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Abstract: The aim of this paper is to model and evaluate the performance of intrusion
detection systems (IDSs) facing black-hole and gray-hole attacks within wireless ad hoc
networks (WANETs). The main performance metric of an IDS in a WANET can be
defined as the mean time required for the IDS to detect an attack in the network. To
evaluate this measure, two types of stochastic models called continuous time Markov
chain (CTMC) and stochastic reward net (SRN) are used in this paper. In the first step,
two different CTMCs are proposed to model the black-hole and gray-hole attacks, and
then, the method of computing the mean time to attack detection is presented on the
proposed CTMCs. Since the numbers of states of the proposed CTMCs grow rapidly with
increasing the number of the intermediate nodes and the number of attacks which should
be done by a single node to trigger the IDS to detect the attack, SRNs are exploited to
automatically generate the proposed CTMCs in the second step. The proposed SRNs for
the black-hole and gray-hole attacks can appropriately model the network and the process
of sending and receiving the messages. Different scenarios are designed to evaluate and
compare IDSs on WANETs which show the applicability and usefulness of the proposed
CTMCs and SRNs in real networks.

Keywords: Intrusion detection system; black-hole attack; gray-hole attack; Markov
chain; stochastic reward net.

1 Introduction

Wireless ad hoc networks (WANETs) have been
attracting the attention of a large number of researchers
in the last years since WANETs are structureless, cost
effective, flexible and scalable networks [1, 2]. Nodes
within WANETs are communicating with each other
directly if they are in the communication range of

each other; otherwise, intermediate nodes are used
to establish a connection between the communicating
nodes. Due to the structureless nature of WANETs,
security problem is more challenging in such networks.
Generally, security is known as a more challenging
concern in different networks while it needs some services
to be satisfied. The main security services in a network
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are availability, confidentiality, integrity, authentication
and non-repudiation [3]. Cryptography is considered as
a promising solution to help to meet such services, but
unfortunately, it can not fully satisfy all requirements,
specifically the availability which is very important
requirement in wireless networks [4]. Power, memory and
process limitations of nodes, mobility of nodes, and the
need for cooperating nodes in WANETs make security
solutions more challenging in such networks.

The main security lack within WANETs is that any
adversary node can read the messages which are sent
in its communication range due to the wireless nature
of the network. Moreover, it can drop or even change
any message which is routed by itself. Dropping all the
messages in WANETs is named black-hole attack while
it is done by an adversary intermediate node which
pretends itself as a node on the optimal path between
the source and destination nodes [5]. Hence, the path
containing the adversary node is always chosen by the
source node as the main path to send all messages
to the destination. Furthermore, if the adversary node
selectively drops the messages, the attack is called gray-
hole attack. Such attack is more serious and also harder
to detect in comparison with the black-hole attack [6].
Availability is a security service which is vulnerable
against both the black-hole and gray-hole attacks. In
order to detect such attacks, all nodes or some of
them should be equipped with an intrusion detection
system (IDS) [7, 8] to discover the adversary node, and
isolate it from the network. Each node in a network is
equipped with an IDS which is a hardware or software
tool to monitor the network and activities of the nodes
for malicious behaviors. Moreover, it may be used for
detecting policy outrages and abnormal activities.

There are several metrics which could be used to
evaluate the performance of an IDS. False positive and
false negative rates, detection rate, precision rate, mean
time to detect and mean time to repair are examples
of such metrics [9, 10, 11]. Moreover, these metrics are
combined with some typical performance metrics like
throughput, goodput, cost and so forth to capture a
complete evaluation of an IDS [12, 13]. Since we use
stochastic models to evaluate the performance of an
IDS, we use the mean time to detect as the main
performance metric in our evaluations. It is a dependable
and widespread metric which had been used to evaluate
the performance measure in many recent research work
[14, 15, 16]. The mean time to detect an attack by an IDS
is a factor which can be used to analyze different IDSs
and their sensitivities to the various parameters of the
network. In this paper, continuous time Markov chains
(CTMCs) [17, 18] and stochastic reward nets (SRNs)
[19, 20] are used to model and evaluate IDSs within
WANETs. To do this, in the first step, two CTMCs are
proposed to model black-hole and gray-hole attacks in
a WANET. The first proposed CTMC models a black-
hole attack in a WANET which contains a single source
node, a single destination node, and N intermediate
nodes. The source node initiates a session to find a route

