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Abstract—The aim of this paper is to propose a scheduling 

method to consider reliability along with makespan in grid 

computing systems. The reliability of task execution is considered 

in the proposed method to increase the chance of running large-

scale and computationally intensive workflows successfully. To 

handle situations in which a resource failure in a possible 

scheduling solution occurs, the proposed method finds a 

collection of scheduling solutions instead of only one solution to 

run the workflow. It leads to have chance to run an alternative 

scheduling solution that is not using the failed resource. To find 

the most optimized scheduling solutions, we exploit the lately 

developed biogeography-based optimization method with 

evaluation strategy and combine it with the operations like 

neighborhood search and crossover. Finally, the proposed 

method is compared with two successive scheduling methods. The 

results obtained from simulations show that gained improvement 

is significant especially in large workflows with large number of 

tasks. 

Index Terms—Heterogeneous networks, grid computing, 

execution time, reliability, biogeography-based optimization. 

Notations 

ri resource i 

vi task i 

si scheduling i 

Time(s) finish time of scheduling s 

Fail(s) fail factor of scheduling s 

λi failure rate of resource i 

R(i,∆t) reliability of resource i in period ∆t 

pi computation power of resource i 

N number of tasks 

P number of computational resources 

Childs(vi) tasks in DAG that vi is their predecessor 

Parents(vi) tasks in DAG that are predecessors of vi ���������� all subset solutions of s in related collection 

of scheduling solutions �	��� the probability of successful execution of 

scheduling s  

BusyResources(s) all computational resources in scheduling s 

allocated to execute tasks �	 ��� � 	�� failure probability of solution s only 

because of resource r failure �� first feasible start time of executing task i ��� first feasible finish time of executing task i ���� the priority of task �� 

I. INTRODUCTION 

Distributed computing systems make it possible to bring 

more flexibility in large scale computing using various kinds of 

software and hardware platforms [1]. In many scientific and 

industrial fields, it is needed to use large-scale computing 

systems to solve very huge and time-consuming problems. In 

recent years, grid computing as a major part of distributed 

computing systems is extremely used by scientific and 

industrial organizations to solve the problems [2, 3]. Using 

grids is a powerful way of making execution of large 

processing workflows possible with much lower cost than 

using supercomputers.  

While running a large-scale workflow, users are interested 

to use methods to make the job done as early as possible. 

Despite this effort to shortening the executing time of 

workflows, there are still many cases that require the 

distributed system to work hours and even days to complete the 

job. In these cases, in addition to the time importance, the 

reliability of computing resources is an important issue, as well 

[4, 5]. The resource reliability becomes more important when 

execution of a job takes more time. In such cases, even a single 

failure in one of active computing resources can make the 

entire execution process failed. Hence, reliability of computing 

resources should be considered by system developers to 

construct more dependable systems and provide users with the 

fast and reliable services.  

Since workflow jobs can be divided into many tasks that 

may have data or control dependencies to each other, finding 

the best possible scheduling of tasks to run on available 

computing resources can be an interesting problem. Moreover, 

how to dispatch the tasks among the available resources is very 

important problem influencing total execution time of the job 

and reliability of job execution. In order to appropriately 

dispatch the tasks among the resources, topology of the 

network should be considered. Each distributed system has a 

network topology representing the location of the resources and 

relationship between all resources and links. Star and tree 

topologies are more famous topologies considered by many 

researches to show the communication status of the resources 

in grid environments [6, 7, 8]. In many of these researches, grid 

computing has a head, named resource management system 

(RMS) [8, 9]. Figure 1 shows a sample tree topology of the 
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grid computing environment. In our study, RMS is responsible 

for sending the tasks produced by splitting a single workflow 

job to computing resources and monitoring the resources to 

know if they fail to do their own work [8, 9].  

In this paper, a method to consider the reliability and 

performance of workflow applications in grid computing 

environment is presented. The method uses the recently 

developed biogeography-based optimization (BBO) approach 

with evolutionary strategy algorithm [10, 11]. Also, it is 

assumed that the topology of the environment is tree and RMS 

is in the root of the network, because this kind of network 

topology is one of the well-known and realistic topologies in 

many grid computing systems [8]. The primary novelty of the 

proposed method is, instead of finding just one scheduling 

solution to assign workflow tasks to computational resources, 

finding a collection of scheduling solutions to be used 

alternatively when a resource failure leads to impossibility of 

executing one of proposed scheduling solutions. 

