇M (s{recAn.t/An}) ≡ ∇M (recAn.t) and∇M (s{recAn.∇M (t)/An}) ≡

∇M (recAn.∇M (t)). Since∇M (recAn.t)
δM (η)
−−−→C u, it must be thatrecAn.t

η
−→C v with u ≡

∇M (v). Furthermore, it must be thatt{recAn.t/An}
η
−→C v by a shorter inference. As a conse-

quence we derive∇M (t{recAn.t/An})
δM (η)
−−−→C u.

By induction we derive∇M (t{recAn.∇M (t)/An})
δM (η)
−−−→C u′′ with u′′ ≃b u′ and(u, u′) ∈ R′′′.

As a consequencerecAn.∇M (t)
δM (η)
−−−→C u′′ and∇M (recAn.∇M (t))

δM (η)
−−−→C ∇M (u′′). Sinceu′′

has abstraction as the outermost operator (because it is derived by a transition from a term that has
abstraction as the outermost operator), we also have that∇M (u′′) = u′′.

• if s ≡ s′ + s′′, then∇M (s{recAn.t/An}) ≡ ∇M (s′{recAn.t/An} + s′′{recAn.t/An}) and
∇M (s{recAn.∇M (t)/An}) ≡ ∇M (s′{recAn.∇M (t)/An} + s′′{recAn.∇M (t)/An}).

Since∇M (s′{recAn.t/An} + s′′{recAn.t/An})
δM (η)
−−−→C u, it must be thats′{recAn.t/An} +

s′′{recAn.t/An}
η
−→C v with u ≡ ∇M (v). Now we have two cases:

– if s′{recAn.t/An}
η
−→C v, then∇M (s′{recAn.t/An})

δM (η)
−−−→C u, and by induction

∇M (s′{recAn.∇M (t)/An})
δM (η)
−−−→C u′′ with u′′ ≃b u′ and(u, u′) ∈ R′′′.

Therefore it must be thats′{recAn.∇M (t)/An}
η
−→C v′′ with u′′ ≡ ∇M (v′′). As a conse-

quence∇M (s{recAn.∇M (t)/An})
η
−→C u′′.

– if s′′{recAn.t/An}
η
−→C v, then the result is derived in a similar way.

• if s ≡ recAm.t′, with Am 6= An , then∇M (s{recAn.t/An}) ≡ ∇M (recAm.t′{recAn.t/An})
and∇M (s{recAn.∇M (t)/An}) ≡ ∇M (recAm.t′{recAn.∇M (t)/An}). For the caseAm = An,
∇M (s{recAn.t/An}) ≡ ∇M (s{recAn.∇M (t)/An} ≡ ∇M (s), which was proved previously.
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Since∇M (s{recAn.t/An})
δM (η)
−−−→C u, it must be thatrecAm.t′{recAn.t/An})

η
−→C v with

u ≡ ∇M (v). Hencet′{recAm.t′/Am}{recAn.t/An}
η
−→C v. As a consequence

∇M (t′{recAm.t′/Am}{recAn.t/An})
δM (η)
−−−→C u.

By induction∇M (t′{recAm.t′/Am}{recAn.∇M (t)/An})
δM (η)
−−−→C u′′ with u′′ ≃b u′ and(u, u′) ∈

R′′′. Thereforet′{recAm.t′/Am}{recAn.∇M (t)/An}
η
−→C v′′ with u′′ ≡ ∇M (v′′). As a conse-

quencerecAm.t′{recAn.∇M (t)/An}
η
−→C v′′, and finally∇M (s{recAn.∇M (t)/An})

η
−→C u′′.

• If s ≡ s′ ‖ s′′ or s ≡ s′ s′′ or s ≡ s′ | s′′ or s ≡ ∂M (s′) or s ≡ ∇M (s) then the condition
trivially holds becauseAn cannot occur insides′ or s′′.

A symmetric inductive proof is performed when we start fromCη transitions of∇M (s{recAn.∇M (t)/An})
in the conditions above.

E. CNTf Generates Finite-State Behaviors

Proposition E.1. Let N be a closedCNTf term such that every subtermrecAn.t is essentially finite-
state. Given a data modelID with finite data domains, the transition system forN generated by the
operational rules has only finitely many states.

Proof:
We extend the proof strategy used in [8]. First we introduceColored Computed Network Theory(CNTc

f ),
where each occurrence of an operator (except static operators, i.e.deployment, parallel, left merge,
communication merge, restriction, abstraction, and encapsulation operators) and of a name in a process
term has a color (black or red). We color a term using functionsred(N ) andblack(N ), which color
all occurrences of operators (excluding static ones) and names inN red and black respectively. For
instance,red(Cη.0+N ) ≡ red(Cη.)red(0)red(+)red(N ). Furthermore, if in a subtermα.P , P1 +P2,
[u1 = u2]P1, P2, Cη.N , N1 + N2 or recAn.t the leading operator is colored black, the entire term
must be black. Renaming of bound network names does not change their color. Second we introduce an
auxiliary transition relation→ onCNTc

f such that each
η
−→C generated by theCNTf operational semantics

can be matched by a sequence of→ relations. Therefore it suffices to prove that the set of closed terms
reachable by a colored version of any closedN ∈ CNT f under the transition relation→ is finite.
The intuition behind coloring terms is to distinguish between two types of terms reachable under the
transitions relation→; we color a term black to express that its red version has been visited before.