between itself and the destination node by broadcasting
a route request message. This message can be safely
delivered by the destination node, which will be replied
by a real route reply message, or attacked by one of the
intermediate nodes which will be relied by a fake route
reply message. The IDS is assumed to detect the black-
hole attack in the network when m consecutive attacks
have been seen from a single intermediate node. After
modeling the black-hole attack by CTMCs, the method
to compute mean time to absorption in the proposed
CTMC is presented to reflect the mean time to attack
detection in the network. The second CTMC models
a gray-hole attack in which the attacker to the route
request message may or may not attack other route
request messages sent by the source node after the first
attack. Modeling this type of attacks in WANETs is
harder than the black-hole attacks because the number
of the attacks and the attackers should be considered in
each of the states of the Markov chain before being able
to properly model the attack. The CTMC proposed for
gray-hole attack is also an absorbing CTMC which can
be used to compute the mean time to attack detection
within the network.

In practice, drawing and analyzing the proposed
CTMCs for a network with large number of intermediate
nodes and attacks (big values of parameters N and m)
are impossible, so we need an automatic way to generate
and analyze these CTMCs. To fulfill this requirement,
two different SRNs are presented to model the black-hole
and gray-hole attacks in a simple way. The usefulness
of the proposed SRNs is more exhibited in a gray-hole
attack in which creating and solving its CTMC are
almost impossible for large values of intermediate nodes
and also more number of attacks. Moreover, analyzing
the proposed SRNs and computing the mean time to
attack detection and probability of occurring i attacks in
a time instant are possible using SRN supported tools.
This matter together with various scenarios which show
the applicability of the models in computing some useful
measures and analyzing different aspects of the networks
using the proposed CTMCs and SRNs is shown in this
paper after discussing the models with details.

The remainder of this paper is organized as follows.
Section 2 introduces some related research done in the
field of modeling IDSs and other security issues using
various mathematical models. Moreover, some research
papers which have used different extensions of Petri nets
to model security aspects of the systems are introduced
in Section 2. Section 3 provides a short overview on
CTMCs and SRNs, and explains some basic concepts
of these two modeling approaches. Section 4 defines the
problem and gives a short description of the system
under study and its related assumptions. In Sections 5
and 6, the proposed CTMCs and SRNs for modeling an
IDS in WANETs considering black-hole and gray-hole
attacks are presented, respectively. In Section 7 detailed
examples together with numerical results for various
scenarios are provided. Finally, Section 8 concludes the
paper and presents some guidelines for future work.
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2 Related Work

Intrusion detection systems are divided into two general
categories. The first category includes those IDSs which
are designed to detect a single type of attacks. The
second category contains the IDSs that can deal with
a range of attacks. As an example of the first category,
Medadian et al. [21] have proposed a black-hole detection
method for ad-hoc on-demand distance vector (AODV).
In this method, the receiver node, on receiving a
reply, initiates a judgment process about the replier. A
decision is made based on the opinions of the neighbors
which are shared about the replier. Zhang et al. [22]
have proposed a black-hole detection scheme based on
sequence number checking of the route request (RREP)
packets. Xiaopeng et al. [23] have proposed a gray-hole
detection scheme for the dynamic source routing (DSR)
protocol. This requires each node to produce evidence
on forwarding packets using an aggregated signature
algorithm. Another mechanism for gray hole detection in
AODV have proposed in [24], which requires all nodes to
maintain their neighbors data forwarding information.

