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Abstract Measuring centrality in a social network, espe-

cially in bipartite mode, poses many challenges, for

example, the requirement of full knowledge of the network

topology, and the lack of properly detecting top-k behav-

ioral representative users. To overcome the above men-

tioned challenges, we propose HellRank, an accurate

centrality measure for identifying central nodes in bipartite

social networks. HellRank is based on the Hellinger dis-

tance between two nodes on the same side of a bipartite

network. We theoretically analyze the impact of this dis-

tance on a bipartite network and find upper and lower

bounds for it. The computation of the HellRank centrality

measure can be distributed, by letting each node uses local

information only on its immediate neighbors. Conse-

quently, one does not need a central entity that has full

knowledge of the network topological structure. We

experimentally evaluate the performance of the HellRank

measure in correlation with other centrality measures on

real-world networks. The results show partial ranking

similarity between the HellRank and the other conventional

metrics according to the Kendall and Spearman rank cor-

relation coefficient.

Keywords Bipartite social networks � Top-k central

nodes � Hellinger distance � Recommender systems

1 Introduction

Social networking sites have become a very important

social structure of our modern society with hundreds of

millions of users nowadays. With the growth of informa-

tion spread across various social networks, the question of

‘‘ how to measure the relative importance of users in a

social network?’’ has become increasingly challenging and

interesting, as important users are more likely to be

infected by, or to infect, a large number of users. Under-

standing users’ behaviors when they connect to social

networking sites creates opportunities for richer studies of

social interactions. Also, finding a subset of users to sta-

tistically represent the original social network is a funda-

mental issue in social network analysis. This small subset

of users (the behaviorally representative users) usually

plays an important role in influencing the social dynamics

on behavior and structure.

The centrality measures are widely used in social net-

work analysis to quantify the relative importance of nodes

within a network. The most central nodes are often the

nodes that have more weight, both in terms of the number

of interactions as well as the number of connections to

other nodes (Silva et al. 2013). In social network analysis,

such a centrality notion is used to identify influential users
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(Mahyar 2015; Silva et al. 2013; Wei et al. 2013; Yusti-

awan et al. 2015), as the influence of a user is the ability to

popularize a particular content in the social network. To

this end, various centrality measures have been proposed

over the years to rank the network nodes according to their

topological and structural properties (Cha et al. 2010;

Friedkin and Johnsen 2011; Zhao et al. 2014). These

measures can be considered as several points of view with

different computational complexity, ranging from low-cost

measures (e.g., Degree centrality) to more costly measures

(e.g., Betweenness and Closeness centralities) (Wehmuth

and Ziviani 2013; Muruganantham et al. 2015). The

authors of Stephenson and Zelen (1989) concluded that

centrality may not be restricted to shortest paths. In gen-

eral, the global topological structure of many networks is

initially unknown. However, all these structural network

metrics require full knowledge of the network topology

(Wehmuth and Ziviani 2013; Mahyar et al. 2015a).

An interesting observation is that many real-world social

networks have a bi-modal nature that allows the network to

be modeled as a bipartite graph (see Fig. 1). In a bipartite

network, there are two types of nodes and the links can

only connect nodes of different types (Zhao et al. 2014).

The Social Recommender System is one of the most

important systems that can be modeled as a bipartite graph

with users and items as the two types of nodes, respec-

tively. In such systems, the centrality measures can have

different interpretations from conventional centrality

measures such as Betweenness, Closeness, Degree, and

PageRank (Kitsak et al. 2010). The structural metrics, such

as Betweenness and Closeness centrality, are known as the

most common central nodes’ identifier in one-mode net-

works, although in bipartite social networks they are not

usually appropriate in identifying central users that are

perfect representative for the bipartite network structure.

For example, in a social recommender system (Mahyar

et al. 2017; Taheri et al. 2017, that can be modeled by the

network graph in Fig. 1, user D 2 V1 is associated with

items that have too few connections and have been con-

sidered less often by other users; meanwhile user D is

considered as the most central node based on these com-

mon centrality metrics, because it has more connections.

However user B 2 V1 is much more a real representative

than D in the network. In the real-world example of an

online store, if one user buys a lot of goods, but these goods

are low consumption, and another buys fewer goods, but

these are widely, we treat the second user as being a

synecdochic representative of all users of the store. This is

quite different from a conventional centrality metric

outcome.

Another interesting observation is that the common

centrality measures are typically defined for non-bipartite

networks. To use these measures in bipartite networks,

different projection methods have been introduced to

converting bipartite to monopartite networks (Zhou et al.

2007; Sawant and Pai 2013. In these methods, a bipartite

network is projected by considering one of the two node

sets, and if each pair of these nodes shares a neighbor in the

network, two nodes will be connected in the projected one-

mode network (Latapy et al. 2008; Liebig and Rao 2014. In

the projected network of example that’s shown in Fig. 1,

user B is the most central node based on common

monopartite centrality metrics, which seems that the more

behavioral representative user is detected. One of the major

challenges is that every link in a real network is formed

independently, but this does not happen in the projected

one-mode network. Because of lack of independency in the

formation of links in the projected network, analysis of the

metrics that use the random network (Bollobás 1984) as a

basis for their approach, is difficult. Classic random net-

works are formed by assuming that links are being inde-

pendent from each other (Opsahl 2013). The second

challenge is that the projected bipartite network nodes tend

to form Cliques. A clique is a fully connected subset of

nodes that all of its members are neighbors. As a result, the

metrics that are based on triangles (i.e., a clique on three

nodes) in the network, can be inefficient (such as structural

holes or clustering coefficient measures) (Lind et al. 2005;

Opsahl 2013).

Despite the fact that the projected one-mode network is

less informative than its corresponding bipartite represen-

tation, some of the measures for monopartite networks

have been extended to bipartite mode (Kitsak and Kri-

oukov 2011; Opsahl 2013). Moreover, because of

requirement of full knowledge of network topology and

lack of proper measure for detection of more behavioral

representative users in bipartite social networks, the use of

conventional centrality measures in the large-scale

Fig. 1 Bipartite graph G ¼ ðV1;V2;EÞ with two different nodes set

V1 ¼ fA;B;C;Dg, V2 ¼ f1; 2; 3; 4; 5; 6; 7g and link set E that each

link connects a node in V1 to a node in V2
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networks (e.g., in recommender systems) is a challenging

issue. In order to overcome the aforementioned challenges

and retain the original information in bipartite networks,

proposing an accurate centrality measure in such networks

seems essential (Kettle 2012; Liebig and Rao 2014).