Consider the transition relation→⊆ CNT f ×{., (û), +, [ ], rec}×CNT f , whereû is a sequence of
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data terms inID, defined by:

[[m(û)!.P ]]ℓ
.
−→ [[P ]]ℓ;

[[m(x̂)?.P ]]ℓ
(bu)
−→ [[P{û/x̂}]]ℓ, whereû ∈ domainm;

[[P1 + P2]]ℓ
+
−→ [[P1]]ℓ and[[P1 + P2]]ℓ

+
−→ [[P2]]ℓ

[[[u]P1, P2]]ℓ
[ ]
−→ [[P1]]ℓ, if ID ⊢ u = T ;

[[[u]P1, P2]]ℓ
[ ]
−→ [[P2]]ℓ, ifID ⊢ u = F ;

[[Ap(û)]]ℓ
rec
−→ [[P{û/x̂}]]ℓ, whereAp(〈x : D〉) = P ;

Cη.N
.
−→ N ;

N1 + N2
+
−→ N1 andN1 + N2

+
−→ N2;

N1 ‖ N2
δ
−→ N ′

1 ‖ N2 andN1 ‖ N2
δ
−→ N1 ‖ N ′

2 if N1
δ
−→ N ′

1 andN2
δ
−→ N ′

2 respectively;

N1 | N2
δ
−→ N ′

1 ‖ N2 andN1 | N2
δ
−→ N1 ‖ N ′

2 if N1
δ
−→ N ′

1 andN2
δ
−→ N ′

2 respectively;

N1 N2
δ
−→ N ′

1 ‖ N2 if N1
δ
−→ N ′

1;

(νℓ)N
δ
−→ (νℓ)N ′, and∇M (N )

δ
−→ ∇M (N ′), and∂M (N )

δ
−→ ∂M (N ′), if N

δ
−→ N ′;

recAn.t
rec
−→ t{recAn.t/An};

whereδ ∈ {., (û), +, [ ], rec}. We useN →∗ N ′ to denote thatN ′ is reachable fromN under the→
relation.

The above relation can be defined for colored terms with minor changes: each rule should be defined
for any coloring of each operator, while colors of terms are preservedunder all transitions except the
sixth and thirteenth where the black version of a protocol name and recursive term is substituted for a
protocol and (free) network name:

[[black(Ap(û))]]ℓ
rec
−→ [[black(P{û/x̂})]]ℓ;

[[red(Ap(û))]]ℓ
rec
−→ [[red(P{û/x̂}){black(Ap(û))/red(Ap(û))}]]ℓ;

black(recAn).t
rec
−→ t{black(recAn.t)/black(An)};

red(recAn).t
rec
−→ t{black(recAn.t)/black(An)}{black(recAn.t)/red(An)}.

If N
η
−→C N ′ forN ,N ′ ∈CNTf , andN0 is a colored version ofN , then there must beN1, · · · ,Nn+1 ∈

CNT c
f with n ∈ IN , such thatNi−1

∆
−→ Ni where∆ ∈ {., (û), +, rec, [ ]} for all i = 1, · · · , n, and

Nn
.
−→ Nn+1 orNn

(bu)
−→ Nn+1, andNn+1 is the colored version ofN ′. Since the data domains are finite

in ID, there are finitely many transitions labeled by data termsû.
Fix anM ∈ CNT f . Let εM denote the set of closed terms that are reachable fromM. Likewise, let

ε′M denote the set of colored terms that are reachable by→ from red(M). For anyN ∈ εM, a colored
version appears inε′M, and it suffices to prove thatε′M is finite.

It should be noted that if a termN is partly red andN →∗ N ′, then the red part ofN ′ is smaller than
or equal to the red part ofN . Also for a red (sub)termN andN → N ′, the red part ofN ′ is smaller
than the red part ofN . Thus for a partly red termN andN → N ′, if the red part ofN ′ is smaller than
N , then this transition owes to a transition of a red subterm inN , while if the red part ofN ′ is equal to
N , then this transition owes to a transition of a black subterm inN .
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Furthermore for any termN ∈ ε′M, if N contains a subtermrecAn.t with recAn red, then no
black subterm oft contains a free occurrenceAn. SinceN is essentially finite-state, no black subtermt
contains parallel, communication merge, left merge, restriction, abstraction, and encapsulation operators.

