
Biogeography-Based Optimization of Makespan and

Reliability in Grid Computing Systems

Mohammad Hadi Mobini, Reza Entezari-Maleki, and Ali Movaghar

Performance and Dependability Laboratory, Department of Computer Engineering, Sharif University of Technology,

Tehran, Iran.

{mobini, entezari}@ce.sharif.edu, movaghar@sharif.edu

Abstract—The aim of this paper is to propose a scheduling

method to consider reliability along with makespan in grid

computing systems. The reliability of task execution is considered

in the proposed method to increase the chance of running large-

scale and computationally intensive workflows successfully. To

handle situations in which a resource failure in a possible

scheduling solution occurs, the proposed method finds a

collection of scheduling solutions instead of only one solution to

run the workflow. It leads to have chance to run an alternative

scheduling solution that is not using the failed resource. To find

the most optimized scheduling solutions, we exploit the lately

developed biogeography-based optimization method with

evaluation strategy and combine it with the operations like

neighborhood search and crossover. Finally, the proposed

method is compared with two successive scheduling methods. The

results obtained from simulations show that gained improvement

is significant especially in large workflows with large number of

tasks.

Index Terms—Heterogeneous networks, grid computing,

execution time, reliability, biogeography-based optimization.

Notations

ri resource i

vi task i

si scheduling i

Time(s) finish time of scheduling s

Fail(s) fail factor of scheduling s

λi failure rate of resource i

R(i,∆t) reliability of resource i in period ∆t

pi computation power of resource i

N number of tasks

P number of computational resources

Childs(vi) tasks in DAG that vi is their predecessor

Parents(vi) tasks in DAG that are predecessors of vi ���������� all subset solutions of s in related collection

of scheduling solutions �	��� the probability of successful execution of

scheduling s

BusyResources(s) all computational resources in scheduling s

allocated to execute tasks �	 ��� � 	�� failure probability of solution s only

because of resource r failure �� first feasible start time of executing task i ��� first feasible finish time of executing task i ���� the priority of task ��

I. INTRODUCTION

Distributed computing systems make it possible to bring

more flexibility in large scale computing using various kinds of

software and hardware platforms [1]. In many scientific and

industrial fields, it is needed to use large-scale computing

systems to solve very huge and time-consuming problems. In

recent years, grid computing as a major part of distributed

computing systems is extremely used by scientific and

industrial organizations to solve the problems [2, 3]. Using

grids is a powerful way of making execution of large

processing workflows possible with much lower cost than

using supercomputers.

While running a large-scale workflow, users are interested

to use methods to make the job done as early as possible.

Despite this effort to shortening the executing time of

workflows, there are still many cases that require the

distributed system to work hours and even days to complete the

job. In these cases, in addition to the time importance, the

reliability of computing resources is an important issue, as well

[4, 5]. The resource reliability becomes more important when

execution of a job takes more time. In such cases, even a single

failure in one of active computing resources can make the

entire execution process failed. Hence, reliability of computing

resources should be considered by system developers to

construct more dependable systems and provide users with the

fast and reliable services.

Since workflow jobs can be divided into many tasks that

may have data or control dependencies to each other, finding

the best possible scheduling of tasks to run on available

computing resources can be an interesting problem. Moreover,

how to dispatch the tasks among the available resources is very

important problem influencing total execution time of the job

and reliability of job execution. In order to appropriately

dispatch the tasks among the resources, topology of the

network should be considered. Each distributed system has a

network topology representing the location of the resources and

relationship between all resources and links. Star and tree

topologies are more famous topologies considered by many

researches to show the communication status of the resources

in grid environments [6, 7, 8]. In many of these researches, grid

computing has a head, named resource management system

(RMS) [8, 9]. Figure 1 shows a sample tree topology of the

IV International Congress on Ultra Modern Telecommunications and Control Systems 2012

978-1-4673-2015-3/12/$31.00 ©2012 IEEE 349

grid computing environment. In our study, RMS is responsible

for sending the tasks produced by splitting a single workflow

job to computing resources and monitoring the resources to

know if they fail to do their own work [8, 9].