Motivated by these observations and taking into account

users’ importance indicators for detection of central nodes

in social recommender systems, we introduce a new cen-

trality measure, called HellRank. This measure identifies

central nodes in bipartite social networks. HellRank is

based on the Hellinger distance (Nikulin 2001), a type of f-

divergence measure, that indicates structural similarity of

each node to other network nodes. Hence, this distance-

based measure is accurate for detecting the more behav-

ioral representative nodes. We empirically show that nodes

with high HellRank centrality measure have relatively high

Degree, Betweenness and PageRank centrality measures in

bipartite networks. In the proposed measure, despite of

different objectives to identify central nodes, there is a

partial correlation between HellRank and other common

metrics.

The rest of the paper is organized as follows. In Sect. 2,

we discuss related work on behavioral representative and

influence identification mechanisms. We also discuss cen-

trality measures for bipartite networks, and highlight the

research gap between our objectives and previous works. In

Sect. 3, we introduce our proposed measure to solve the

problem of centrality in bipartite networks. Experimental

results and discussions are presented in Sect. 4. We con-

clude our work and discuss the future works in Sect. 5.

2 Related work

We organize the relevant studies on social influence anal-

ysis and the problem of important users in three different

categories. First, in Sect. 2.1, we study existing work on

behavioral representative users detection methods in social

networks. Second, in Sect. 2.2, we review previous

mechanisms for identifying influential users in social net-

works by considering the influence as a measure of the

relative importance. Third, in Sect. 2.3, we focus in more

details on centrality measures for bipartite networks.

2.1 Behavioral representative users detection

Unlike influence maximization, in which the goal is to find

a set of nodes in a social network who can maximize the

spread of influence (Chen et al. 2009; Kempe et al. 2003),

the objective of behavioral representative users detection is

to identify a few average users who can statistically rep-

resent the characteristics of all users (Landauer 1988).

Another type of related work is social influence analysis.

Anagnostopoulos et al. (2008) and Singla and Richardson

(2008) proposed methods to qualitatively measure the

existence of influence. Crandall et al. (2008) studied the

correlation between social similarity and influence. Tang

et al. (2009a) presented a method for measuring the

strength of such influence. The problem of sampling rep-

resentative users from social networks is also relevant to

graph sampling (Leskovec and Faloutsos 2006; Maiya and

Berger-Wolf 2011; Ugander et al. 2013). Zhu et al. (2007)

introduced a novel ranking algorithm called GRASS-

HOPPER, which ranks items with an emphasis on diver-

sity. Their algorithm is based on random walks in an

absorbing Markov chain. Benevenuto et al. (2009) pre-

sented a comprehensive view of user behavior by charac-

terizing the type, frequency, and sequence of activities

users engage in and described representative user behaviors

in online social networks based on clickstream data. Gir-

oire et al. (2008) found significant diversity in end-host

behavior across environments for many features, thus

indicating that profiles computed for a user in one envi-

ronment yield inaccurate representations of the same user

in a different environment. Maia et al. (2008) proposed a

methodology for characterizing and identifying user

behaviors in online social networks.

However, most existing work focused on studying the

network topology and ignored the topic information. Sun

et al. (2013) aimed to find representative users from the

information spreading perspective and Ahmed et al. (2014)

studied the network sampling problem in the dynamic

environment. Papagelis et al. (2013) presented a sampling-

based algorithm to efficiently explore a user’s ego network

and to quickly approximate quantities of interest. Davoodi

et al. (2012) focused on the use of the social structure of

the user community, user profiles and previous behaviors,

as an additional source of information in building recom-

mender systems. Tang et al. (2015) presented a formal

definition of the problem of sampling representative users

from social network.

2.2 Identifying influential users

Goyal et al. (2010) studied how to infer social probabilities

of influence by developing an algorithm to scan over the

log of actions of social network users using real data.

Bharathi et al. (2007), Tang et al. (2009b) focused on the

influence maximization problem to model the social

influence on large networks. TwitterRank, as an extension

of PageRank metric, was proposed by Weng et al. (2010)

to identify influential users in Twitter. Chen et al. (2013)

used the Susceptible-Infected-Recovered (SIR) model to

examine the spreading influence of the nodes ranked by

different influence measures. Xu et al. (2012) identified

influencers using joint influence powers through Influence
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network. Zhu (2013) identified influencial users by using

user trust networks. Li et al. (2014) proposed the weighted

LeaderRank technique by replacing the standard random

walk to a biased random walk. Sun et al. (2015) presented

a novel analysis on the statistical simplex as a manifold

with boundary and applied the proposed technique to social

network analysis to rank a subset of influencer nodes. Tang

and Yang (2012) proposed a new approach to incorporate

users’ reply relationship, conversation content and

response immediacy to identify influential users of online

health care community. Du et al. (2014) used multi-at-

tribute and homophily characteristics in a new method to

identify influential nodes in complex networks.

In the specific area of identifying influential users in

bipartite networks, Beguerisse Dı́az et al. (2010) presented

a dynamical model for rewiring in bipartite networks and

obtained time-dependent degree distributions. Liebig and

Rao (2014) defined a bipartite clustering coefficient by

taking differently structured clusters into account, that can

find important nodes across communities. The concept of

clustering coefficient will be discussed in further detail in

the Sect. 2.2.1.

2.2.1 Clustering coefficient

This measure shows the nodes’ tendency to form clusters

and has attracted a lot of attention in both empirical and

theoretical work. In many real-world networks, especially

social networks, nodes are inclined to cluster in densely

connected groups (Opsahl and Panzarasa 2009). Many

measures have been proposed to examine this tendency. In

particular, the global clustering coefficient provides an

overall assessment of clustering in the network (Luce and

Perry 1949), and the local clustering coefficient evaluates

the clustering value of the immediate neighbors of a node

in the network (DiChristina 2007).