The remaining parts of the paper are organized as follows. 

Section II introduces some research works previously done on 

reliability and performance optimization of distributed 

computing networks. Section III describes background 

information that partially related to the problem. In section IV, 

the proposed method of scheduling is introduced in details. In 

section V, the proposed algorithm is compared against other 

recently developed algorithms. Finally, section VI concludes 

the paper and discuses about future works which can be done in 

this field of research. 

II. RELATED WORKS 

Makespan optimization is almost a classic problem in grid 

or distributed computing environments [2, 12, 13, 14]. 

Furthermore, the problem of finding scheduling solution with 

the minimum makespan is a famous NP-hard problem [9, 15, 

16, 17]. Therefore, using heuristic methods to solve this 

problem is inevitable and many researches in this context have 

been done recently [7, 9, 17, 18, 19, 20].  

Entezari-Maleki et al. [19] have proposed a genetic based 

task scheduling algorithm to minimize the makespan of grid 

applications. The algorithm proposed in [19] and other 

aforementioned researches [7, 9, 17, 18, 19, 20] only 

concentrate on minimizing makespan, but as in large-scale 

processing workflows reliability of computational resources is 

a basic principle which must be considered to be able to 

propose applicable scheduling solutions for that kind of 

workflows. 

 
Fig. 1–Sample tree topology of the grid computing environment 

In order to simultaneously consider the reliability and 

makespan measures in proposing scheduling solutions, it is 

required to offer a balance model, because minimizing 

makespan and maximizing reliability are two inconsistent 

objectives [9, 17, 21]. To handle the inconsistency existing 

between these two objectives, Dai et al. [8] proposed a 

deadline-based model which first generates all feasible 

scheduling solutions with makespan less than a predefined 

deadline, and then finds the best possible solution with the 

maximum reliability between feasible solutions. The model can 

only be applied to the workflows with few tasks and systems 

with few computational resources because it is generating all 

feasible solutions which may lead to long processing time 

when applying to the larger workflows or grid systems. 

Therefore, the model proposed in [8] is not well designed to be 

used by heuristic methods those can find better solutions with 

much less processing time. Hence, it is better to use a modified 

version of an acceptable balance model proposed in [9].  

Attiya el al. [17] have proposed a cost based reliability 

model which is only used to maximize reliability and not 

considering makespan, this trend may simply end in high 

reliability scheduling solutions with very long makespan. 

Moghaddam et al. [20] have used a fitness function to balance 

between makespan and cost of executing each scheduling 

solution. The same trend can be used to balance between 

reliability and makespan like the proposed method of Xiaofeng 

et al. [9]. In [9] the fitness function is like what is used in [20] 

but instead of execution cost the reliability is considered. This 

kind of balance model can be used by heuristic methods [9, 

16]. Hence, we use a modified version of balance model 

proposed in [9]. The model is described in section IV with 

details. 

Various kinds of heuristic methods like list heuristics [22] 

and genetic algorithms (GAs) [9, 16, 20] have been used for 

this multi-objective optimization problem. All the proposed 

heuristics are designed to optimize a single scheduling solution 

not a collection of solutions. Therefore, we use lately 

developed biography-based optimization with evaluation 

strategy [10, 11] to find a collection of scheduling solutions.  

III. BACKGROUND INFORMATION 

In this paper, a job workflow consisting of many tasks with 

data and control dependencies between the tasks is considered. 

It is assumed that a job is modeled with a directed acyclic 

graph (DAG) which shows data or control dependencies among 

the tasks. A sample DAG is depicted in Fig. 2. 

As shown in Fig. 2, data or control dependencies are 

illustrated with directed lines between the nodes representing 

tasks. In this paper, we point each task with vi, Moreover, each 

task may vary in its computational complexity. The 

computational complexity of task i, |vi|, is the number of 

instructions required to be executed to process that specific 

task, so it can be represented with an integer number.  
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Fig.  2–A sample DAG 

Furthermore, each task may have zero or more parents in 

the workflow DAG. If it has no parents, the task is an entry 

task and if it is not parent of any task, it is an exit task. It is 

obvious in Fig. 2 that a DAG may have many entrance or exit 

nodes.  