As the recent research work proposed in the
second category, we can refer the work done by
Mitrokotsa et al. [25] where an IDS for ad hoc
networks has been proposed by exploiting neural
network and watermarking techniques. They used self-
organizing maps in conjunction with machine learning
and watermarking techniques to design an IDS. Syntax
and semantic based approaches have also been proposed
for network based IDSs in fixed networks [26]. Chang
et al. [27] have presented an IDS for MANETs at the
application layer. Their IDS utilizes both anomaly and
misuse detection schemes to identify attacks in such
networks. Shengrong et al. in [28] formulated a partially
observable Markov decision process (POMDP) multi-
armed bandit problem to obtain the optimal scheme
of combining continuous user authentication and IDSs
in a distributed manner. Afterwards, they presented a
structural results method to solve the problem for a
large network with a variety of nodes. In [13], distributed
combined authentication and intrusion detection with
data fusion in high-security MANETs have been studied.
Multi-modal biometrics are deployed to work with IDSs
to alleviate the shortcomings of unimodal biometric
systems. In [29], a distributed IDS based on timed
automata was given, and a cluster-based detection
scheme was presented where a node is periodically
elected as the monitor node for a cluster.

There are some research papers focusing on modeling
and evaluation of IDSs using analytical models such
as Markov chains and various extensions of Petri nets.
In the following, some of the papers which have been
recently published in this research area are introduced.

Cho et al. [8] have proposed a mathematical model
based on SPNs to analyze the effect of IDSs on failure
time of mission-oriented group communication system
(GCS). The mean time to security failure (MTTSF)
as a metric to identify the optimal intrusion detection

rate was assessed in [8]. The difficulty with the model
presented in [8] is considering a linear function for the
attacker which is not realistic behavior in real networks.
The same authors were studied the impact of IDS on
performance of mobile GCS using SPN models [30]. They
identified the best detection interval to optimize MTTSF
metric, and minimize the communication cost.

Huang et al. [31] have proposed HWMP routing
protocol model based on colored Petri nets (CPNs) in a
wireless mesh network (WMN). The proposed model can
detect the existence of black-hole attacks. Furthermore,
a security routing algorithm to prevent the black-hole
attack to be happened was presented in [31], and
then, the effectiveness of this mechanism was discussed.
Dasgupta [32] have presented a CPN model to analyze an
anti black-hole mechanism (ABM) for detecting a black-
hole attack in MANET. Azgomi et al. [33] have proposed
a CPN model for EQ-MAC protocol, an energy aware
MAC protocol for wireless sensor network (WSN). The
paper considers performance of EQ-MAC protocol, but
does not perform model checking.

Sedaghatbaf et al. [34] have proposed a new attack
modeling approach based on hierarchical and colored
extension of stochastic activity networks (HCSANs)
which can model the dynamic behavior of an attacker.
This approach is useful for security measures estimation,
including MTTSF and attack success probability (ASP).
However, it only handles modeling a single attacker’s
behavior, and has not the ability to model coordinated
attacks. Jayaparvathy et al. [35] and Younes et al. [36]
have used SRNs to model the IEEE 802.11 DCF MAC
protocol. In [35], the mean delay and the average system
throughput of this protocol were evaluated. The freezing
of the back-off counter when other station captures
the channel was taken into account by this analytical
model. In [36], a model was presented for performance
evaluation of a protocol in multi hop ad hoc networks
which considers most of the protocol’s features.

Almasizadeh et al. [37] have used semi-Markov
chains to quantify the security. The mean time to first
security failure of the system, and the steady state
security probabilities of the system were analyzed as
security measures. However, the proposed method in
[37] considers only one intrusion process while there are
many intrusion processes in a system in real world. Ben-
Othman et al. [38] have used SRNs to study the effect
of different network factors on path connection availably
in multi hop ad hoc networks.

3 Background Information

In this section, basic concepts and definitions of CTMCs
and SRNs are presented. This section only intends to
give some preliminaries on the concept of CTMCs and
SRNs to be able to explain the proposed models and the
methods of computing the mean time to attack detection
and some other useful measures in the related context.
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For more information about CTMCs and SRNs please
see [17, 18, 39, 40] and [19, 20, 41], respectively.