The global clustering coefficient is the fraction of two

paths (i.e., three nodes connected by two links) that are

closed by the presence of a link between the first and the

third node in the network. The local clustering coefficient

is the fraction of the links among a node’s interactions over

the maximum possible number of links between them

(DiChristina 2007; Opsahl 2013).

Due to structural differences, applying these general

clustering coefficients directly to a bipartite network, is

clearly not appropriate (Borgatti and Everett 1997). Thus

the common metrics were extended or redefined, and dif-

ferent clustering measures were defined in these networks.

In one of the most common clustering coefficients in

bipartite networks, 4-period density is measured instead of

triangles (Robins and Alexander 2004; Zhang et al. 2008).

However, this measure could not consider the triple closure

concept in the clustering as it actually consists of two

nodes. This kind of measure can only be a measure of the

level of support between two nodes rather than the clus-

tering of a group of nodes. Accordingly, Latapy et al.

(2008) defined the notion of clustering coefficient for pairs

of nodes capturing correlations between neighborhoods in

the bipartite case. Addtionally, Opsahl (2013) considered

the factor, C�, as the ratio of the number of closed 4-paths

(s�D) to the number of 4-paths (s�), as:

C� ¼ closed 4� paths

4� paths
¼ s�D

s�
ð1Þ

2.3 Centrality measures for bipartite networks

Various definitions for centrality have been proposed in

which centrality of a node in a network is generally

interpreted as the relative importance of that node (Free-

man 1978; Chen et al. 2013). Centrality measures have

attracted a lot of attentions as a tool to analyze various

kinds of networks (e.g., social, information, and biological

networks) (Faust 1997; Kang 2011). In this section, we

consider a set of well-known centrality measures including

Degree, Closeness, Betweenness, Eigenvector and PageR-

ank, all of them redefined for bipartite networks. Given

bipartite network G ¼ ðV1;V2;EÞ, where V1 and V2 are the

two sides of network with jV1j ¼ n1 and jV2j ¼ n2. The

link set E includes all links connecting nodes of V1 to

nodes of V2. For the network in Fig. 1, n1 and n2 are equal

to 4 and 7, respectively. Let Adj be the adjacency matrix of

this network, as shown below:

ð2Þ

2.3.1 Degree centrality

In one-mode graphs, degree centrality of node i, di, is equal

to the number of connections of that node. In bipartite

graphs, it indicates the number of node’s connections to

members on the other side. For easier comparison, degree

centrality is normalized: the degree of each node is divided

by the size of the other node set. Let d�i be the normalized

degree centrality of node i. This is equal to (Borgatti and

Everett 1997; Faust 1997):

d�i ¼
di

n2
; d�j ¼

dj

n1
; i 2 V1; j 2 V2 ð3Þ

As the network size becomes increasingly large, employing

degree centrality is the best option (You et al. 2015). On

the other hand, this centrality is based on a highly local

view around each node. As a consequence, we need more
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informative measures that can further distinguish among

nodes with the same degree (Kang 2011).

2.3.2 Closeness centrality

The standard definition of Closeness ci for node i in

monopartite networks, refers to the sum of geodesic dis-

tances from node i to all n� 1 other nodes in the network

with n nodes (Sabidussi 1966). For bipartite networks, this

measure can be calculated using the same approach, but the

main difference is normalization. Let c�i be the normalized

Closeness centrality of node i 2 V1. This is equal to

(Borgatti and Everett 1997; Faust 1997):

c�i ¼
n2 þ 2ðn1 � 1Þ

ci
; i 2 V1 ð4Þ

c�j ¼
n1 þ 2ðn2 � 1Þ

cj
; j 2 V2 ð5Þ

For the bipartite network shown in Fig. 1, normalized

Closeness centrality of the nodes A, B, C, and D are

respectively equal to 0.35, 0.61, 0.52 and 0.68. It specifies

that node D is the most central node which says that

Closeness centrality cannot help us very much in the

objective to find more behavioral representative nodes in

bipartite social networks.

2.3.3 Betweenness centrality

Betweenness centrality of node i, bi, refers to the fraction

of shortest paths in the network that pass through node i

(Freeman 1977). In bipartite networks, maximum possible

Betweenness for each node is limited by relative size of

two nodes sets, as introduced by Borgatti and Halgin

(2011):

bmaxðV1Þ ¼
1

2
½n22ðsþ 1Þ2

þ n2ðsþ 1Þð2t � s� 1Þ � tð2s� t þ 3Þ�
ð6Þ

where s ¼ ðn1 � 1Þ div n2 and t ¼ ðn1 � 1Þ mod n2; and

bmaxðV2Þ ¼
1

2
½n21ðpþ 1Þ2

þ n1ðpþ 1Þð2r � p� 1Þ � rð2p� r þ 3Þ�
ð7Þ

where p ¼ ðn2 � 1Þ div n1 and r ¼ ðn2 � 1Þ mod n1.

For the bipartite network shown in Fig. 1, normalized

Betweenness centrality of the nodes A, B, C, and D are

respectively equal to 0, 0.45, 0.71 and 0.71. It specifies that

nodes C and D are the most central nodes which says that

Betweenness centrality cannot help us much objective in

finding more behavioral representative nodes in bipartite

social networks.

2.3.4 Eigenvector and PageRank centrality

Another important centrality measure is Eigenvector cen-

trality, which is defined as the principal eigenvector of

adjacency matrix of the network. A node’s score is pro-

portional to the sum of the scores of its immediate neigh-

bors. This measures exploits the idea that nodes with

connections to high-score nodes are more central (Bona-

cich 1972). The eigenvector centrality of node i, ei, is

defined as follows (Faust 1997):

ei ¼ k
X

aijej ð8Þ

where AdjðGÞ ¼ ðaijÞni;j¼1 denotes the adjacency matrix of

the network with n nodes and k is the principal eigenvalue

of the adjacency matrix. Our interest regarding to the

eigenvector centrality is particularly focused on the dis-

tributed computation of PageRank (You et al. 2015). The

PageRank is a special case of eigenvector centrality when

the adjacency matrix is suitably normalized to obtain a

column stochastic matrix (You et al. 2015). HITS algo-

rithm (Kleinberg 1999) is in the same spirit as PageRank.

The difference is that unlike the PageRank algorithm, HITS

only operates on a small subgraph from the web graph.

HITS ranks the seed nodes according to their authority and

hub weights.