These properties are trivially true forred(M), trivially preserved under
∆
−→ where∆ = {., (û), +, [ ]},

and preserved under
rec
−→ by renaming of bound network names. It follows that eachN ∈ ε′M is of the

form△(△1(N1)⊙· · ·⊙△i(Ni)⊙· · ·⊙△n(Nn)) where⊙ ∈ {‖, |, }, △ ::= ((νℓ)+∇M +∂M )∗ is a
sequence of restriction, abstraction and encapsulation operators for some arbitraryℓ ∈ Loc, M ⊆ Msg ,
and for all1 ≤ i ≤ n, eachNi contains no⊙ operators (since recursion subterms are essentially finite-
state). Moreover ifN →∗ N ′, then the black subterms ofN that are inherited byN ′–unlike the red
ones–are unchanged inN ′. Thus if a termN ∈ ε′M which is of the form△(△1(N1) ⊙ · · · ⊙△i(Ni) ⊙
· · · ⊙ △n(Nn)) whereNi is partly red,N →∗ N ′, andN ′ is of the form△(△1(N

′
1) ‖ · · · ‖ △i(N

′
i ) ‖

· · · ‖ △n(N ′
n)) andN ′

i is completely black, thenN ′
i has the form of[[Ap(û)]]ℓ or recAn.t and has been

generated by a derivation

△(△1(N
∗
1 ) ‖ · · · ‖ △i([[Ap(û)]]ℓ) ‖ · · · ‖ △n(N ∗

n))
rec
−→

△(△1(N1)
∗ ‖ · · · ‖ △i([[P{û/x̂}]]ℓ) ‖ · · · ‖ △n(N ∗

n)

or
△(△1(N

∗
1 ) ‖ · · · ‖ △i(recAn.t) ‖ · · · ‖ △n(N ∗

n))
rec
−→

△(△1(N ∗
1 ) ‖ · · · ‖ △i(t{recAn.t/An}) ‖ · · · ‖ △n(N ∗

n))

such that for all0 < j ≤ n with i 6= j, N ∗
j →∗ Nj and [[P{û/x̂}]]ℓ →∗ Ni or t{recAn.t/An} →∗

Ni, since the black version ofAp(û) or recAn.t can only occur in the scope of prefix, choice and
recursion operators and no new parallel, communication merge, left merge,restriction, abstraction, and
encapsulation operators are generated. Hence the termN ′ ∈ ε′M also occurs as a term△(△1(N

′
1) ‖

· · · ‖ △i([[Ap(û)]]ℓ) ‖ · · · ‖ △n(N ′
n)) or △(△1(N

′
1) ‖ · · · ‖ △i(recAn.t) ‖ · · · ‖ △n(N ′

n)) in ε′M
where[[Ap(û)]]ℓ or recAn.t is completely red. It follows that for each termN ∈ ε′M which is of the form
△(△1(N1) ⊙ · · · ⊙ △i(Ni) ⊙ · · · ⊙ △n(Nn)) where there is a0 < j ≤ n thatNj is completely black,
there is amaximum red termN ∗ ∈ ε′M which is of the form△(△1(N1)⊙· · ·⊙△i(Ni)⊙· · ·⊙△n(Nn))
where for all0 < i ≤ n, Ni are partly/completely red while the length of its red part is maximal. Since
each maximum red term is achieved from a maximum red term by a derivation during which the length
of red part is reduced, then the number of maximum red terms is finite. It follows thatεM is finite. ⊓⊔

F. Proof of the Case Study

We briefly explain how the equations in Section 7 can be proved by the application of CNTaxioms. To
this aim we use the following derived axioms:

Cη.(recAn.C ′τ.t + t)
Fold,T2,UnFold

= Cη.(recAn.t),An is guarded int WUng3

recAn.Cτ.(An + t) + C ′τ.(An + t′) + s
WUng

1−2

= recAn.Cτ.(An + t + t′) + s, C ⊆ C ′ WUng4

By application ofP2−5,Bro,LExe1−3,S1−4, andSync1−5, it is straightforward to show thatχ(0, ?, 0, 0, ?) =

χ(1, ?, 0, 0, ?), and we can derive the following equations.
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χ(0, ?, 0, 0, ?) =

{}req !{A}.χ(1, ?, 0, 0, ?)+

{}req !{A}.χ(1, ?, 0, 3, ?)+

{A B}req !{A}.χ(1, ?, 1, 0, ?)+

{A B}req !{A}.χ(1, ?, 1, 3, ?)+

{}error(B)!{A}.χ(0, ?, 0, 0, ?)

χ(1, ?, 1, 0, ?) =

{}req !{A}.χ(1, ?, 1, 0, ?)+

{}req !{A}.χ(1, ?, 1, 3, ?)+

{}rep(B)!{B}.χ(1, ?, 0, 0, ?)+

{B  A}rep(B)!{B}.χ(0, B, 0, 0, ?)+

{B  A}rep(B)!{A}.χ(0, B, 0, 4, ?)+

{}rep(B)!{A}.χ(1, ?, 0, 4, ?)