In a heterogeneous computer network, each computation 

resource, ri, has its own independent computation power, pi. 
The power of a computation resource is the number of 

instructions which can be executed by that resource in each 

second. Therefore, to compute the execution time of a task on a 

computation resource, one can divide the computation 

complexity of the task by power of that resource.  

Other important characteristic of a computation resource is 

its failure rate which is independent from other computation 

resources in network just similar to its computation power [2, 

15]. The reliability of the resource ri is important because it can 

be used to calculate the probability of failure in a period of 

time, ∆t, using exponential distribution [8, 23]. 

���, ∆�� � ����∆�                                                               (1) 

Now, the execution time of a task and reliability of 

executing that task on a specific resource can be calculated. 

Since, minimizing the execution time of a task and 

simultaneously maximizing the execution reliability is a NP-

hard problem [8, 9, 13, 14, 15], we can formulize the problem 

and appropriately use heuristic methods to find the fittest 

possible scheduling. 

IV. THE PROPOSED SCHEDULING METHOD 

In this section, the model to calculate the reliability and 

fitness of each possible scheduling solution is presented in the 

first, and then the proposed scheduling method is presented 

based on the reliability calculation model. 

IV-A. Reliability Model 

The reliability of a specific scheduling is the probability in 

which all resources in that scheduling stay operational and no 

failure occurs during executing jobs [8, 9, 22, 24]. 

To achieve the goals of this paper, maximizing scheduling 

reliability and minimizing total execution time, defining a 

fitness function to compare the suitability of a scheduling with 

the others is required. The functions F(s) is giving every 

scheduling solution rank between zero and one and the better 

scheduling has rank closer to one [9]. Functions F(s) is shown 

in Eq. 2.  

���� � ��. !"�#�$��%�&!"�#%"'!"�#�%�&!"�# ( �). *�+,�$��%�&*�+,%"'*�+,�%�&*�+,          (2) 

�-�.��� � ∑ ��0�1�23                                                             (3) 

where ti is the time in which resource i finishes its own 

work of executing all tasks assigned to it. Moreover, MaxFail 

and MinFail are empirical values obtained by observing 

experiences in environment and are used to normalize the result 

of Fail function to be valid aggregating it with the result of 

Time function in other half of formula. 

Time(s) is the time to finish executing all tasks existing 

inside a workflow. This measure is defined as Eq. 4. 

4�5���� � 6-7����, 0 9 � 9 :                                      (4) 

Like first half of Eq. 2, the time part also needs to be 

normalized to be valid aggregating it with other half. So, 

MaxTime and MinTime can be found by RMS via monitoring 

the entire grid environment.  

Variables ω1 and ω2 are preference factors chosen by user 

as his/her favorite of reliability or makespan importance. 

IV-B. The Details of the Proposed Method 

In our approach, it is assumed that if a resource fails it 

cannot be recovered. Therefore, every scheduling solution 

containing the failed resource will be failed. In order to handle 

this kind of failure, the idea of using a collection of scheduling 

solutions can be used instead of proposing only one scheduling 

solution [8]. In [8], all possible scheduling solutions which 

have makespan less than predefined deadline are used, but we 

use log(P) as number of final proposed scheduling solutions as 

result of our scheduling method. Using this idea, we can 

usually have at least one alternative scheduling solution for a 

single resource failure and have chance for more than one 

resource failure. 

To calculate the fitness of a collection of scheduling 

solutions, C, the expected value is used. First, all of the 

available scheduling solutions are sorted by their number of 

free resources descending. The number of free resources in 

each solution is number of resources with no assigned task in 

that specific scheduling solution. Therefore, s0 has more free 

resources than s1 if both of them are in the same collection. 

Moreover, busy resources are those who have at least one 

assigned task in the related scheduling solution. 

We used a recursive method to calculate total fitness of a 

collection of solutions. To explain this method it is required to 

first define some concepts. 