The PageRank vector R ¼ ðr1; r2; . . .; rnÞT is the solution

of the following equation:

R ¼ 1� d

n
:1þ dLR ð9Þ

where ri is the PageRank of node i and n is the total number

of nodes. d is a damping factor, set to around 0.85 and L is

a modified adjacency matrix, such that li;j ¼ 0 if and only if

node j does not have a link to i and
Pn

i¼1 li;j ¼ 1, where

li;j ¼ ai;j
dj
, and dj ¼

Pn
i¼1 ai;j is the out-degree of node

j (Okamoto et al. 2008).

For the bipartite network shown in Fig. 1, normalized

PageRank centrality of the nodes A, B, C and D are

respectively equal to 0.05, 0.11, 0.08 and 0.21. It specifies

that node D is the most central node which says that

PageRank centrality cannot help us much objective to

finding more behavioral representative nodes in bipartite

social networks.

3 Proposed method

In this paper, we want to identify more behavioral repre-

sentative nodes in bipartite social networks. To this end, we

propose a new similarity-based centrality measure, called

HellRank. Since the similarity measure is usually inverse

of the distance metrics, we first choose a suitable distance
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measure, namely Hellinger distance (Sect. 3.1). Then we

apply this metric to bipartite networks. After that, we

theoretically analyze the impact of the distance metric in

the bipartite networks. Next, we generate a distance matrix

on one side of the network. Finally, we compute the

HellRank score of each node, accordingly to this matrix.

As a result, the nodes with high HellRank centrality are

more behavioral representative nodes in bipartite social

networks.

3.1 Select a well-defined distance metric

When we want to choose a base metric, an important point

is whether this measure is based on a well-defined math-

ematical metric. We want to introduce a similarity-based

measure for each pair of nodes in the network. So, we

choose a proper distance measure as base metric, because

the similarity measures are in some sense the inverse of the

distance metrics. A true distance metric must have several

main characteristics. A metric with these characteristics on

a space induces topological properties (like open and

closed sets). It leads to the study of more abstract topo-

logical spaces. Hunter (2012) introduced the following

definition for a distance metric.

Definition 1 A metric space is a set X that has a notion of

the distance function d(x, y) between every pair of points

x; y 2 X. A well-defined distance metric d on a set X is a

function d : X � X ! IR such that for all x; y; z 2 X, three

properties hold:

1. Positive Definiteness: dðx; yÞ� 0 and dðx; yÞ ¼ 0 if and

only if x ¼ y;

2. Symmetry: dðx; yÞ ¼ dðy; xÞ;
3. Triangle Inequality: dðx; yÞ� dðx; zÞ þ dðz; yÞ.

We define our distance function as the difference

between probability distribution for each pair of nodes

based on f-divergence function, which is defined by:

Definition 2 An f-divergence is a function Df ðPjjQÞ that
measures the difference between two probability distribu-

tions P and Q. For a convex function f with f ð1Þ ¼ 0, the f-

divergence of Q from P is defined as (Csiszár and Shields

2004):

Df ðPjjQÞ ¼
Z

X
f

dP

dQ

� �
dQ ð10Þ

where X is a sample space, which is the set of all possible

outcomes.

In this paper, we use one type of the f-divergence metric,

called Hellinger distance (aka Bhattacharyya distance),

that was introduced by Ernst Hellinger in 1909 (Nikulin

2001). In probability theory and information theory, Kull-

back–Leibler divergence Kullback and Leibler (1951) is a

more common measure of difference between two proba-

bility distributions, however it does not satisfy both the

symmetry and the triangle inequality conditions (Van der

Vaart 2000). Thus, this measure is not intuitively appro-

priate to explain similarity in our problem. As a result, we

choose Hellinger distance to quantify the similarity

between two probability distributions (Van der Vaart

2000). For two discrete probability distributions P ¼
ðp1; . . .; pmÞ and Q ¼ ðq1; . . .; qmÞ, in which m is length of

the vectors, Hellinger distance is defined as:

DHðPjjQÞ ¼
1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

i¼1

ð ffiffiffiffi
pi

p � ffiffiffiffi
qi

p Þ2
s

ð11Þ

It is obviously related to the Euclidean norm of the dif-

ference of the square root of vectors, as:

DHðPjjQÞ ¼
1ffiffiffi
2

p k
ffiffiffi
P

p
�

ffiffiffiffi
Q

p
k2 ð12Þ

3.2 Applying Hellinger distance in bipartite

networks

In this section, we want to apply the Hellinger distance to a

bipartite network for measuring the similarity of the nodes

on one side of the network. Assume x is a node in a

bipartite network in which its neighborhood is N(x) and its

degree is degðxÞ ¼ jNðxÞj. Suppose that the greatest node

degree of the network is D. Let li be the number of x’s

neighbors with degree of i. Suppose the vector Lx ¼
ðl1; . . .; lDÞ be the non-normalized distribution of li for all

adjacent neighbors of x. Now, we introduce the Hellinger

distance between two nodes x and y on one side of the

bipartite network as follows:

dðx; yÞ ¼
ffiffiffi
2

p
DHðLxkLyÞ ð13Þ

The function d(x, y) represents the difference between two

probability distribution of Lx and Ly. To the best of our

knowledge, this is the first work that introduces the Hel-

linger distance between each pair of nodes in a bipartite

network, using degree distribution of neighbors of each

node.

3.3 Theoretical analysis

In this section, we first express the Hellinger distance for

all positive real vectors to show that applying this distance

to bipartite networks still satisfies its metricity (lemma 1)

according to Definition 1. Then, we find an upper and a

lower bound for the Hellinger distance between two nodes

of bipartite network.
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Lemma 1 Hellinger distance for all positive real vectors

is a well-defined distance metric function.

