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Abstract. Scheduling is one of the most important challenges in grid computing 

environments. Most existing scheduling algorithms in grids only focus on one 

type of grid jobs which can be data-intensive or computation-intensive. Howev-

er, merely considering one type of jobs in scheduling does not result in proper 

scheduling in the viewpoint of all system, and sometimes causes wasting of re-

sources on the other side. To address the problem of simultaneously considering 

both types of jobs, a rank-based hybrid scheduling (RBHS) algorithm is pro-

posed in this paper. At one hand, RBHS algorithm takes both data server and 

computational resource availability of the network into account, and on the oth-

er hand, considering the corresponding requirements of each job, it assigns a 

factor called Z to the job. Using the Z factor, the importance of two dimensions 

(being data or computation intensive) for each job is determined, and then the 

job is scheduled to the available resources. Results obtained from simulating 

different scenarios in hypothetical  grid environments show that the proposed 

algorithm outperforms other existing algorithms. 

Keywords: Scheduling algorithm, grid computing, data-intensive jobs, compu-

tation-intensive jobs. 

1 Introduction 

Nowadays, most applications especially in scientific and engineering fields tend to be 

data-intensive and/or computation-intensive. Due to the fact that it is ineffective to 

manage these applications in a central server, grid technology has been developed as a 

proper infrastructure to replace it. Grid gathers resources from multiple administrative 

domains to reach a common goal, solving a single huge problem [1]. One of the most 

important challenges in grids is task scheduling problem. Indeed, finding the optimal 

schedule for a grid environment which can distribute the submitted jobs to the grid 

resources to optimize a given measure is a well-known NP-complete problem [2]. To 

overcome this difficulty, many heuristic methods have been proposed to appropriately 

schedule jobs among resources [3], [4] and [5]. None of these types of scheduling 

algorithms can be clearly claimed to find optimal solution. They just make a search on 
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possible solution space of the problem and find the most suitable solution which can 

satisfy the optimization measure. 

In addition to the type of algorithms, the nature of applications can also affect the 

result of the scheduling and should be considered during scheduling phase. Generally 

speaking, the applications can be divided into two basic classes, data-intensive and 

computation-intensive applications. Data-intensive applications dedicate most of their 

operation time to access data [6] however computation-intensive applications devote 

most of their operation time to compute and process on data [7]. In fact, almost no 

application belongs to one of these two classes specifically; nevertheless it needs 

data/computational resources proportionally to be executed. In other words, each 

application is both data-intensive and computation-intensive. However the ratio be-

tween being data and computation intensive differs among applications.  

Most existing grid scheduling algorithms merely focus on either data-intensive or 

computation-intensive aspects [6], [7]. However, focusing on only one of these di-

mensions causes serious problems, since the other one is not negligible. At one hand, 

considering only data-intensive dimension leads to a waste of computational power; 

on the other hand, considering only computation-intensive dimension causes a waste 

of network resources such as bandwidth. We propose a Rank-based Hybrid Schedul-

ing (RBHS) algorithm that addresses these problems. The proposed algorithm is a 

way to simultaneously consider data-intensive and computation-intensive characteris-

tics of the job, while taking into account the same characteristics of the available grid 

environment. In other words, the scheduler needs to schedule any submitted job adap-

tively based on the current status of the network as well as the job. 

The rest of the paper is organized as follows. In Section 2, the basic concepts of 

grid environment are described. The proposed algorithm and results obtained from 

simulating the algorithm and another famous benchmark are presented in Section 3 

and Section 4, respectively. Finally, Section 5 concludes the paper.  

2 Model and Problem Definition 

In this section, the grid environment under study is briefly described and some basic 

characteristics of grids are introduced. A grid environment is considered to include a 

set of M nodes, each of which representing a cluster. A cluster within the grid envi-

ronment can be made of individual computational resources and data servers. Some 

characteristics of a grid environment considered in this paper are mentioned below. 

 Multiple replicas of a dataset which is needed for an application to be processed 

may coexist in data servers over grid environment, and computational resources 

need to obtain them from the nearest data server(s). 

 Each job is finally submitted to a single cluster to use computational resources; 

nevertheless, datasets can be supplied by any other cluster over the grid environ-

ment. 