Lemma 1. Solution A is a subset of solution B if and only if 

every free resource in A is free in B, as well. With this 

definition of subset solution, one can assure that failure of a 

free resource in superset solution cannot lead to failure in 

subset solution. 

Lemma 2. Fitness of a collection of scheduling solutions is 

defined as maximum expected fitness of its solutions and 

subsets of each solution.  
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To use lemma 2 it is required to define expected fitness of a 

solution and its subsets, �; ���. 

�; ��� � 

<=
>���� ? Pr��� ,                                                   �B ���������� �  C���� ? Pr��� ( ∑ maxG�; ���� ? Pr��� � 	�|���I$�J, KL $MN$,�$�$��2� ;P	 Q ���R���S�	T�����,                                       S�U�	V��� 

W  (5) 

where ���������� denotes all of the solutions existing in 

the same collection containing s and can be considered as 

subsets of s according to lemma 1. Also �	��� means the 

probability of occurring no failure in busy resources of solution 

s during its total execution time. �	 ��� � 	�|��� is the probability 

of failure of resource r which leads to failure of solution s 

while no other busy resource of s fails during its total execution 

time. Figure 3 shows the algorithm used to calculate the fitness 

of a collection of solutions. 

When a collection of scheduling solutions is selected as a 

final result of proposed algorithm, we can deliver all solutions 

to the user or just the solution which has maximum �; ��� along 

its subsets in that collection. 

As mentioned before, finding the fittest solution for such 

problem is a NP-hard problem, so we use a heuristic method to 

solve the problem. To be able to use heuristic methods it is 

required to represent each scheduling solution by a simple data 

structure. Each scheduling solutions consists of two parts; the 

first part is assignment of each task to a computational resource 

and the second one is the order of executing tasks which are 

assigned to one computational resource. In order to present the 

first part, an array of integer numbers, like what is illustrated in 

Fig. 4, is used. This kind of arrays are called solutions 

chromosome. 

In each chromosome, the number corresponding to a 

location shows the resource in which allocated to process that 

task. As an example, the sample chromosome represented in 

Fig. 4 implies that resource r4 is allocated to process tasks t0 

and t2. 

Since the order of executing the tasks which are scheduled 

on a computational resource is not covered in chromosome, we 

should define a new function named Order function. This 

function can be seen in Eq. 6.   

 

     
Fig.  3–Algori thm to find fi tness of a  col lect ion of scheduling 

solut ions 

 
         Fig. 4–A sample chromosome 

����� � X|��| ,                                 YU�.Z����� �  C|��| ( max [�G�\I],    �\ Q YU�.Z�����W           (6) 

where ����� is the sum of size of tasks in the longest path 

beginning from task i in the related DAG. Also, the output of 

function YU�.Z����� is the collection of tasks in which �� is 

their parent in the related DAG. Therefore, ����� can be used 

to determine the order of execution between tasks which are 

scheduled to run on a computational resource. A task with 

higher ����� will be executed earlier.  

To consider the data and control dependency of tasks, it is 

required to adjust execution start time of each task by execution 

finish time of its parents in DAG. 

��$ � X0 ,                 �-	�^������ � C6-7G�\LI,   �\ Q �-	�^������W                                 (7) 

where ��$ is the first time in which the task �� can be 

executed by any computation resource and ��L is the first 

possible finish time of task �� on the related scheduling 

solution. Moreover, �-	�^������ shows a collection of parent 

nodes of task �� in the related DAG. While we respect finish 

time of parents in defining ��$, it can help us to be sure that all 

predecessors of a given task are executed before that task. 

The heuristic method used in this paper to find the best 

possible solution is a meta-heuristic algorithm based on 

biogeography-based optimization (BBO) which is a new kind 

of heuristic algorithms and has already outperformed older 

proposed heuristic methods in many famous problems [10, 11]. 

The basic idea of BBO is making groups of solutions that 

each group of solutions represents an island. In every iteration, 

solutions can immigrate to other islands and make new groups. 

With this method, solutions which have better fitness functions 

can immigrate to the groups with higher fitness to make new 

islands with even higher fitness. In addition, it is possible to 

migrate solutions with lower fitness to other islands and make 

well ranked islands more pure. In the following, each of the 

steps used in our proposed approach are listed and explained by 

details.  