χ(1, ?, 0, 3, ?) =

{}req !{A}.χ(1, ?, 0, 3, ?)+

{A B}req !{A}.χ(1, ?, 1, 3, ?)+

{}req !{A}.χ(1, ?, 0, 0, ?)+

{}req !{A}.χ(1, ?, 1, 0, ?)+

{}error(B)!{A}.χ(1, ?, 0, 3, ?)

χ(0, B, 0, 0, ?) =

{}data(B)!{A}.χ(0, B, 0, 0, ?)+

{A B}data(B)!{A}.χ(0, B, 0, 0, ?)+

{}error(B)!{B}.χ(0, B, 0, 0, ?)+

{B  A}error(B)!{B}.χ(0, ?, 0, 0, ?)

For eachχ with a parameter setting, we can derive an equation as above. Since all equations are guarded,
by Fold we can deriveχ(θ) is a solution forZθ, whereθ is the sequence of parameter values. Recall
thatZ ≡ Z0,?,0,0,?, ZB ≡ Z0,B,0,0,?, andZC ≡ Z0,C,0,0,B . Thus byCon andFold , χ(0, B, 0, 0, ?) is a
solution for the following recursive equation:

χ(0, B, 0, 0, ?) =

recZB .{}data(B)!{A}.ZB + {}error(B)!{B}.ZB + {B  A}error(B)!{B}.χ(0, ?, 0, 0, ?).

Then byHid andAbs1−3:

∇{req,rep,error}(χ(0, B, 0, 0, ?)) =

∇{req,rep,error}(recZB .{}data(B)!{A}.ZB + {}τ.ZB + {B  A}τ.χ(0, ?, 0, 0, ?))
WUng

2⇒

∇{req,rep,error}(χ(0, B, 0, 0, ?)) =

∇{req,rep,error}(recZB .{}τ.({}data(B)!{A}.ZB + {B  A}τ.χ(0, ?, 0, 0, ?))+

{}data(B)!{A}.ZB + {A B}τ.χ(0, ?, 0, 0, ?)).

Then by derived axiomWUng3 the following equation holds:

Cη.∇{req,rep,error}(χ(0, B, 0, 0, ?)) =

C.η∇{req,rep,error}(recZB.{}data(B)!{A}.ZB + {B  A}τ.χ(0, ?, 0, 0, ?)).

Similarly the equation forχ(0, C, 0, 0, B) can be derived, as explained in Section 7. By repeating the
argumentation above, the following equations can be derived:

∇M (χ(0, ?, 0, 0, ?)) =

recZ.{}τ.Z + {}τ.∇M (χ(1, ?, 0, 3, ?)) + {}τ.∇M (χ(1, ?, 1, 0, ?)) + {}τ.∇M (χ(1, ?, 1, 3, ?))

{}τ.∇M (χ(1, ?, 0, 3, ?)) =

{}τ.recZ1,?,0,3,0.{A B}τ.∇M (χ(1, ?, 1, 3, ?)) + {}τ.Z + {}τ.∇M (χ(1, ?, 1, 0, ?))

{}τ.∇M (χ(1, ?, 1, 3, ?)) =

{}τ.recZ1,?,1,3,?.{}τ.∇M (χ(1, ?, 1, 0, ?)) + {}τ.∇M (χ(1, ?, 0, 3, ?)) + {B  A}τ.∇M (χ(0, B, 0, 3, ?))
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whereM = {req , rep, error}. By application ofUnFold and equation{}τ.∇M (χ(0, B, 0, 0, ?)) =
{}τ.∇M (χ(0, B, 0, 3, ?)) (which is straightforward to prove), the following equation holds:

∇M (χ(0, ?, 0, 0, ?)) = recZ.{}τ.Z + {}τ.∇M (χ(1, ?, 1, 0, ?)) + {}τ.∇M (χ(B, 0, 0, 0, ?)).

By the equation of{}τ.∇M (χ(1, ?, 1, 0, ?)), andUnFold :

l∇M (χ(0, ?, 0, 0, ?)) = recZ.{}τ.Z + {}τ.∇M (χ(C, 0, 0, 0, B)) + {}τ.∇M (χ(B, 0, 0, 0, ?)). (5)

where the unguardedZ can be removed byWUng2. Finally, by the equation of∇M (χ(B, 0, 0, 0, ?)),
UnFold , T2, andFold :

∇M (χ(0, ?, 0, 0, ?)) = recZ.{}τ.∇M (χ(C, 0, 0, 0, B)) + {}τ.∇M (χ(B, 0, 0, 0, ?)).