In this paper, a method to consider the reliability and

performance of workflow applications in grid computing

environment is presented. The method uses the recently

developed biogeography-based optimization (BBO) approach

with evolutionary strategy algorithm [10, 11]. Also, it is

assumed that the topology of the environment is tree and RMS

is in the root of the network, because this kind of network

topology is one of the well-known and realistic topologies in

many grid computing systems [8]. The primary novelty of the

proposed method is, instead of finding just one scheduling

solution to assign workflow tasks to computational resources,

finding a collection of scheduling solutions to be used

alternatively when a resource failure leads to impossibility of

executing one of proposed scheduling solutions.

The remaining parts of the paper are organized as follows.

Section II introduces some research works previously done on

reliability and performance optimization of distributed

computing networks. Section III describes background

information that partially related to the problem. In section IV,

the proposed method of scheduling is introduced in details. In

section V, the proposed algorithm is compared against other

recently developed algorithms. Finally, section VI concludes

the paper and discuses about future works which can be done in

this field of research.

II. RELATED WORKS

Makespan optimization is almost a classic problem in grid

or distributed computing environments [2, 12, 13, 14].

Furthermore, the problem of finding scheduling solution with

the minimum makespan is a famous NP-hard problem [9, 15,

16, 17]. Therefore, using heuristic methods to solve this

problem is inevitable and many researches in this context have

been done recently [7, 9, 17, 18, 19, 20].

Entezari-Maleki et al. [19] have proposed a genetic based

task scheduling algorithm to minimize the makespan of grid

applications. The algorithm proposed in [19] and other

aforementioned researches [7, 9, 17, 18, 19, 20] only

concentrate on minimizing makespan, but as in large-scale

processing workflows reliability of computational resources is

a basic principle which must be considered to be able to

propose applicable scheduling solutions for that kind of

workflows.

Fig. 1–Sample tree topology of the grid computing environment

In order to simultaneously consider the reliability and

makespan measures in proposing scheduling solutions, it is

required to offer a balance model, because minimizing

makespan and maximizing reliability are two inconsistent

objectives [9, 17, 21]. To handle the inconsistency existing

between these two objectives, Dai et al. [8] proposed a

deadline-based model which first generates all feasible

scheduling solutions with makespan less than a predefined

deadline, and then finds the best possible solution with the

maximum reliability between feasible solutions. The model can

only be applied to the workflows with few tasks and systems

with few computational resources because it is generating all

feasible solutions which may lead to long processing time

when applying to the larger workflows or grid systems.

Therefore, the model proposed in [8] is not well designed to be

used by heuristic methods those can find better solutions with

much less processing time. Hence, it is better to use a modified

version of an acceptable balance model proposed in [9].

Attiya el al. [17] have proposed a cost based reliability

model which is only used to maximize reliability and not

considering makespan, this trend may simply end in high

reliability scheduling solutions with very long makespan.

Moghaddam et al. [20] have used a fitness function to balance

between makespan and cost of executing each scheduling

solution. The same trend can be used to balance between

reliability and makespan like the proposed method of Xiaofeng

et al. [9]. In [9] the fitness function is like what is used in [20]

but instead of execution cost the reliability is considered. This

kind of balance model can be used by heuristic methods [9,

16]. Hence, we use a modified version of balance model

proposed in [9]. The model is described in section IV with

details.

Various kinds of heuristic methods like list heuristics [22]

and genetic algorithms (GAs) [9, 16, 20] have been used for

this multi-objective optimization problem. All the proposed

heuristics are designed to optimize a single scheduling solution

not a collection of solutions. Therefore, we use lately

developed biography-based optimization with evaluation

strategy [10, 11] to find a collection of scheduling solutions.