 Grid environment can be considered to consists of a set of M clusters,               

𝐶 =  {𝐶1 , 𝐶2, … , 𝐶𝑀}.  A cluster is denoted by 𝐶𝑖  =   𝐷𝑆𝑖 , 𝐶𝑃𝑖 , 1 ≤ 𝑖 ≤ 𝑀,  that 

provides specific data servers and computational resources. Data servers within the 



clusters are in the form of data-hosts which consist of datasets and are denoted by                            

𝐷𝑆i  = {𝑑𝑠1, 𝑑𝑠2, … , 𝑑𝑠} and the provided computational power is denoted by 

CPi. 

 The requirement of each job 𝐽𝑘  is denoted by 𝐽𝑘= (𝐷𝑆𝑘 , 𝐶𝑃𝑘 ), where CPk is compu-

tational power required by 𝐽𝑘  and 𝐷𝑆𝑘= {𝑑𝑠1,𝑑𝑠2 , …  , 𝑑𝑠𝑙} is a set of l datasets rep-

licated in data-hosts over the grid environment. 

 The computational capacity provided by resources and the computational power 

required by jobs to be processed are measured in terms of Million Instructions per 

Second (MIPS) and Million Instructions (MI), respectively. Although we are aware 

of the fact that a single number such as MIPS cannot reveal the complexity and the 

factual capacity of a set of CPUs, due to its simplicity in computing, MIPS (MI) is 

a proper criterion to show the performance of a computer (computational complex-

ity of a job), especially in fields of scientific calculations. 

Fig. 1 shows a simplified grid environment composed of five clusters and each cluster 

consists of different computational resources and data servers. The numbers on edges 

show the bandwidths of the corresponding links.  

 

Fig. 1. A simple grid environment  

3 The Proposed Algorithm 

In this section, the proposed RBHS algorithm is described step by step. To do this, 

each part of the algorithm is clarified in the following subsections, and finally, the 

entire RBHS algorithm is explained in the last subsection. 

3.1 Replica Selection Algorithm 

The main concept of Replica Selection (RS) algorithm is based on the well-known Set 

Cover Problem [8] and Graph Search Methods [9]. The aim of RS is to find out the 
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minimum cost of collecting a set of datasets needed for processing a job. These data-

sets might be located inside the cluster which executes the job or other existing clus-

ters in the grid environment. In the proposed model, bandwidths of links between 

clusters are the criterion for how near a cluster is. 

Suppose that cluster Ci is selected to process the submitted job Jk which needs da-

taset ds to be executed. As mentioned earlier, a dataset can be provided either from 

the cluster Ci itself or a remote cluster Cj. In case that the dataset ds needs to be trans-

ferred from a remote cluster Cj, which is directly connected to the base cluster Ci, 

transfer cost is given by the Eq. (1) 

𝑇𝑖𝑚𝑒 𝑑𝑠, 𝐶𝑖 , 𝐶𝑗  =  
𝑠𝑖𝑧𝑒 𝑑𝑠 

𝐵 𝐿𝑖 ,𝑗 
,                                                   (1) 

where 𝐵(𝐿𝑖 ,𝑗 ) is the bandwidth of the link between the clusters Ci and Cj. 

Sometimes the dataset ds does not exist in any of the adjacent clusters, so the algo-

rithm has to find it by exploring in the network. In this situation, transfer procedure 

uses more than one link to obtain the dataset. Therefore, the algorithm needs to find a 

path from the cluster providing ds to the cluster demanding it to compute the transfer 

cost. After that, the total time to provide the dataset ds for cluster Ci is computed by 

iteratively use of Eq. (1). 

In order to find the path, it is better to consider the grid environment as a graph. 

Therefore, RS algorithm can explore into nodes of the resulted graph to find the near-

est datasets. To achieve this, RS algorithm uses uniform cost search which is a search 

algorithm used to traverse and find the shortest path in weighted graphs [10]. The 

problem that uniform cost search tackles is very similar to ours. In our problem, edges 

between nodes denote the communication links between clusters and the assigned 

weights to each of the edges are the inversed value of links' bandwidths. 