By substituting the recursions for{}τ.∇M (χ(B, 0, 0, 0, ?)) and{}τ.∇M (χ(C, 0, 0, 0, B)) in equation 5,
UnFold , Hid , andWUng1,2:

∇M (χ(0, ?, 0, 0, ?)) =

recZ.{}τ.(Z + {}data(B)!{A}.∇M (χ(B, 0, 0, 0, ?))) + {}τ.Z+

{}τ.(Z + {}data(?)!{A}.∇M (χ(C, 0, 0, 0, B))+

data(?)!{A}.∇M (recZCB .({}data(?)!{A}.ZCB + {}data(B)!{?}.χ(C, 0, 0, 0, B)))+

{}data(?)!{A}.∇M (χ(C, 0, 0, 2, B))+

{}τ.∇M (recZd.{}data(?)!{A}.Zd))

where{}τ.∇M (χ(C, 0, 0, 2, B)) = {}τ.recZe.({}data(?)!{A}.Ze+{? A}τ.Z+{}τ.recZd.{}data(?)!{A}.Zd).
By the derived axiomWUng4 andWUng2:

∇M (χ(0, ?, 0, 0, ?)) =

∇M (recZ.{}τ.(

{}data(B)!{A}.χ(B, 0, 0, 0, ?)+

{}data(?)!{A}.χ(C, 0, 0, 0, B)+

{}data(?)!{A}.recZCB .({}data(?)!{A}.ZCB + {}data(B)!{?}.χ(C, 0, 0, 0, B))+

{}data(?)!{A}.χ(C, 0, 0, 2, B)+

{}τ.recZd.{}data(?)!{A}.Zd)).

By equations 1, 2 and 3,Cη.∇M (χ(0, ?, 0, 0, ?)) = Cη.∇M (χ(B, 0, 0, 0, ?)), Cη.∇M (χ(0, ?, 0, 0, ?)) =

Cη.∇M (χ(C, 0, 0, 0, B)), and Cη.∇M (χ(C, 0, 0, 0, B)) = Cη.∇M (χ(C, 0, 0, 2, B)) hold. Thus byHid ,
UnFold , the equalities above and recursion, equation 4 in Section 7 has been derived.

G. Ground-Completeness of theCNTAxiomatization

We are going to prove Theorem 8.1, that the axiomatization ofCNT is ground-complete for closed,
finite-state terms modulo rooted branching computed network bisimilarity. To this aim,we perform the
following steps:

1. first we show that eachCNTf term can be turned into anormal formconsisting of only0, Cη.t′, t′+
t′′ andrecAn.t′, which is guarded;
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2. next we definerecursive network specificationand prove that each guarded recursive network
specification has a unique solution;

3. finally we show that our axiomatization is ground-complete for normal forms, by showing that
equivalent normal forms are solutions for the same guarded recursivenetwork specification.

Completeness of our axiomatization for allCNTf terms results from steps1 and3. In the following
sections we go through the above-mentioned steps.

G.1. Normal Forms

Definition G.1. Normal formsare terms made up of only0, Cη.t′, t′ + t′′, andrecAn.t′, whereAn is
guarded int′.

Lemma G.1. Any normal formt can be turned by the axiomatization in Table 4 into a so-calledhead
normal form

∑
{Cη.t∗|t

η
−→C t∗}.

Proof:
We prove this by induction on the maximal length of the inference tree by whichCiηi transitions oft
are inferred. The base cases of the induction,t ≡ 0 or t ≡ Cη.t′ are trivial. The inductive cases are the
following ones:

• if t ≡ t′ + t′′, thent can be turned into the desired form by just summing the terms obtained by
applying the inductive argument tot′ andt′′.

• if t ≡ recAn.t′, thent can be turned into the desired form by directly considering the term obtained
by applying the inductive argument tot′{recAn.t′/An}; by Unfold , t = t′{recAn.t′/An}, and
by the operational ruleRec its transitions are those achieved byt′{recAn.t′/An}.

⊓⊔

Lemma G.2. Let t, t′ be normal forms. Thent′′ ≡ t ‖ t′ or t t′ or t | t′ or (νℓ)t or ∇M (t) or ∂M (t)

can be turned by the axiomatization in Table 4 into a head normal form
∑

{Cη.t∗|t′′
η
−→C t∗}.

Proof:
straightforward. ⊓⊔

Proposition G.1. Given the data modelID with finite data domains, each closed termt of CNTf whose
bound protocol names have finite-state model and whose network names donot occur in the scope of one
of the operators‖, , |, (νℓ),∇M or ∂M for someℓ ∈ Loc andM ⊆ Msg , can be turned into a normal
form.

Proof:
We prove this by structural induction over the syntax of termst (possibly open). The base cases of
induction fort ≡ 0 or t ≡ An are trivial because they are in normal form already.

The inductive cases of the induction are the following ones:

• if t ≡ [[0]]ℓ, then by application ofP1 we havet = 0, which is in normal form.
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• if t ≡ [[α.P ′]]ℓ or t ≡ [[P ′ + P ′′]]ℓ or t ≡ [[[u1 = u2]P
′, P ′′]]ℓ, thent can be turned into a normal

form by application of axiomsPr4,5, P0,2−5 and induction over[[P ′]]ℓ and[[P ′′]]ℓ.