III. BACKGROUND INFORMATION

In this paper, a job workflow consisting of many tasks with

data and control dependencies between the tasks is considered.

It is assumed that a job is modeled with a directed acyclic

graph (DAG) which shows data or control dependencies among

the tasks. A sample DAG is depicted in Fig. 2.

As shown in Fig. 2, data or control dependencies are

illustrated with directed lines between the nodes representing

tasks. In this paper, we point each task with vi, Moreover, each

task may vary in its computational complexity. The

computational complexity of task i, |vi|, is the number of

instructions required to be executed to process that specific

task, so it can be represented with an integer number.

 R3

 R1

 R2

 R4

 R5

RMS

350

Fig. 2–A sample DAG

Furthermore, each task may have zero or more parents in

the workflow DAG. If it has no parents, the task is an entry

task and if it is not parent of any task, it is an exit task. It is

obvious in Fig. 2 that a DAG may have many entrance or exit

nodes.

In a heterogeneous computer network, each computation

resource, ri, has its own independent computation power, pi.
The power of a computation resource is the number of

instructions which can be executed by that resource in each

second. Therefore, to compute the execution time of a task on a

computation resource, one can divide the computation

complexity of the task by power of that resource.

Other important characteristic of a computation resource is

its failure rate which is independent from other computation

resources in network just similar to its computation power [2,

15]. The reliability of the resource ri is important because it can

be used to calculate the probability of failure in a period of

time, ∆t, using exponential distribution [8, 23].

���, ∆�� � ����∆� (1)

Now, the execution time of a task and reliability of

executing that task on a specific resource can be calculated.

Since, minimizing the execution time of a task and

simultaneously maximizing the execution reliability is a NP-

hard problem [8, 9, 13, 14, 15], we can formulize the problem

and appropriately use heuristic methods to find the fittest

possible scheduling.

IV. THE PROPOSED SCHEDULING METHOD

In this section, the model to calculate the reliability and

fitness of each possible scheduling solution is presented in the

first, and then the proposed scheduling method is presented

based on the reliability calculation model.

IV-A. Reliability Model

The reliability of a specific scheduling is the probability in

which all resources in that scheduling stay operational and no

failure occurs during executing jobs [8, 9, 22, 24].

To achieve the goals of this paper, maximizing scheduling

reliability and minimizing total execution time, defining a

fitness function to compare the suitability of a scheduling with

the others is required. The functions F(s) is giving every

scheduling solution rank between zero and one and the better

scheduling has rank closer to one [9]. Functions F(s) is shown

in Eq. 2.

���� � ��. !"�#�$��%�&!"�#%"'!"�#�%�&!"�# (�). *�+,�$��%�&*�+,%"'*�+,�%�&*�+, (2)

�-�.��� � ∑ ��0�1�23 (3)

where ti is the time in which resource i finishes its own

work of executing all tasks assigned to it. Moreover, MaxFail

and MinFail are empirical values obtained by observing

experiences in environment and are used to normalize the result

of Fail function to be valid aggregating it with the result of

Time function in other half of formula.

Time(s) is the time to finish executing all tasks existing

inside a workflow. This measure is defined as Eq. 4.

4�5���� � 6-7����, 0 9 � 9 : (4)

Like first half of Eq. 2, the time part also needs to be

normalized to be valid aggregating it with other half. So,

MaxTime and MinTime can be found by RMS via monitoring

the entire grid environment.

Variables ω1 and ω2 are preference factors chosen by user

as his/her favorite of reliability or makespan importance.

IV-B. The Details of the Proposed Method

In our approach, it is assumed that if a resource fails it

cannot be recovered. Therefore, every scheduling solution

containing the failed resource will be failed. In order to handle

this kind of failure, the idea of using a collection of scheduling

solutions can be used instead of proposing only one scheduling

solution [8]. In [8], all possible scheduling solutions which

have makespan less than predefined deadline are used, but we

use log(P) as number of final proposed scheduling solutions as

result of our scheduling method. Using this idea, we can

usually have at least one alternative scheduling solution for a

single resource failure and have chance for more than one

resource failure.