Proof Based on the true metric properties in Definition 1,

for two probability distribution vectors P and Q, the fol-

lowing holds:

DHðPkQÞ� 0 ð14Þ

DHðPkQÞ ¼0 , P ¼ Q ð15Þ

DHðPkQÞ ¼DHðQkPÞ ð16Þ

If we have another probability distribution R similar to P

and Q, then according to the triangle inequality in norm 2,

we should have:

1ffiffiffi
2

p k
ffiffiffi
P

p
�

ffiffiffiffi
Q

p
k2 �

1ffiffiffi
2

p ðk
ffiffiffi
P

p
�

ffiffiffi
R

p
k2 þ k

ffiffiffi
R

p
�

ffiffiffiffi
Q

p
k2Þ

) DHðPkQÞ�DHðPkRÞ þ DHðRkQÞ
ð17Þ

It shows that the triangle inequality in Hellinger distance

for all positive real vectors is a well-defined distribution

metric function. h

Using this distance measure, we have the ability to

detect differences between local structures of nodes. In

other words, this distance expresses similarity between the

local structures of two nodes. If we normalize the vectors

(i.e., sum of the elements equals to one), then differences

between local structures of nodes may not be observed. For

example, there does not exist any distance between node x

with degðyÞ ¼ 10 that its neighbors’ degree are 2 and node

y with degðyÞ ¼ 1 that its neighbor’s degree are 2. There-

fore, our distance measure with vectors normalization is

not proper for comparing two nodes.

Then, we claim that if the difference between two

nodes’ degree is greater (or smaller) than a certain value,

the distance between these nodes cannot be less (or more)

than a certain value. In other words, their local structures

cannot be similar more (or less) than a certain value. In the

following theorem, we find an upper and a lower bound for

the Hellinger distance between two nodes on one side of a

bipartite network using their degrees’ difference.

Theorem 1 If we have two nodes x and y on one side of a

bipartite network, such that degðxÞ ¼ k1, degðyÞ ¼ k2, and

k1 � k2, then we have a lower bound for the distance

between these nodes as:

dðx; yÞ�
ffiffiffiffiffi
k1

p
�

ffiffiffiffiffi
k2

p
ð18Þ

and an upper bound as:

dðx; yÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ k2

p
ð19Þ

Proof To prove the theorem, we use the Lagrange mul-

tipliers. Suppose Lx ¼ ðl1; . . .; lDÞ and Ly ¼ ðh1; . . .; hDÞ are
positive real distribution vectors of nodes x and y. Based on

(13) we know dðx; yÞ ¼
ffiffiffi
2

p
DHðLxkLyÞ, so one can mini-

mize the distance between these nodes by solving

min
Lx;Ly

ffiffiffi
2

p
DHðLxkLyÞ, which is equivalent to find the mini-

mum square of their distance:

min
Lx;Ly

2D2
HðLxkLyÞ ¼ min

Lx;Ly

XD

i¼1

ffiffiffi
li

p
�

ffiffiffiffi
hi

p� �2

So, Lagrangian function can be defined as follows:

FðLx; Ly; k1; k2Þ ¼
XD

i¼1

ffiffiffi
li

p
�

ffiffiffiffi
hi

p� �2

þ k1 k1 �
XD

i¼1

li

 !
þ k2 k2 �

XD

i¼1

hi

 !

Then, we take the first derivative with respect to li:

oF

oli
¼ 1�

ffiffiffiffi
hi

p
ffiffiffi
li

p � k1 ¼ 0 ) hi ¼ lið1� k1Þ2

Due to
PD

i¼1 li ¼ k1 and
PD

i¼1 hi ¼ k2, we have:

XD

i¼1

hi ¼ k2 !
XD

i¼1

lið1� k1Þ2 ¼ k2 ! ð1� k1Þ ¼ 	
ffiffiffiffiffi
k2

k1

r

But in order to satisfy
ffiffiffiffi
hi

p
¼

ffiffiffi
li

p
ð1� k1Þ, the statement

1� k1 must be positive, thus:

hi ¼ lið1� k1Þ2 ¼ li
k2

k1

After derivation with respect to hi, we also reach similar

conclusion. If this equation is true, then equality statement

for minimum function will occur, as:

min
Lx;Ly

2D2
HðLxkLyÞ ¼

XD

i¼1

ffiffiffi
li

p
�

ffiffiffiffiffi
k2

k1

r ffiffiffi
li

p� �2

¼
XD

i¼1

li 1�
ffiffiffiffiffi
k2

k1

r� �2

¼ð1�
ffiffiffiffiffi
k2

k1

r
Þ2
XD

i¼1

li

¼ 1�
ffiffiffiffiffi
k2

k1

r� �2

k1 )

min
Lx;Ly

ffiffiffi
2

p
DHðLxkLyÞ ¼

ffiffiffiffiffi
k1

p
1�

ffiffiffiffiffi
k2

k1

r� �

¼
ffiffiffiffiffi
k1

p
�

ffiffiffiffiffi
k2

p
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So, the lower bound for distance of any pair of nodes on

one side of the bipartite network could not be less than a

certain value by increasing their degrees difference.

Now, we want to find an upper bound according to

Equation (19). As we know, the following statement is true

for any pi; pj and qi; qj:

ffiffiffiffi
pi

p � ffiffiffiffi
qi

p� �2þ ffiffiffiffi
pj

p � ffiffiffiffi
qj

p� �2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pi þ pj

p
� 0

� �2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
qi þ qj

p
� 0

� �2

¼ pi þ pj þ qi þ qj

Suppose in our problem, pi ¼ li, pj ¼ lj, and qi ¼ hi,

qj ¼ hj, then this inequality holds for any two pairs of

elements in Lx and Ly. Eventually we have:

dðx; yÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k1
p

� 0
� �2

þ
ffiffiffiffiffi
k2

p
� 0

� �2
r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ k2

p

We can conclude that it is not possible for any pair of

nodes on one side of the bipartite network that their dis-

tance to be more than a certain value by increasing their

degrees. h

As a result, we found the upper and the lower bounds for

the Hellinger distance between two nodes on one side of

the bipartite network using their degrees’ difference.

3.3.1 An example with probabilistic view

In this example, we want to analyze the similarity among

nodes based on Hellinger distance information in an arti-

ficial network. We examine how we can obtain required

information for finding similar nodes to a specific node x as

the expected value and variance of the Hellinger distance.