• if t ≡ Cη.t′ or t ≡ t′ + t′′, thent can be turned into normal form by induction overt′ andt′′.

• if t ≡ t′ ‖ t′′ or t ≡ t′ t′′ or t ≡ t′ | t′′ or t ≡ (νℓ)t′ or t ≡ ∂M (t′) for someℓ ∈ Loc and
M ∈ Msg , then following the approach of [1], we can turnt into normal form as follows. By
induction overt′ andt′′, we first obtaint′′′ by replacingt′ andt′′ insidet by their corresponding
normal forms. Sincet has a finite-state transition system by Proposition 8.1,t′′′ has a finite-state
transition system. Lett1, · · · , tn be the states of the transition system oft′′′ with t′′′ ≡ tn. It can
be easily seen that, due to Lemma G.2, there existmi, {Ci

j}j≤mi
(denoting network restrictions),

{ηi
j}j≤mi

(denoting actions),{ki
j}j≤mi

(denoting natural numbers) such that we can deriveti =∑
j≤mi

Ci
jη

i
j .tki

j
. Hence we can characterize the behavior oft′′′ by means of a recursive operators

recAnn .tAnn
such thatt′′′ ≡ tn is the answer of such recursion. So we can turnt′′′ to a normal

form t′′′′ as follows. For eachi from 1 to n, we do the following: ifi is such that∃j ≤ mi ·k
i
j = i,

by application ofFold we haveti = recAni
.(

∑
j≤mi·ki

j 6=i C
i
jη

i
j .tki

j
+

∑
j≤mi·ki

j=i C
i
jη

i
j .Ani

). It

should be noted that axiomFold is applicable, sincet′ andt′′ have been turned in to normal forms
and contain guarded recursions only, hence (since the operators considered cannot turn visible
actions intoτ ) every cycle in the derived transition system contains at least a visible action. Then
replace each subtermti+1, · · · , tn with its equivalent recursion. When we have replacedtn−1 in
tn ≡ t′′′, we are done.

• if t ≡ recAn.t′, then following the approach of [8], we show by induction on the depth of nesting
of recursions int′ that there exists a guarded termt′′ such that:

– An is guarded int′′;

– no free unguarded occurrence of any network name int′′ lies within a recursion int′′; and

– UnFold ,Ung ,WUng1,2 ⊢ recAn.t′ = recAn.t′′.

Assume that this property holds for everys whose recursion depth is less than that oft′. Then for
each recursionrecAm.s in t′ that lies within no recursion int′, there must be a guarded terms′

such thatAm is guarded ins′, no free unguarded occurrence of any network name ins′ lies within
a recursion ins′, andUnFold ,Ung ,WUng1,2 ⊢ recAm.s = recAm.s′.

Let t′′′ be the term resulting from simultaneously replacing every such top levelrecAm.s in t′ by
s′{recAm.s′/Am}. Sincet′ is essentially finite-state, clearlyt′′′ is guarded and no free unguarded
occurrence of any network name int′′′ lies within a recursion, parallel , left merge, restriction,
abstraction, and encapsulation operator int′′′. Now we remove unguarded occurrences ofAn in
recAn.t′′′, knowing that they do not lie within recursions, by application ofUng ,WUng1,2.

• if t ≡ [[Ap(û)]]ℓ, then by assigning a fresh network name, represented byAp(bu), to each[[Ap(û)]]ℓ
and application of axiomsP0,2−5 andUnfold , it can be turned into a recursive termt = recAp(u).t

′,
wheret′ may contain terms of the form[[Aq(û

′)]]ℓ. We repeat this process for each free[[Aq(û
′)]]ℓ,

i.e. not in the scope ofrecAq(bu′), until no such a term remains int′. During this process we should
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substitute each bound[[Aq(û
′)]]ℓ, i.e. occurred in the scope ofrecAq(bu′) by its corresponding net-

work name. This process terminates since the number of protocol names is finite and the data
model contains finite data domains, so the number of protocol name instances isfinite.

• if t ≡ ∇M (t′) thent is turned into a normal form as follows. First by application of induction over
t′, it can be turned into a normal formt′′. It should be noted thatt′′ cannot include free network
names and has a finite-state transition system.

First we show by structural induction that for any normal formt′′, ∇M (t′′) can be turned into
∇M (t′′′), wheret′′′ obtained fromt′′ by syntactically replacing each occurrence of actionη by
δM (η). The base cases of induction fort′′ ≡ 0 or t′′ ≡ An are trivial. The inductive cases of the
induction are the following ones:

– if t′′ ≡ Cη.t′′1, then by application ofAbs1, t′′′ = ∇M (t′′) = CδM (η).∇M (t′′1), which by
induction can be turned into= CδM (η).∇M (t′′′1 ), such that int′′′1 each occurrence of action
η is replaced byδM (η). Finally∇M (t′′′) is ∇M (CδM (η).t′′′1 ).