3.1 Continuous Time Markov Chains

Stochastic models, in particular Markovian models, have
been frequently used in the assessment of technical
systems for performance, dependability, performability
and survivability [39]. A stochastic process is a family
of random variables, X(t), defined on a sample space.
The values assumed by X(t) are called states and
the set of all possible states is state space (S). The
state space of a stochastic process can be discrete or
continuous. In discrete state space, the corresponding
stochastic process is called a chain. In addition to
the state space, the time parameter of a stochastic
process can be either discrete or continuous. If the time
parameter is discrete (continuous), then the stochastic
process is named discrete (continuous) time process
[17]. A stochastic process can be also classified by the
dependences of its state at a particular time on the
states at previous times. According to this classification,
a Markov process can be defined as a stochastic process
in which each state of the process depends only on the
immediately preceding state. If the state space, S, of a
Markov process is discrete (finite or countably infinite),
then the Markov process is known as Markov chain.
More precisely, a Markov chain is a sequence of random
variables X1, X2, X3, ... with the Markov property,
namely that, given the present state, the future and past
states are independent. Formally,

Pr(Xn+1 = x|X1 = x1, X2 = x2, ..., Xn = xn) =

Pr(Xn+1 = x|Xn = xn),

where the possible values of Xi are from the countable
set of state space S [40].

If the time space of a Markov chain is continuous
(discrete), the Markov chain is called continuous time
(discrete time) Markov chain. The changes of states of a
Markov chain are called transitions and the probabilities
associated with these changes are named transition
probabilities. In time homogeneous Markov chains in
which the actual time instances are not important
and only important matter is time instances’ relative
differences, the transition probabilities are independent
of time but depend only upon the states [18, 40].

Let (X(t), t ≥ 0) represent a homogeneous finite state
continuous time Markov chain (CTMC) with state space
S. Let N be the number of states existing in X(t). Then,
the generator matrix of X(t) can be written as an N ×
N matrix, Q = [qij ], in which each element qij represents
the transition rate from state i to state j. Based on the
definition of generator matrix in CTMCs, the diagonal
elements of Q, qii, can be written as −qi which is equal
to
∑
i 6=j qij . Let Pi(t) denote the probability of being in

state i at time t, so the state probability vector of X(t)

can be written as P (t). Therefore, the transient behavior
of X(t) can be described by Eq. 1.

d

dt

(
P (t)

)
= P (t)Q, P (0) = p0. (1)

where p0 is the initial probability vector of X(t). In
addition, the steady state probability vector of X(t),
represented by π, can be obtained by substituting
d
dt

(
P (t)

)
= 0 in Eq. 1. Therefore, the steady state

probability vector π can be computed using Eq. 2.

πQ = 0
∑
i∈S

πi = 1. (2)

where πi is the steady state probability of being in state
i of the CTMC X(t).

As described above, the transient and steady state
probabilities of being in state i of X(t) can be computed
by Eq. 1 and Eq. 2, respectively. Nevertheless, in some
cases, it is necessary to compute the cumulative state
probability of X(t) [42]. Let Li(t) denote the expected
total time spent by CTMC X(t) in state i during the
time interval [0, t), then, the cumulative state probability
vector of X(t) can be computed using Eq. 3.

L(t) =

∫ t

0

P (τ)dτ (3)

A more convenient way to calculate the cumulative
state probabilities is the solution of differential equation
Eq. 4.

d

dt

(
L(t)

)
= L(t)Q+ P (0), L(0) = 0. (4)

Closely related to the vector of cumulative state
probabilities is the vector describing the time-average
behavior of the CTMC as shown in Eq. 5.