Suppose that in a bipartite artificial network with jV1j ¼ n1
nodes on one side and jV2j ¼ n2 nodes on the other side,

nodes in V1 is connected to nodes in V2 using Erdös–Rényi

model G(m, p). In other words, there is an link with

probability p between two sides of the network. Distribu-

tion function Lx of node x 2 V1 can be expressed as a

multinomial distribution form as:

P l1; . . .; lDjdegðxÞ ¼ kð Þ ¼P LxjdegðxÞ ¼ kð Þ

¼
k

l1; . . .; lD

� �Y
Pli
i

ð20Þ

where Pi ¼
n2 � 1

i� 1

� �
pi�1ð1� pÞn2�i

is a binomial distri-

bution probability Bðn2; pÞ for x’s neighbors that their

degree is equal to i.

According to the central limit theorem (Johnson 2004),

binomial distribution converges to a Poisson distribution

PoisðkÞ with parameter k ¼ ðn2 � 1Þp and the assump-

tion that ðn2 � 1Þp is fixed and n2 increases. There-

fore, average distribution of P LxjdegðxÞ ¼ kð Þ will be

l ¼ ðkp1; kp2; . . .; kpDÞ. In addition, degree distribution in

Erdös–Rényi model converges to Poisson distribution by

increasing n1 and n2 (k ¼ n1p for one side of network and

k ¼ n2p for another one).

The limit of average distribution of P LxjdegðxÞ ¼ kð Þ by
increasing D, approaches k times of a Poisson distribution.

Thus, normalized Lx vector is a Poisson distribution with

parameter k ¼ ðn2 � 1Þp. To find a threshold for posi-

tioning similar and closer nodes to node x, we must obtain

expectation and variance of the Hellinger distance between

x and the other nodes in node set V1. Before obtaining these

values, we mention the following lemma to derive equal

expression of Hellinger distance and difference between

typical mean and geometric mean.

Lemma 2 Suppose two distribution probability vectors

P ¼ ðp1; . . .; pmÞ and Q ¼ ðq1; . . .; qmÞ that P is k1 times of

a Poisson distribution probability vector P1 
 Poissonðk1Þ
and Q is k2 times of a Poisson distribution probability

vector P2 
 Poissonðk2Þ1. The square of Hellinger distance
between P and Q is calculated by:

D2
HðPkQÞ ¼

k1 þ k2

2
�

ffiffiffiffiffiffiffiffiffi
k1k2

p
1� e�

1
2

ffiffiffiffi
k1

p
�
ffiffiffiffi
k2

pð Þ2
� �

ð21Þ

Proof The squared Hellinger distance between two

Poisson distributions P1 and P2 with rate parameters k1 and
k2 is (Torgersen 1991):

D2
HðP1kP2Þ ¼ 1� e�

1
2

ffiffiffiffi
k1

p
�
ffiffiffiffi
k2

pð Þ2 ð22Þ

Therefore, the squared Hellinger distance for probability

vectors P and Q, will be equal to

ð
Pm

i¼1 pi ¼ k1;
Pm

i¼1 qi ¼ k2Þ:

D2
HðPkQÞ ¼

1

2

Xm

i¼1

ffiffiffiffi
pi

p � ffiffiffiffi
qi

p� �2

¼ 1

2

Xm

i¼1

pi þ qi � 2
ffiffiffiffiffiffiffiffi
piqi

p� �

¼ k1 þ k2

2
�

ffiffiffiffiffiffiffiffiffi
k1k2

p
1� e�

1
2

ffiffiffiffi
k1

p
�
ffiffiffiffi
k2

pð Þ2
� �

ð23Þ

h

However, in the special case of k1 ¼ k2, we have:

D2
HðPkQÞ ¼

k1 þ k2

2
�

ffiffiffiffiffiffiffiffiffi
k1k2

p
ð24Þ

It means that the squared Hellinger distance is equal to

difference between typical mean and geometric mean.

To calculate the second moment of distance between

node x 2 V1 and any other nodes z 2 V1 in the same side of

the bipartite network based on the lemma 2, we have:

1 Vector P=ðp0; p1; . . .Þ is a Poisson distribution probability vector

such that the probability of the random variable with Poisson

distribution being i is equal to pi.
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Ez2V1
d2ðx; zÞ
	 


¼ E 2 D2
HðLxkLÞ

	 


¼
X1

i¼1

e�n1pðn1pÞi

ðn1pÞ!
ðk þ i� 2

ffiffiffiffi
ki

p
Þ

 !

’
Xn2

i¼1

e�n1pðn1pÞi

ðn1pÞ!
ðk þ i� 2

ffiffiffiffi
ki

p
Þ

 !
ð25Þ

where L ¼ ðLzjz 2 V1Þ and the infinite can be approxi-

mated by n2 elements. Similarly, for distance expectation

we have:

E
ffiffiffi
2

p
DHðLxkLÞ

h i
’
Xn2

i¼1

e�n1pðn1pÞi

ðn1pÞ!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ i�2

ffiffiffiffi
ki

p
Þ

q !
ð26Þ

In addition, variance can also be obtained based on these

calculated moments:

Varz2V1
dðx; zÞð Þ ¼ Ez2V1

d2ðx; zÞ
	 


� Ez2V1
dðx; zÞ½ �ð Þ2

ð27Þ

Hence, using these parameters, the required threshold for

finding similar nodes to a specific node x, can be achieved.

If we want to extend our method to more complex and

realistic networks, we can assume that distribution Lx is a

multiple of Poisson distribution (or any other distribution)

vector with parameter kx, in which kx can be extracted by

either the information about structure of the network or

appropriate maximum likelihood estimation for node

x. Therefore, the threshold will be more realistic and con-

sistent with the structure of the real-world networks.

3.3.2 Generalization to weighted bipartite networks

The introduced distance metric function can be extended to

weighted networks. The generalized Hellinger distance

between two nodes of the weighted bipartite network can

be considered as:

dðx; yÞ ¼
ffiffiffi
2

p
DHðWxkWyÞ ð28Þ

where Wx ¼ ðw0
1; . . .;w

0
DÞ, w0

i ¼
P

j 2 NðxÞ
degðjÞ ¼ i

wj, and wj is

the vector of weights on the links of the network.

3.4 Rank prediction via HellRank

In this Section, we propose a new Hellinger-based cen-

trality measure, called HellRank, for the bipartite networks.

Now, according to the Sect. 3.2, we find the Hellinger

distances between any pair of nodes in each side of a

bipartite network. Then we generate an n1 � n1 distance

matrix (n1 is the number of nodes in one side of network).