RS algorithm takes two parameters: a job characterized by 𝐽𝑘 = (𝐷𝑆𝑘 , 𝐶𝑃𝑘) and a 

cluster Ci that needs to collect datasets existing in DSk. First of all, the algorithm in-

itializes a variable called Total Transfer Time (TTT) to zero. TTT will increase while 

gathering datasets from remote clusters.  It should be noted that at each stage of ex-

ploring the graph, it is essential to keep track of the path, because the cost of transfer-

ring a dataset is directly calculated from the path between Ci as well as the cluster 

containing the datasets. 

At the first step, the algorithm removes datasets from DSk, which are currently resi-

dent inside Ci. No transfer cost is considered at this step. Remaining datasets in DSk 

have to be transferred from the nearest possible remote cluster. At this point, the clus-

ter Ci should expand as a graph node to form all the clusters connected to Ci via direct 

link. Then, the following three steps must be iterated until DSk is empty. 

Step one: Find the cluster Ct with the minimum distance from Ci (distance of a clus-

ter Ci from cluster Ct is sum of the edge weights existing in path from Ci to Ct). 

Step two: Search the remaining datasets in Ct. The cost of data transferring should 

be calculated using Eq. (2) for all datasets found in this step. The path from Ci to Ct is 

characterized by: 𝑝𝑎𝑡(𝐶i , 𝐶𝑡) = {𝐶𝑖 , 𝐶′1 , 𝐶′2  …  𝐶′𝑝 , 𝐶𝑡}. 



𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑇𝑖𝑚𝑒 𝑑𝑠 , 𝐶𝑖 , 𝐶𝑡 

=  𝑇𝑖𝑚𝑒 𝑑𝑠, 𝐶𝑖 , 𝐶
′
1  +   𝑇𝑖𝑚𝑒 𝑑𝑠, 𝐶 ′

𝑗 , 𝐶 ′
𝑗 +1 

𝑗 =𝑝−1

𝑗 =1
 

+  𝑇𝑖𝑚𝑒 𝑑𝑠, 𝐶 ′
𝑝 , 𝐶𝑡 .                                                                                           (2) 

For each dataset dsf which is found in this step, the algorithm first removes it from 

DSk, and then adds 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑇𝑖𝑚𝑒 𝑑𝑠𝑓  , 𝐶𝑖 , 𝐶𝑡  to TTT. 

Step three: Expand Ct to generate its children in the graph and compute the distance 

of the children from Ci. 

Finally, the output of calling RS algorithm with the input of job Jk and the cluster Ci 

is Total Transfer Time (TTT) which is used as RSScore(Jk,Ci), a measure for fitness of 

cluster Ci for job Jk. Table 1 shows pseudo-code of the RS algorithm. Algorithm 

shown in Table 1 is executed for a given job and all clusters existing in the environ-

ment. Therefore, if a new job is submitted to the environment, this algorithm should 

be applied to all combinations of the new job with all available clusters. 

Table 1. The RS algorithm 

1  Set TTT to zero  

2  Remove from DSk locally available data sets in Ci 

3  Compute the distances (dist) of all adjacent clusters from Ci using Eq.(1) 

    Set the value of non-adjacent clusters to Inf 

4  Sort the clusters in ascending order of distance in dist 

5  While 𝑫𝑺𝐤 is not empty do 

6         select first cluster as 𝑪𝐭 from dist 

7        find the intersection of DSk and 𝑫𝑺𝐭  

8        compute the transfer-time using Eq.(2) 

9        add transfer-time to TTT 

10      expand Ct  and append the distance of its children to dist 

11      set dist(l) to Inf and sort it again and remove found datasets 

12 End While 

13 return TTT 

3.2 Computational Resource Allocation (CRA) Algorithm 

computational resource allocation algorithm uses the number of time units it takes to 

complete a specific job assuming that all required datasets are locally available (i.e. 

transfer time needed to collect datasets is zero). For a given job, this score should be 

calculated for all of the available computational resources. 

As described earlier in section 3, the processing power provided by resources (re-

quired for jobs) is presented in the form of MIPS (MI). Therefore, the total time 

needed for the job Ji to be completed in the computational resource Cj can be calcu-

lated by Eq. (3). 

𝐶𝑅𝐴𝑆𝑐𝑜𝑟𝑒 =   
𝐶𝑃𝑖

𝐶𝑃𝑗

,                                                                    (3) 



where CPj is the computational power provided by the computational resource Cj and 

CPi  is the computational power required by the job Ji. The CRAScore is used as a 

score for fitness of the resource Cj for the job Ji. 