– if t′′ ≡ t′′1 + t′′2, then by application ofAbs2, ∇M (t′′) can be turned into∇M (t′′1) +∇M (t′′2),
which by induction can be turned into∇M (t′′′1 ) + ∇M (t′′′2 ) such that int′′′1 and t′′′2 each
occurrence of actionη is replaced byδM (η). Finally we obtain∇M (t′′′) as∇M (t′′′1 + t′′′2 ).

– if t′′ ≡ recAn.t′′1, then by application of axiomHid ,∇M (t′′) can be turned intorecAn.∇M (t′′1),
which by induction can be turned intorecAn.∇M (t′′′1 ) such that int′′′1 each occurrence of ac-
tion η is replaced byδM (η). Finally we obtain∇M (t′′′) by application ofHid again as
∇M (recAn.t′′′1 ).

Notice that, due to the usage of axiomHid in the last item, the equational transformation procedure
from∇M (t′′) to∇M (t′′′) arising from the above induction works onCNT .

Then we useUng and WUng1,2 to get rid of generated unguarded recursion intot′′′ to get a
guardedt′′′′. Finally we consider∇M (t′′′′) and we apply the same technique as for, e.g., the‖
operator to turn it into normal form (exploiting the fact thatt′′′′ is guarded, finite-state and does
not include free network names). In particular now we can do that because the application of the
abstraction operator has no effect on labels of transitions, hence it cannot generate cycles made up
of only τ actions when the semantics is considered.

⊓⊔

G.2. Recursive Network Specification

Definition G.2. [8] A recursive network specificationE = E(S) is a set of equationsE = {An =
tAn |An ∈ S}, wheretAn is a term over theCNTf signature and names fromS whereS ⊆ AN . N ∈
CNTf provably satisfies the recursive network specificationE in An0

∈ S if there are termsNAn for
An ∈ S with N = NAn0

, such that for eachAn ∈ S, NAn = tAn{NA′
n
/A′

n}A′
n∈S .

In the above definitiontAn{t
′
A′

n
/A′

n}A′
n∈S denotes the result of simultaneously replacingt′A′

n
for each

A′
n ∈ S. We call a recursive network specification guarded if all occurrences of all its network names

in the right-hand sides of all its definitions are guarded or it can be rewrittento such a network recursive
specification using the axioms of the theory and the equations of the specification:
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Definition G.3. LetE = E(S) be a recursive network specification. The relation−→⊆ S×S is defined
asAn −→ A′

n if A′
n occurs unguarded in the right-hand side equation definingAn. Now E is called

guarded if−→ is well-founded.

Proposition G.2. If E = E(S) is a finite guarded recursive network specification andAn0
∈ S, then

there is a closed term inCNTf which provably satisfiesE in An0
. Moreover, if there are two such terms

N1 andN2, thenFold ⊢ N1 = N2.

Proof:
We can consider eachCη prefix as a new action (orτ , if their composition will not make a network
name guarded), so eachCη.N term can be considered as a prefix term inCCS. Consequently the proof
of the above proposition follows from Proposition G.1; because normal forms are likeCCSterms, and
the above Proposition overCCSterms has been proved in [23]. ⊓⊔

G.3. Completeness of theCNTf -Axiomatization

Theorem G.1. Let N1 andN2 be two normal terms inCNTf such thatN1 ≃rb N2. Then given a data
modelID with finite data domains, there is a finite recursive network specificationE = E(S) provably
satisfied in the same variableAn0

∈ S by bothN1 andN2.

Proof:
Take a fresh set of network namesS = {An

N′
1
N′

2

|N ′
1 ∈ εN1

,N ′
2 ∈ εN2

,N ′
1 ≃b N ′

2} (which is finite by

Proposition 8.1). LetAn0
= AnN1N2

. Let ητ range over the set of receive actions andτ . Now for each
An

N′
1
N′

2

∈ S, E contains the equation

An
N′

1
N′

2

=
∑

{CηAn
N′′

1
N′′

2

|N ′
1

η
−→C N ′′

1 ,N ′
2

〈η〉
−→C N ′′

2 ,N ′′
1 ≃b N

′′
2 }+

∑
{CητAn

N′′
1
N′

2

|An
N′

1
N′

2

6= An0
,N ′

1
ητ
−→C N ′′

1 ,N ′′
1 ≃b N

′
2}+

∑
{CητAn

N′
1
N′′

2

|An
N′

1
N′

2

6= An0
,N ′

2
ητ
−→C N ′′

2 ,N ′
1 ≃b N

′′
2 }

The recursive network specificationE = E(S) is guarded, using thatAn
N′

1
N′

2

−→ An
N′′

1
N′′

2

iff An
N′

1
N′

2

has a summandCτ.An
N′′

1
N′′

2

. It is easy to show that any infiniteAn
N′

1
N′

2

−→ An
N′′

1
N′′

2

−→ · · · implies

an infinite path of performingτ N ′
1

τ
−→C′ N ′′

1
τ
−→C′′ · · · which cannot exist sinceN1 andN2 are closed

normal forms. It must be shown thatN1, provably satisfiesE in An0
. The same statement forN2 follows