Crossover and Selection  

In each iteration of our proposed method, only exchanging 

solutions between the groups is not enough, because it may 

result in sticking to specific part of solution space and not 

finding the best global scheduling solutions possible. Hence, it 

is required to generate new solutions randomly to attenuate 

chance of sticking in small part of solution space. 

One of the most efficient available methods in bringing 

randomness into proposed method is the use of crossover on 

two different solutions to see if the result is even better or not. 

Therefore, we implement cut-off based crossover method 

which randomly selects an index in chromosome and exchange 

left and right parts of the chromosomes to generate two 

different scheduling solutions. In such crossover process, we 

only exchange task-resource assignments and postpone finding 

the order of execution of tasks to the evaluation phase. This 

means, when we want to calculate the fitness of a scheduling 

0        1        2        3        4        5        6        7        8        9 Task ID 

4        1        4        5        8        1        2        3        5        1 Resource 

fitnessCalculator (solution collection C) { 

   sort decreasingly all solutions in C by number of free resources. 

   for each s in C 

     calculate �; ��� for all sorted solutions and store it for future use.   

   end  for 

   return the maximum �; ���. 

} 
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solution before using fitness formula (Eq. 4) the algorithm will 

find best order of task execution of each resource using Eq. 6. 

A sample crossover operation is shown in Fig. 5. 

Before using crossover to make new random scheduling 

solutions, we use roulette wheel based method to select half of 

top solutions in each group, and then apply crossover to some 

random pairs to make new group with the same population. It 

is also possible to first double the population size of group 

using crossover, and then use roulette wheel method to filter 

solutions in a new group and select half of them. In our 

experiences, the first method usually results better group 

fitness. 

While new chromosomes are generated during crossover, 

we can use the lemma proved by Dongarra et al. [21] to make 

better results in crossover phase. The lemma is used to refuse 

or accept a task assignment change. As proved in [21], the 

resource with less proportion of resource failure rate to 

resource power is better to be allocated to a task. Hence, we 

can filter changes in crossover using this lemma and only 

accept resource assignments which are going to make better 

solutions.  

Neighborhood search 

Neighborhood search is an operation which is applied to 

random number of scheduling solutions in each group to 

replace a selected scheduling solution with its local optimum 

solution. To find local optimum of specific solutions, it is 

required to try all resources for each of tasks in that solution, 

and finally accept the fittest neighbor of that solution. Since 

this operation is time consuming and its time complexity is ��� ? :�, we only apply it to random number of solutions. 

Local search algorithm is shown in Fig. 6. 

 

    
         Fig. 5–Cut-off based crossover sample 

   
         Fig. 6–Neighborhood search algori thm 

V. EXPERIMENTAL RESULTS   

In order to assess the efficiency of the proposed scheduling 

method, we simulate the method and compare it with other 

similar algorithms. Since there is no standard benchmark to 

compare proposed method, wide range of randomly generated 

data have been used in our experiments. This method has been 

used in many research works [8, 9, 16, 17]. We use random 

DAG generator [16, 17] to generate a random DAG. The 

parameters which DAG generator accepts as its input are: 

population size, minimum and maximum out degree of each 

node in DAG, minimum and maximum computation 

complexity. The DAG generator uses uniform distribution to 

generate random numbers. To obtain more dependable results, 

the randomly generated DAG is used for all compared 

algorithms for eight times and the average value of each of the 

gained results is used for comparison. 

In each iteration of the proposed method as well as a 

process dependency DAG, information about number of 

computation resources, their computation powers and failure 

rates are required. Therefore, we generate a list of random 

resources using number of resources, mean and deviation of 

computation power, mean and deviation of failure rate as input 

parameters. The normal distribution is used to generate random 

numbers in this part. Table 1 shows the value of 

aforementioned parameters used in the experiments. 

Assumptions about the workflow job and grid system 

considered in our experiments are as follows. 

• The entire grid system is monitored by RMS which is 

responsible to find the best solution and dispatch the 

tasks to the resources. 

• RMS is connected to all resources directly or indirectly 

via other resources. 

• The types of workflow jobs considered in this paper are 

mostly computation intensive, so the communication 

links between the resources are not considered in 

reliability nor makespan evaluation.  