The RS algorithm treated the submitted job as if it only has a data-intensive dimen-

sion. CRA algorithm in a comparable way focuses only on computation-intensive 

dimension. As mentioned before, the available information about each job submitted 

to the environment is presented in two areas. The first one contains information about 

required datasets, so we can compute the total size of datasets, and the second one 

gives information about the total computational power required by the job in terms of 

MI. The aim at this step is to estimate the proportion of being data-intensive to being 

computation-intensive, while considering the availability of resources in each area. 

Hence, the algorithm needs to jointly consider both required and provided resources, 

and then obtain a value for scheduler to show how much the submitted job is general-

ly data/computation intensive in the context of available grid environment. To achieve 

this, the algorithm first estimates the expected value of the provided computational 

power using Eq. (4). 

𝐸 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑃𝑜𝑤𝑒𝑟 =
 𝐶𝑖

𝑀
𝑖=1

𝑀
.                                              (4) 

To obtain the corresponding value for data-intensive dimension of the submitted 

job, the algorithm needs to apply an equivalent mean operation on network links. Eq. 

(5) calculates this value by averaging on time needed to collect a specific set of data-

sets DS for each cluster. Mean path length for each cluster C is calculated using Eq. 

(6), where M is the number of clusters and count(DS) is the number of datasets in DS. 

Moreover, TransferLength(C,ds) denotes the distance between C and the closest clus-

ter providing ds. 

𝐸 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑇𝑖𝑚𝑒 =  
 𝑇𝑜𝑡𝑎𝑙𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝐿𝑒𝑛𝑔𝑡(𝐷𝑆, 𝐶𝑖)

𝑀
𝑖=1

𝑀
.                   (5) 

𝑇𝑜𝑡𝑎𝑙𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝐿𝑒𝑛𝑔𝑡 𝐷𝑆, 𝐶 =  𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝐿𝑒𝑛𝑔𝑡 𝐶, 𝑑𝑠 . 𝑠𝑖𝑧𝑒 𝑑𝑠 .

𝑑𝑠∈𝐷𝑆

        (6) 

The algorithm assesses the expected values of run time by Eq. (7). Finally, the fac-

tor Z is calculated by using Eq. (8) for a given job. 

𝐸 𝑅𝑢𝑛𝑇𝑖𝑚𝑒 =
𝐶𝑃𝑖

𝐸[𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑃𝑜𝑤𝑒𝑟]
 ,                                   (7) 

𝑍 =
𝐸 𝑅𝑢𝑛𝑇𝑖𝑚𝑒 

𝐸 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑇𝑖𝑚𝑒 + 𝐸 𝑅𝑢𝑛𝑇𝑖𝑚𝑒 
.                                      8  

3.3 Rank-based Hybrid Scheduling Algorithm 

After describing the roles of different components of the proposed algorithm, RS and 

CRA, it is the time to explain the main algorithm. Actually, the algorithm combines 

the results of RS and CRA algorithms considering the weight of the factor Z. The 

Rank-based Hybrid Scheduling (RBHS) algorithm is described in the pseudo-code 

form in Table 2. 



Table 2. The Rank-based Hybrid Scheduling algorithm 

1 For each job j do 

2      compute the factor Z for j 

3      For each cluster Ci do 

4            call RS and compute RSScore (j, Ci) 

5            call CRA and compute CRAScore (j, Ci) 

      6            compute FinalScore (j, Ci) using  

                        𝐅𝐢𝐧𝐚𝐥𝐒𝐜𝐨𝐫𝐞 𝐣, 𝐂𝐢 = (𝟏 − 𝐙) ∗ 𝐑𝐒𝐒𝐜𝐨𝐫𝐞(𝐣,𝐂𝐢) + 𝐙 ∗ 𝐂𝐑𝐀𝐒𝐜𝐨𝐫𝐞(𝐣, 𝐂𝐢) 

7      End For 

8      select cluster 𝑪𝐨𝐩𝐭 with minimum FinalScore and assign j to it 

9 End For  

 

As can be seen in Table 2, when the RBHS algorithm is executed for a submitted 

job, both RSScore and CRAScore are generated by calling RS and CRA for each clus-

ter. Combining these two scores by affecting the factor Z generates the FinalScore for 

all clusters. The task of scheduling the submitted job is then completed by selecting 

the cluster with minimum FinalScore and assigning the job to it. 