To calculate the fitness of a collection of scheduling

solutions, C, the expected value is used. First, all of the

available scheduling solutions are sorted by their number of

free resources descending. The number of free resources in

each solution is number of resources with no assigned task in

that specific scheduling solution. Therefore, s0 has more free

resources than s1 if both of them are in the same collection.

Moreover, busy resources are those who have at least one

assigned task in the related scheduling solution.

We used a recursive method to calculate total fitness of a

collection of solutions. To explain this method it is required to

first define some concepts.

Lemma 1. Solution A is a subset of solution B if and only if

every free resource in A is free in B, as well. With this

definition of subset solution, one can assure that failure of a

free resource in superset solution cannot lead to failure in

subset solution.

Lemma 2. Fitness of a collection of scheduling solutions is

defined as maximum expected fitness of its solutions and

subsets of each solution.

0 1

2 3

4 5 6

7 8

351

To use lemma 2 it is required to define expected fitness of a

solution and its subsets, �; ���.

�; ��� �

<=
>���� ? Pr��� , �B ���������� � C���� ? Pr��� (∑ maxG�; ���� ? Pr��� � 	�|���I$�J, KL MN,�$�$��2� ;P	 Q ���R���S�	T�����, S�U�	V���

W (5)

where ���������� denotes all of the solutions existing in

the same collection containing s and can be considered as

subsets of s according to lemma 1. Also �	��� means the

probability of occurring no failure in busy resources of solution

s during its total execution time. �	 ��� � 	�|��� is the probability

of failure of resource r which leads to failure of solution s

while no other busy resource of s fails during its total execution

time. Figure 3 shows the algorithm used to calculate the fitness

of a collection of solutions.

When a collection of scheduling solutions is selected as a

final result of proposed algorithm, we can deliver all solutions

to the user or just the solution which has maximum �; ��� along

its subsets in that collection.

As mentioned before, finding the fittest solution for such

problem is a NP-hard problem, so we use a heuristic method to

solve the problem. To be able to use heuristic methods it is

required to represent each scheduling solution by a simple data

structure. Each scheduling solutions consists of two parts; the

first part is assignment of each task to a computational resource

and the second one is the order of executing tasks which are

assigned to one computational resource. In order to present the

first part, an array of integer numbers, like what is illustrated in

Fig. 4, is used. This kind of arrays are called solutions

chromosome.

In each chromosome, the number corresponding to a

location shows the resource in which allocated to process that

task. As an example, the sample chromosome represented in

Fig. 4 implies that resource r4 is allocated to process tasks t0

and t2.

Since the order of executing the tasks which are scheduled

on a computational resource is not covered in chromosome, we

should define a new function named Order function. This

function can be seen in Eq. 6.

Fig. 3–Algori thm to find fi tness of a col lect ion of scheduling

solut ions

 Fig. 4–A sample chromosome

����� � X|��| , YU�.Z����� � C|��| (max [�G�\I], �\ Q YU�.Z�����W (6)

where ����� is the sum of size of tasks in the longest path

beginning from task i in the related DAG. Also, the output of

function YU�.Z����� is the collection of tasks in which �� is

their parent in the related DAG. Therefore, ����� can be used

to determine the order of execution between tasks which are

scheduled to run on a computational resource. A task with

higher ����� will be executed earlier.

To consider the data and control dependency of tasks, it is

required to adjust execution start time of each task by execution

finish time of its parents in DAG.