• Each computation resource can only execute a task at 

once; therefore, each resource has its own waiting list. 

• The RMS is aware of computation power and failure 

rate of all resources. 

• Once a resource fails due to hardware or software 

problems, it is not possible to be recovered, because the 

subjection of our study is mainly related to reliability 

evaluation while considering resource recovery is used 

in availability assessment [25]. 

• In all of the experiments, without loss of generality, 

preference values have been set to 0.5 (ω1 = ω2 = 0.5). 

These values only show the preference of user and can 

be set to the other values, as well.  

         Table 1–Resource specif icat ions in  four different  

scenarios  

Senario Mean 

failure 

Failure 

Deviation 

Mean 

Power 

Power 

Deviation 

1 0.2 0.15 20 10 

2 0.01 0.0015 20 10 

3 0.2 0.15 200 20 

4 0.01 0.0015 200 20 

 

neighborhoodSearch (solution S){ 

   Define S0 = S 

   for each v in S 

 for each r in all resources 

  assign v to r and make new solution S1 

  if  �; �_�� > �; �_3� then 

   S0 = S1 

  end if 

 end  for 

   end for  

   return S0 

} 

4        1        4        5        8        1        2        3        5        1 Solution 1 

3        2        2        8        5        3        5        1        8        2 Solution 2 

4        1        4        5        5       3        5        1        8        2 Child 1 

3        2        2        8        8        1        2        3        5        1 Child 2 
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To show the efficiency of the proposed method, 

biogeography-based optimization with evaluation strategy 

(BBOES), we have implement two successful recently 

developed scheduling algorithms, honeybee-mating 

optimization (HBMO) [16] and look ahead genetic algorithm 

(LAGA) [9], and compared our method with these two 

algorithms. Figures 7 to 10 compares the proposed algorithm 

(BBOES) with HBMO and LAGA while senario1 to senario4 

are considered. As can be seen in Fig. 7, the BBOES 

outperforms both of the algorithms in respect of normalized 

fitness. In Fig. 7 to Fig. 10, the vertical axes show normalized 

rank of fitness for each algorithm; therefore, the higher rank is 

the better one. The horizontal axes are for ratio of number of 

task to number of resources which starts from 0.5 and ends 

with 16. 

As shown in Fig. 7 to Fig. 10, the proposed algorithm leads 

to major improvement on problem of optimizing both 

makespan and reliability of heterogeneous computing networks 

in most cases. However, as the ratio of number of tasks to 

number of computation resources increases the improvement of 

proposed method over LAGA and HBMO becomes more 

significant. 

VI. CONCLUSION AND FUTURE WORK 

In large-scale computation intensive workflows, scheduling 

tasks on computational resources to minimize the makespan 

due to possibility of failure in computational resources is not 

enough, because failure in a computational resource may lead 

to failure of whole execution process. Moreover, as minimizing 

makespan and maximizing reliability are two inconsistent 

objectives a balance model can be used to define a fitness 

function which represents both reliability and makespan 

characteristics of each scheduling solution. Using the balance 

model and fitness function enables the ability of using heuristic 

methods to find most near optimal scheduling solutions. In this 

work, we have proposed a BBOES based method to solve the 

problem of optimizing both makespan and reliability in grid 

networks. The proposed method compared with two other 

heuristics, LAGA and HBMO algorithms, and the results 

obtained from simulations show that the improvement is 

significant in almost all cases. Therefore, the proposed method 

can be considered as an interesting alternative to what already 

is in use.  

For future works, one can extend the proposed algorithm to 

find optimized solutions for multi-objective problems; 

objectives like costs of task execution on different 

computational resources or availability of resources. In 

addition, it is possible to consider network reliability and 

communication time in the reliability model to extend the 

usability domain of the algorithm covering data intensive 

workflows.  

 

 

         Fig. 7–Comparison of BBOES, LAGA and HBMO at  

scenario1 

 

 

         Fig. 8–Comparison of BBOES, LAGA and HBMO at  

scenario2 

 

 

         Fig. 9–Comparison of BBOES, LAGA and HBMO at  

scenario3 
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         Fig. 10–Comparison of BBOES, LAGA and HBMO at  

scenario4 
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