The Hellinger distance matrix of G shown in Fig. 1 is as

follows:

According to the well-defined metric features (in

Sect. 3.1) and the ability of mapping to Euclidean space,

we can cluster nodes based on their distances. It means that

any pair of nodes in the matrix with a less distance can be

placed in one cluster by specific neighborhood radius. By

averaging inverse of elements for each row in the distance

matrix, we get final similarity score (HellRank) for each

node of the network, by:

HellRankðxÞ ¼ n1P
z2V1

dðx; zÞ ð29Þ

Let HellRank�ðxÞ be the normalized HellRank of node x

that is equal to:

HellRank�ðxÞ ¼HellRankðxÞ:min
z2V1

HellRankðzÞð Þ

where ‘ . ’ denotes the multiplication dot, and

minz2V1
HellRankðzÞð Þ is the minimum possible HellRank

for each node

A similarity measure is usually (in some sense) the inverse

of a distance metric: they take on small values for dissimilar

nodes and large values for similar nodes. The nodes in one

side with higher similarity scores represent more behavioral

representation of that side of the bipartite network. In other

words, these nodes are more similar than others to that side of

the network. HellRank actually indicates structural similarity

for each node to other network nodes. For the network shown

in Fig. 1, according to Hellinger distance matrix, normalized

HellRank of nodes A, B, C, and D are respectively equal to

0.71, 1, 0.94, and 0.52. It is clear that among all of the

mentioned centrality measures in Sect. 2.2, only HellRank

considers node B as a more behavioral representative node.

Hence, sorting the nodes based on their HellRank measures

will have a better rank prediction for nodes of the network.

The nodes with high HellRank is more similar to other nodes.

In addition, we find nodes with less scores to identify very

specific nodes which are probably very different from other

nodes in the network. The nodes with less HellRank are very

dissimilar to other nodes on that side of the bipartite network.

4 Experimental evaluation

In this section, we experimentally evaluate the per-

formance of the proposed HellRank measure in corre-

lation with other centrality measures on real-world
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networks. After summarizing datasets and evaluation

metrics used in the experiments, the rest of this section

addresses this goal. Finally, we present a simple

example of mapping the Hellinger distance matrix to

the Euclidean space to show clustering nodes based on

their distances.

4.1 Datasets

To examine a measure for detection of central nodes in a

two-mode network, South Davis women (Davis et al.

2009), is one of the most common bipartite datasets. This

network has a group of women and a series of events as

two sides of the network. A woman linked to an event if

she presents at that event. Another data set used in the

experiments is OPSAHL-collaboration network (Newman

2001), which contains authorship links between authors

and publications in the arXiv condensed matter Section (-

cond-mat) with 16726 authors and 22015 articles. A link

represents an authorship connecting an author and a paper.

4.2 Evaluation metrics

One of the most popular evaluation metrics for comparison

of different node ranking measures is Kendall’s rank cor-

relation coefficient (s). In fact, Kendall is nonparametric

statistic that is used to measure statistical correlation

between two random variables (Abdi 2007):

s ¼ N\concordant pairs[ � N\discordant pairs[
1
2
nðn� 1Þ ð30Þ

where N\S[ is the size of set S.

Another way to evaluate ranking measures is binary

vectors for detection of top-k central nodes. All of vector’s

elements are zero by default and only top-k nodes’ values

are equal to 1. To compare ranking vectors with the dif-

ferent metrics, we use Spearman’s rank correlation coef-

ficient (q) that is a nonparametric statistics to measure the

correlation coefficient between two random variables (Le-

hamn et al. 2005):

q ¼
P

iðxi � xÞðyi � yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðxi � xÞ2

P
iðyi � yÞ2

q ð31Þ

where xi and yi are ranked variables and x and y are mean

of these variables.

4.3 Correlation between HellRank and the common

measures

We implement our proposed HellRank measure using

available tools in NetworkX (Hagberg et al. 2008). To

compare our measure to the other common centrality

measures such as Latapy Clustering Coefficient [Sect.

2.2.1], Bipartite Degree [Sect. 2.3.1], Bipartite Closeness

[Sect. 2.3.2], Bipartite Betweenness [Sect. 2.3.3], and

PageRank [Sect. 2.3.4], we perform the tests on Southern

Davis Women dataset. In Fig. 2, we observe the obtained

ratings of these metrics (normalized by maximum value)

for 18 women in the Davis dataset. In general, approximate

correlation can be seen between the proposed HellRank

metric and the other conventional metrics in the women

scores ranking. It shows that despite different objectives to

identify the central users, there is a partial correlation

between HellRank and the other metrics.

Figure 3 shows scatter plots of standard metrics versus

our proposed metric, on the Davis bipartite network. Each

point in the scatter plot corresponds to a women node in the

network. Across all former metrics, there exist clear linear

correlations between each two measures. More importantly,

because of the possibility of distributed computation of

HellRank over the nodes, this metric can also be used in

billion-scale graphs, while many of the most common

metrics such as Closeness or Betweenness are limited to

small networks (Wehmuth and Ziviani 2013). We observe

that high HellRank nodes have high bipartite Betweenness,

bipartite Degree, and bipartite Closeness. This reflects that

high HellRank nodes have higher chance to reach all nodes

within short number of steps, due to its larger number of

connections. In contrast with high HellRank nodes, low

HellRank nodes have various Latapy CC and projected

Degree values. This implies that the nodes which are hard to

be differentiated by these measures can be easily separated

by HellRank.

To have a more analysis of the correlations between

measures, we use Kendall between ranking scores provided

by different methods in Table 1 and Spearman’s rank

correlation coefficient between top k ¼ 5 nodes in Table 2.

These tables illustrate the correlation between each pair in

bipartite centrality measures and again emphasizes this

point that despite different objectives to identify the central

users, there is a partial correlation between HellRank and

other common metrics.

In the next experiment, we compare the top-k central

users rankings produced by Latapy CC, PageRank, Bipar-

tite, and projected one-mode Betweenness, Degree,

Closeness, and HellRank with different values of k. We

employ Spearman’s rank correlation coefficient measure-

ment to compute the ranking similarity between two top-k

rankings. Figure 4 presents result of Spearman’s rank

correlation coefficient between the top-k rankings of

HellRank and the other seven metrics, in terms of different

values of k. As shown in the figure, the correlation values

of top k nodes in all rankings, reach almost constant limit at

a specific value of k. This certain amount of k is
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approximately equal to 4 for all metrics. This means that

the correlation does not increase at a certain threshold for

k ¼ 4 in the Davis dataset.