��$ � X0 , �-	�^������ � C6-7G�\LI, �\ Q �-	�^������W (7)

where ��$ is the first time in which the task �� can be

executed by any computation resource and ��L is the first

possible finish time of task �� on the related scheduling

solution. Moreover, �-	�^������ shows a collection of parent

nodes of task �� in the related DAG. While we respect finish

time of parents in defining ��$, it can help us to be sure that all

predecessors of a given task are executed before that task.

The heuristic method used in this paper to find the best

possible solution is a meta-heuristic algorithm based on

biogeography-based optimization (BBO) which is a new kind

of heuristic algorithms and has already outperformed older

proposed heuristic methods in many famous problems [10, 11].

The basic idea of BBO is making groups of solutions that

each group of solutions represents an island. In every iteration,

solutions can immigrate to other islands and make new groups.

With this method, solutions which have better fitness functions

can immigrate to the groups with higher fitness to make new

islands with even higher fitness. In addition, it is possible to

migrate solutions with lower fitness to other islands and make

well ranked islands more pure. In the following, each of the

steps used in our proposed approach are listed and explained by

details.

Crossover and Selection

In each iteration of our proposed method, only exchanging

solutions between the groups is not enough, because it may

result in sticking to specific part of solution space and not

finding the best global scheduling solutions possible. Hence, it

is required to generate new solutions randomly to attenuate

chance of sticking in small part of solution space.

One of the most efficient available methods in bringing

randomness into proposed method is the use of crossover on

two different solutions to see if the result is even better or not.

Therefore, we implement cut-off based crossover method

which randomly selects an index in chromosome and exchange

left and right parts of the chromosomes to generate two

different scheduling solutions. In such crossover process, we

only exchange task-resource assignments and postpone finding

the order of execution of tasks to the evaluation phase. This

means, when we want to calculate the fitness of a scheduling

0 1 2 3 4 5 6 7 8 9 Task ID

4 1 4 5 8 1 2 3 5 1 Resource

fitnessCalculator (solution collection C) {

 sort decreasingly all solutions in C by number of free resources.

 for each s in C

 calculate �; ��� for all sorted solutions and store it for future use.

 end for

 return the maximum �; ���.

}

352

solution before using fitness formula (Eq. 4) the algorithm will

find best order of task execution of each resource using Eq. 6.

A sample crossover operation is shown in Fig. 5.

Before using crossover to make new random scheduling

solutions, we use roulette wheel based method to select half of

top solutions in each group, and then apply crossover to some

random pairs to make new group with the same population. It

is also possible to first double the population size of group

using crossover, and then use roulette wheel method to filter

solutions in a new group and select half of them. In our

experiences, the first method usually results better group

fitness.

While new chromosomes are generated during crossover,

we can use the lemma proved by Dongarra et al. [21] to make

better results in crossover phase. The lemma is used to refuse

or accept a task assignment change. As proved in [21], the

resource with less proportion of resource failure rate to

resource power is better to be allocated to a task. Hence, we

can filter changes in crossover using this lemma and only

accept resource assignments which are going to make better

solutions.

Neighborhood search

Neighborhood search is an operation which is applied to

random number of scheduling solutions in each group to

replace a selected scheduling solution with its local optimum

solution. To find local optimum of specific solutions, it is

required to try all resources for each of tasks in that solution,

and finally accept the fittest neighbor of that solution. Since

this operation is time consuming and its time complexity is ��� ? :�, we only apply it to random number of solutions.

Local search algorithm is shown in Fig. 6.

 Fig. 5–Cut-off based crossover sample

 Fig. 6–Neighborhood search algori thm

V. EXPERIMENTAL RESULTS

In order to assess the efficiency of the proposed scheduling

method, we simulate the method and compare it with other

similar algorithms. Since there is no standard benchmark to

compare proposed method, wide range of randomly generated

data have been used in our experiments. This method has been

used in many research works [8, 9, 16, 17]. We use random

DAG generator [16, 17] to generate a random DAG. The

parameters which DAG generator accepts as its input are:

population size, minimum and maximum out degree of each

node in DAG, minimum and maximum computation

complexity. The DAG generator uses uniform distribution to

generate random numbers. To obtain more dependable results,

the randomly generated DAG is used for all compared

algorithms for eight times and the average value of each of the

gained results is used for comparison.