4 Performance Evaluation 

In this section, the scheduling problem of 1000 jobs on 100 clusters within a hypo-

thetical grid environment is considered. The results obtained from simulating our 

proposed algorithm are compared to the results of an algorithm proposed by Buyya et 

al. [8], which is called SCP Tree Search. In SCP Tree Search algorithm, the problem 

of finding the subset of data servers providing required datasets is reduced to a Set 

Cover Problem. In SCP Tree Search algorithm, for each job submitted, it first finds a 

subset of data servers with minimum number of data servers which provides required 

datasets. Afterward, for those selected data servers, the algorithm finds the best com-

putational resource for executing the job. The best computational resource is the one 

which can gather the required datasets from the selected data servers and complete the 

job in minimum possible time. 

4.1 Network Topology and Randomly Generated Grid Environment 

The topology of the network is generated by Erdős–Rényi model which sets an edge 

between each pair of nodes with equal probability, independent of the other edges 

[11]. 

The size of the datasets as well as the computational power required by the jobs 

can be approximated by Power Law distribution [12] in which the more the size of a 

dataset increases, the less it is probable to occur [13]. However, the distribution of the 

computational power provided by the clusters and the bandwidth of the links are de-

cided to follow Gaussian distribution. Datasets are spread over grid environment 

uniformly. 

http://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model


4.2 Numerical Results 

In order to compare the performance of the proposed algorithm with SCP Tree 

Search, two metrics named total makespan and transfer time are selected. The ma-

kespan of a resource is the time slot between the start and completion of a sequence of 

tasks assigned to the resource, and the total makespan of a grid environment is de-

fined as the largest makespan of the grid resources [4]. Moreover, transfer time is 

defined as the total time that the submitted job spends on collecting datasets regard-

less of the time required for executing the job. These two metrics are calculated when 

each job arrives at the scheduler during the batch mode simulation of jobs in grid 

environment. 

Simulations are done in three different scenarios: the first and second scenarios 

show grid environments with more computation-intensive and data-intensive jobs, 

respectively, and the third one simulates an environment with an equal amount of 

both classes of jobs. The results of comparison when most of submitted jobs are com-

putation-intensive are shown in Fig. 2 and Fig. 3. According to the Fig. 2 and Fig. 3, 

the performance of the proposed algorithm is reasonably better than SCP Tree Search 

algorithm in terms of both makespan and transfer time. 

The results of the second scenario are shown in Fig. 4 and Fig. 5. Furthermore, the 

results of the combination situation, the third scenario, are demonstrated in Fig. 6 and 

Fig. 7. As can be seen in Fig.4 and Fig.5, the proposed algorithm still outperforms 

SCP Tree Search algorithm; however the performance is not as dominant as perfor-

mance of the previous scenarios. This is mainly due to the fact that in scheduling by 

SCP Tree Search algorithm, the data-intensive dimension of the jobs is first consi-

dered, so the computation-intensive dimension is in lower priority. In point of fact, if 

the submitted jobs get more data-intensive, the performance of SCP Tree Search algo-

rithm comes close to the performance of RBHS algorithm, and vice versa. 

5 Conclusion 

Considering different requirements of jobs during scheduling phase within grid envi-

ronments is the main concern of this paper. To achieve a more suitable scheduling in 

grids, an algorithm named RBHS is presented in this paper to address the problem of 

simultaneously considering data-intensive and computation-intensive dimensions of 

the jobs. The proposed algorithm brings into account the ratio of being data-intensive 

to being computation-intensive for each submitted job, and then scales the effect of 

two sub-algorithms that each one considers one of the dimensions mentioned above. 

  



 

Fig. 2. Makespan of RBHS and SCP Tree 

Search in first scenario. 

Fig. 3. Mean transfer time of RBHS and 

SCP Tree Search in first scenario. 

 Fig. 4. Makespan of RBHS and SCP Tree 

Search in second scenario. 

Fig. 1. Mean transfer time of RBHS and 

SCP Tree Search in second scenario. 

Fig. 6. Makespan of RBHS and SCP Tree 

Search in third scenario. 

Fig. 7. Mean transfer time of RBHS and 

SCP Tree Search in third scenario. 
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