To evaluate the HellRank on a larger dataset, we

repeated all the mentioned experiments for the arXiv

cond-mat dataset. The scatter plots of standard metrics

versus HellRank metric can be seen in Fig. 5. The results

show that there exist almost linear correlations between

the two measures in Bipartite Betweenness, Bipartite

Degree and PageRank. In contrast to these metrics,

HellRank has not correlation with other metrics such as

Bipartite Closeness, Latapy Clustering Coefficient and

Fig. 2 Comparison between rankings for all women in the Davis dataset based on various centrality metrics

(a) (b) (c)

(d) (e) (f)

Fig. 3 The correlations between HellRank and the other standard

centrality metrics on Davis (normalized by max value). a HellRank

versus bipartite betweenness. b HellRank versus bipartite degree.

c HellRank versus bipartite closeness. d HellRank versus Latapy CC.

e HellRank versus PageRank. f HellRank versus projected Degree

Table 1 Comparison ratings results based on Kendall score in women nodes of Davis dataset [(2) means bipartite measures and (1) means

projected one-mode measures]

Method Latapy CC Degree(2) Betweenness(2) Closeness(2) PageRank Degree(1) Betweenness(1) Closeness(1)

HellRank 0.51 0.7 0.67 0.74 0.59 0.51 0.53 0.51
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Projected Degree. This implies that nodes that are hard to

be differentiated by these metrics, can be separated easily

by HellRank metric.

Moreover, Spearman’s rank correlation with different

values of k in arXiv cond-mat dataset can be seen in Fig. 6.

We observe the correlation values from top k nodes in all

rankings, with different values of k, reach almost constant

limit at a specific value of k. This certain amount of k

approximately equals to 1000 for all metrics except

Bipartite Closeness and Latapy CC metrics. This means

that the correlation does not increase at a certain threshold

for k ¼ 1000 in the arXiv cond-mat dataset.

Table 2 Comparison top k ¼ 5 important nodes based on Spearman’s correlation in women nodes of Davis dataset [(2) means bipartite and (1)

means projected one-mode]

Method Latapy CC Degree(2) Betweenness(2) Closeness(2) PageRank Degree(1) Betweenness(1) Closeness(1)

HellRank 0.44 0.72 0.44 0.72 0.44 0.44 0.44 0.44

Fig. 4 Spearman’s rank correlation with different values of k in Davis dataset

(a) (b) (c)

(d) (e) (f)

Fig. 5 The correlations between HellRank and the other standard

centrality metrics on Opsahl (normalized by max value). a HellRank

versus bipartite betweenness. b HellRank versus bipartite degree.

c HellRank versus bipartite closeness. d HellRank versus Latapy CC.

e HellRank versus PageRank. f HellRank versus projected Degree
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4.4 Mapping the Hellinger distance matrix

to the Euclidean space

Since we have a well-defined metric features and ability of

mapping the Hellinger distance matrix to the Euclidean

space, other experiment that can be done on this matrix, is

clustering nodes based on their distance. This Hellinger

distance matrix can then be treated as a valued adjacency

matrix2 and visualized using standard graph layout

algorithms. Figure 7 shows the result of such an analysis on

Davis dataset. This figure is a depiction of Hellinger Dis-

tance for each pair of individuals, such that a line connecting

two individuals indicates that their Hellinger distance are

less than 0.50. The diagram clearly shows the separation of

Flora and Olivia, and the bridging position of Nora.

5 Conclusion and future work

In this paper, we proposed HellRank centrality measure for

properly detection of more behavioral representative users

in bipartite social networks. As opposed to previous work,

Fig. 6 Spearman’s rank correlation with different values of k in arXiv cond-mat dataset

Katherina

Myra

Olivia

Flora

Verne

Sylvia
Charlotte

Nora

Brenda

Theresa

Evelyn

Helen

Frances

Eleanor

Dorothy

Pearl

Ruth

Laura

Fig. 7 Mapping Hellinger

distance matrix to Euclidean

Space. A tie indicates that the

distance between two nodes is

lesser than 0.50

2 In a valued adjacency matrix, the cell entries can be any

nonnegative integer, indicating the strength or number of relations

of a particular type or types (Koput 2010).
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by using this metric we can avoid projection of bipartite

networks into one-mode ones, which makes it possible to

take much richer information from the two-mode networks.

The computation of HellRank can be distributed by letting

each node uses only local information on its immediate

neighbors. To improve the accuracy of HellRank, we can

extend the neighborhood around each node. The HellRank

centrality measure is based on the Hellinger distance

between two nodes of the bipartite network and we theo-

retically find the upper and the lower bounds for this

distance.

We experimentally evaluated HellRank on the Southern

Women Davis dataset and the results showed that Brenda,

Evelyn, Nora, Ruth, and Theresa should be considered as

important women. Our evaluation analyses depicted that

the importance of a woman does not only depend on her

Degree, Betweenness, and Closeness centralities. For

instance, if Brenda with low degree centrality is removed

from the network, the information would not easily spread

among other women. As another observation, Dorothy,

Olivia, and Flora have very low HellRank centralities.

These results are consistent with the results presented in

Bonacich (1978), Doreian (1979), and Everett and Borgatti

(1993).

As a future work, more meta data information can be

taken into account besides the links in a bipartite network.

Moreover, we can consider a bipartite network as a

weighted graph (Mahyar et al. 2013, 2015b) in which the

links are not merely binary entities, either present or not,

but have associated a given weight that record their

strength relative to one another. As one of the other pos-

sible future works, we can consider alpha-divergence (Ci-

chocki and Amari 2010) as a generalization of squared

Hellinger distance. Furthermore, as HellRank measure is

proper for detection of more behavioral representative

users in bipartite social network, we can use this measure

in recommender systems (Taheri et al. 2017). In addition,

we can detect top k central nodes in a network with indirect

measurements and without full knowledge the network

topological structure, using compressive sensing theory

(Mahyar 2015; Mahyar et al. 2013, 2013, 2015a, b).
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