In each iteration of the proposed method as well as a

process dependency DAG, information about number of

computation resources, their computation powers and failure

rates are required. Therefore, we generate a list of random

resources using number of resources, mean and deviation of

computation power, mean and deviation of failure rate as input

parameters. The normal distribution is used to generate random

numbers in this part. Table 1 shows the value of

aforementioned parameters used in the experiments.

Assumptions about the workflow job and grid system

considered in our experiments are as follows.

• The entire grid system is monitored by RMS which is

responsible to find the best solution and dispatch the

tasks to the resources.

• RMS is connected to all resources directly or indirectly

via other resources.

• The types of workflow jobs considered in this paper are

mostly computation intensive, so the communication

links between the resources are not considered in

reliability nor makespan evaluation.

• Each computation resource can only execute a task at

once; therefore, each resource has its own waiting list.

• The RMS is aware of computation power and failure

rate of all resources.

• Once a resource fails due to hardware or software

problems, it is not possible to be recovered, because the

subjection of our study is mainly related to reliability

evaluation while considering resource recovery is used

in availability assessment [25].

• In all of the experiments, without loss of generality,

preference values have been set to 0.5 (ω1 = ω2 = 0.5).

These values only show the preference of user and can

be set to the other values, as well.

 Table 1–Resource specif icat ions in four different

scenarios

Senario Mean

failure

Failure

Deviation

Mean

Power

Power

Deviation

1 0.2 0.15 20 10

2 0.01 0.0015 20 10

3 0.2 0.15 200 20

4 0.01 0.0015 200 20

neighborhoodSearch (solution S){

 Define S0 = S

 for each v in S

 for each r in all resources

 assign v to r and make new solution S1

 if �; �_�� > �; �_3� then

 S0 = S1

 end if

 end for

 end for

 return S0

}

4 1 4 5 8 1 2 3 5 1 Solution 1

3 2 2 8 5 3 5 1 8 2 Solution 2

4 1 4 5 5 3 5 1 8 2 Child 1

3 2 2 8 8 1 2 3 5 1 Child 2

353

To show the efficiency of the proposed method,

biogeography-based optimization with evaluation strategy

(BBOES), we have implement two successful recently

developed scheduling algorithms, honeybee-mating

optimization (HBMO) [16] and look ahead genetic algorithm

(LAGA) [9], and compared our method with these two

algorithms. Figures 7 to 10 compares the proposed algorithm

(BBOES) with HBMO and LAGA while senario1 to senario4

are considered. As can be seen in Fig. 7, the BBOES

outperforms both of the algorithms in respect of normalized

fitness. In Fig. 7 to Fig. 10, the vertical axes show normalized

rank of fitness for each algorithm; therefore, the higher rank is

the better one. The horizontal axes are for ratio of number of

task to number of resources which starts from 0.5 and ends

with 16.

As shown in Fig. 7 to Fig. 10, the proposed algorithm leads

to major improvement on problem of optimizing both

makespan and reliability of heterogeneous computing networks

in most cases. However, as the ratio of number of tasks to

number of computation resources increases the improvement of

proposed method over LAGA and HBMO becomes more

significant.

VI. CONCLUSION AND FUTURE WORK

In large-scale computation intensive workflows, scheduling

tasks on computational resources to minimize the makespan

due to possibility of failure in computational resources is not

enough, because failure in a computational resource may lead

to failure of whole execution process. Moreover, as minimizing

makespan and maximizing reliability are two inconsistent

objectives a balance model can be used to define a fitness

function which represents both reliability and makespan

characteristics of each scheduling solution. Using the balance

model and fitness function enables the ability of using heuristic

methods to find most near optimal scheduling solutions. In this

work, we have proposed a BBOES based method to solve the

problem of optimizing both makespan and reliability in grid

networks. The proposed method compared with two other

heuristics, LAGA and HBMO algorithms, and the results

obtained from simulations show that the improvement is

significant in almost all cases. Therefore, the proposed method

can be considered as an interesting alternative to what already

is in use.