by symmetry.
ForAn

N′
1
N′

2

∈ S, letN ∗
N ′

1
N ′

2

be the term

∑
{Cη.N ′′

1 |N
′
1

η
−→C N ′′

1 ,N ′
2

〈η〉
−→C N ′′

2 ,N ′′
1 ≃b N

′′
2 }+∑

{CητN
′′
1 |An

N′
1
N′

2

6= An0
,N ′

1
ητ
−→C N ′′

1 ,N ′′
1 ≃b N

′
2}

and define the termM∗
N ′

1
N ′

2

as

{
N ∗

N ′
1
N ′

2

+ Cητ .N
′
1 An

N′
1
N′

2

6= An0
,∃N ′′

2 · N ′
2

ητ
−→C N ′′

2 ,N ′
1 ≃b N

′′
2

N ′
1 otherwise
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It follows from Lemma G.1 thatN ′
1 = N ′

1 + N ∗
N ′

1
N ′

2

and henceCη.(N ∗
N ′

1
N2

+ C ′τ.N ′
1) =T2 Cη.N ′

1.
Thus

Cη.M∗
N ′

1
N ′

2

= Cη.N ′
1 (6)

It suffices to prove that forAn
N′

1
N′

2

∈ S

M∗
N ′

1
N ′

2

=
∑

{CηM∗
N ′′

1
N ′′

2

|N ′
1

η
−→C N ′′

1 ,N ′
2

〈η〉
−→C N ′′

2 ,N ′′
1 ≃b N

′′
2 }+∑

{CητM
∗
N ′′

1
N ′

2

|An
N′

1
N′

2

6= An0
,N ′

1
ητ
−→C N ′′

1 ,N ′′
1 ≃b N

′
2}+

∑
{CητM

∗
N ′

1
N ′′

2

|An
N′

1
N′

2

6= An0
,N ′

2
ητ
−→C N ′′

2 ,N ′
1 ≃b N

′′
2 }.

By equation 6, this is equivalent to

M∗
N ′

1
N ′

2

= N ∗
N ′

1
N ′

2

+
∑

{Cητ .N
′
1|An

N′
1
N′

2

6= An0
,N ′

2
ητ
−→C N ′′

2 ,N ′
1 ≃b N

′′
2 }. (7)

There are three cases to examine:

• If An
N′

1
N′

2

6= An0
, and∃N ′′

2 ·N ′
2

ητ
−→C N ′′

2 ,N ′
1 ≃b N

′′
2 , this follows from the definition ofM∗

N ′
1
N ′

2

.

• If An
N′

1
N′

2

6= An0
, and∄N ′′

2 · N ′
2

ητ
−→C N ′′

2 ,N ′
1 ≃b N

′′
2 , equation 7 reduces toN ′

1 = N ∗
N ′

1
N ′

2

, and

by Lemma G.1 if suffices to establish that “ifN ′
1

η
−→C N ′′

1 thenη is of the formm(û)? or τ and

N ′′
1 ≃b N

′
2 or ∃N ′′

2 · N ′
2

〈η〉
−→C N ′′

2 ∧ N ′′
1 ≃b N

′′
2 ”. This follows from the fact thatN ′

1 ≃b N
′
2, and

if N2
τ
−→C′ N ′′′

2 ⇒ N ′′
2 such thatN ′′

2 ≃b N ′
1 ≃b N ′

2, then by Lemma A.2N ′
1 ≃b N ′′′

2 , violating
the assumption.

• If An
N′

1
N′

2

= An0
, then equation 7 reduces toN ′

1 = N ∗
N ′

1
N ′

2

, and we should show that “ifN ′
1

η
−→C

N ′′
1 , then∃N ′′

2 · N ′
2

〈η〉
−→C N ′′

2 ∧N ′′
1 ≃b N

′′
2 ”, which follows immediately fromN ′

1 ≃rb N
′
2.

⊓⊔

Corollary G.1. Let N1 andN2 be two normal forms inCNTf such that, given a data domainID with
finite data domains,N1 ≃rb N2. ThenN1 = N2.

Theorem 8.1 follows from Proposition G.1 and the above Corollary. Suppose N1 ≃rb N2. Using
Proposition G.1, there are two normal formsN ′

1 andN ′
2 (which are guarded) such thatN1 = N ′

1 and
N2 = N ′

2. Soundness of the axiomatization yieldsN1 ≃rb N ′
1 andN2 ≃rb N ′

2. Transitivity of rooted
branching computed network bisimilarity yieldsN ′

1 ≃rb N
′
2, and by application of Corollary G.1,N ′

1 =
N ′

2 and consequentlyN1 = N2.