For future works, one can extend the proposed algorithm to

find optimized solutions for multi-objective problems;

objectives like costs of task execution on different

computational resources or availability of resources. In

addition, it is possible to consider network reliability and

communication time in the reliability model to extend the

usability domain of the algorithm covering data intensive

workflows.

 Fig. 7–Comparison of BBOES, LAGA and HBMO at

scenario1

 Fig. 8–Comparison of BBOES, LAGA and HBMO at

scenario2

 Fig. 9–Comparison of BBOES, LAGA and HBMO at

scenario3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15

N
o

rm
a

li
ze

d
 F

it
n

es
s

Tasks/Resources ratio

LAGA

HBMO

BBOES

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15

N
o

rm
a

li
ze

d
 F

it
n

es
s

Tasks/Resources ratio

BBOES

LAGA

HBMO

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15

N
o

rm
a

li
ze

d
 F

it
n

es
s

Tasks/Resources ratio

LAGA

HBMO

BBOES

354

 Fig. 10–Comparison of BBOES, LAGA and HBMO at

scenario4

ACKNOWLEDGMENT

The authors want to express their gratitude to the Iran's

National Elite Foundation for their financial support of this

research.

REFERENCES

[1] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and
grid computing 360-degree compared,” Grid Computing
Environments Workshop, Texas, USA, November 12–16, 2008,
pp. 1–10.

[2] E. Deelman, et al., “Pegasus: Mapping Scientific Workflows
onto the Grid,” in Grid Computing, ser. Lecture Notes in
Computer Science, M.D. Dikaiakos, Eds., vol. 3165. Springer,
January 28–30, 2004, pp. 131–140.

[3] M. Ghanem, N. Azam, M. Boniface, and J. Ferris, “Grid-enabled
workflows for industrial product design,” Second IEEE
International Conference on e-Science and Grid Computing,
Amsterdam, Netherlands, December 4–6, 2006, pp. 96.

[4] C. Dabrowski, "Reliability in grid computing systems,"
Concurrency and Computation: Practice and Experience, vol.
21, no. 8, pp. 927–959, 2009.

[5] Y.S. Dai, M. Xie, and K.L. Poh, “Reliability analysis of grid
computing systems,” IEEE Pacific Rim International
Symposium on Dependable Computing, Tsukuba, Japan,
December 16–18, 2002, pp. 97–104.

[6] M. Baker, R. Buyya, and D. Laforenza, “Grids and grid
technologies for wide-area distributed computing”, Software:
Practice and Experience, vol. 32, no. 15, pp. 1437–1466, 2002.

[7] M.S. Chang, “The distributed program reliability analysis on star
topologies”, International Conference on Parallel and
Distributed Systems, Tainan, Taiwan, December 14–16, 1998,
pp. 100–106.

[8] Y.S. Dai and G. Levitin, “Performance and reliability of tree-
structured grid services considering data dependence and failure
correlation,” IEEE Transactions on computers, vol. 56, no. 7, pp.
925–936, 2007.

[9] X. Wang, C.S. Yeo, R. Buyya, and J. Su, “Optimizing the
makespan and reliability for workflow applications with
reputation and a look-ahead genetic algorithm,” Future
Generation Computer Systems, vol. 27, no. 8, pp.1124–1134,
2010.

[10] D.W. Du, D. Simon, and M. Ergezer, “Biogeography-based
optimization combined with evolutionary strategy and
immigration refusal,” The IEEE Conference on Systems, Man,

and Cybernetics, Texas, USA, October 11–14, 2009, pp. 1023–
1028.

[11] D. Simon, “Biogeography-based optimization,” IEEE
Transactions on Evolutionary Computation, vol. 12, no. 6, pp.
702–713, 2008.

[12] E. Bampis, C. Delorme, and J.C. König, “Optimal schedules for
d-D grid graphs with communication delays”, Parallel
Computing, vol. 24, no. 11, pp. 1653–1664, 1998.

[13] S. Parsa and R. Entezari-Maleki, “A queuing network model for
minimizing the total makespan of computational grids,”
Computers and Electrical Engineering, vol. 38, no. 4, pp. 827–
839, 2012.

[14] S. Parsa and R. Entezari-Maleki, “Task dispatching approach to
reduce the number of waiting tasks in grid environments,” The
Journal of Supercomputing, vol. 59, no. 1, pp. 469–485, 2012.

[15] M.R. Garey and D.S. Johnson, “Computers and intractability: A
Guide to the Theory of NP-completeness,” Freeman, San
Francisco, 1979.

[16] Q.M. Kang, H. He, H.M. Song, and R. Deng, “Task allocation
for maximizing reliability of distributed computing systems
using honeybee mating optimization,” The Journal of Systems
and Software, vol. 83, no. 11, pp. 2165–2174, 2010.

[17] G. Attiya and Y. Hamam, “Task allocation for maximizing
reliability of distributed systems: a simulated annealing
approach”, Journal of Parallel and Distributed Computing, vol.
66, no. 10, pp. 1259–1266, 2006.

[18] Z. Mousavinasab, R. Entezari-Maleki, and A. Movaghar, “A bee
colony task scheduling algorithm in computational grids,” The
International Conference on Digital Information Processing and
Communication, Communications in Computer and Information
Science, vol. 188, Springer press, Ostrava, Czech Republic, July
7–9, 2011, pp. 200–210.

[19] R. Entezari-Maleki and A. Movaghar, “A genetic-based
scheduling algorithm to minimize the makespan of the grid
applications,” Grid and Distributed Computing Conference,
Communications in Computer and Information Science, vol.
121, Springer press, Jeju Island, South Korea, December 13–15,
2010, pp. 22–31.

[20] S. Kardani-Moghaddam, F. Khodadadi, R. Entezari-Maleki, and
A. Movaghar, “A hybrid genetic algorithm and variable
neighborhood search for task scheduling problem in grid
environment,” Procedia Engineering, vol. 29, pp. 3808–3814,
2012.

[21] J.J. Dongarra, E. Jeannot, E. Saule, and Z. Shi, “Bi-objective
scheduling algorithms for optimizing makespan and reliability
on heterogeneous systems” The 19th Annual ACM Symposium
on Parallel Algorithms and Architectures, New York, USA,
January 2007, pp.280–28.

[22] M. Hakem and F. Butelle, “Reliability and scheduling on
systems subject to failures”, The International Conference on
Parallel Processing, Xi-An, China, September 10–14, 2007, pp.
38.

[23] R. Entezari-Maleki and A. Movaghar, “A probabilistic task
scheduling method for grid environments,” Future Generation
Computer Systems, vol. 28, no. 3, pp. 513–524, 2012.

[24] Y.S. Dai, M. Xie, K.L. Poh, and G.Q. Liu, “A study of service
reliability and availability for distributed systems,” Reliability
Engineering and System Safety, vol. 79, no. 1, pp. 103–112,
2003.

[25] R. Entezari-Maleki and A. Movaghar, “Availability Modeling of
Grid Computing Environments Using SANs,” The 19th
International Conference on Software, Telecommunications and
Computer Networks, Split, Croatia, September 15–17, 2011, pp.
1–6.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 5 10 15

N
o

rm
a

li
ze

d
 F

it
n

es
s

Tasks/Resources ratio

LAGA

HBMO

BBOES

355