M(t) =
1

t
L(t). (5)

A CTMC is assumed to be an absorbing CTMC if
it includes at least one absorbing state. A state i ∈ S is
said to be an absorbing state if and only if no other state
of the CTMC can be reached from it [17]. In an absorbing
CTMC it would be interesting to compute measures
based on the time the CTMC spends in non-absorbing
states before an absorbing state is ultimately reached.
Let divide the state space S into two disjoint partitions A
and N representing absorbing and non-absorbing states,
respectively. Then, the time spent before absorption
can be calculated by taking the limit limt→∞ LN (T )
restricted to the states of the set N . In order to calculate
LN (∞), the generator matrix Q is restricted to those
in N , so that matrix QN of size |N | × |N | is resulted.
Restricting also the initial probability vector P (0) to
the non-absorbing states N results in PN (0), and allows
the computation of limt→∞ on both sides of differential
equation Eq. 4, so that the following linear equation is
resulted.

LN (∞)QN = −PN (0). (6)
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With LN (∞), the mean time to absorption (MTTA)
can be computed as Eq. 7.

MTTA =
∑
i∈N

Li(∞). (7)

Assigning reward rate to each of the states of X(t),
a Markov reward model (MRM) can be constructed.
Modeling a system using an appropriate CTMC and
applying suitable reward rates to each of the states, one
can compute some useful metrics such as the expected
instantaneous and accumulated reward rates.

3.2 Stochastic Reward Nets

Petri Nets (PNs) are a graphical paradigm for the
formal description of systems whose dynamics are
characterized by concurrency, synchronization, mutual
exclusion, and conflict, which are typical features of
distributed environments [43, 44]. A Petri net can be
defined as a 5-tuple:

PN = (P, T, F,W,M0)

where
P = {p1, p2, ..., pm} is a finite set of places,
T = {t1, t2, ..., tn} is a finite set of transitions,
F ⊆ (P × T ) ∪ (T × P ) is a set of arcs,
W : F → {1, 2, 3, ...} is a weight function, and
M0 : P → {1, 2, 3, ...} is the initial marking.
The Petri net graph model is a bipartite directed

graph whose nodes are divided into two disjoint sets
of places and transitions. The places and transitions
are represented by circles and bars, respectively. The
marking of a place is the number of tokens which
the place contains. The marking of the Petri net is
a vector that specifies the marking of each place in
the net. A place is defined to be an input (output)
place of a transition if there is an arc from the place
(transition) to the transition (place). An integer (d ≥
1) called arc multiplicity is associated to each arc in
the net. The default value for d is 1. A transition is
said to be enabled if each of its input places contains
at least as many tokens as that input arc’s multiplicity.
An enabled transition can fire. When a transition fires,
it removes a number of tokens from each of its input
places equal to the multiplicity of the corresponding arc
and it deposits into each of its output places as many
tokens as the multiplicity of the corresponding arc. Each
firing generates a new marking of the net. Structural
extensions to Petri nets include inhibitor arcs (denoted
by an arc with a circle instead of an arrow head), which
connect places to transitions. A transition can be enabled
only if the number of tokens in its inhibitor place is less
than the multiplicity of the inhibitor arc.

In the aforementioned definition, all transitions are
the same and can fire as soon as they are enabled.
The enabled transitions can fire and there is no priority
among them. In other words, the firing of transitions is
non-deterministic. In its basic form, PNs are adequate

for verifying the system’s properties, e.g., liveness,
boundedness, invariants, and so forth. To allow a
quantitative evaluation of the system’s behavior, PNs
have been extended in various ways to incorporate a
time notion, such as timed Petri nets (TPNs). Basically,
in PNs, time can be associated to the places (TPPNs)
or transitions (TTPNs). These time-augmented Petri
nets, TPPN as well as TTPN models, can be classified
further depending upon whether the times mentioned
are deterministic or stochastic. In the first case, the class
of such Petri nets is called TPNs, and in the latter,
they are called stochastic Petri nets (SPNs). Actually,
SPNs are PNs in which we associate an exponentially
distributed time delay with transitions [45]. In SPNs,
all of the transitions are timed transitions. In order
to overcome some quantitative problems existing in
SPN analysis and model immediate actions in some
systems, generalized stochastic Petri nets (GSPNs)
have been introduced [44]. GSPNs have two different
classes of transitions: immediate and timed transitions.
Once enabled, immediate transitions fire in zero time.
Timed transitions fire after a random, exponentially
distributed enabling time as in the case of SPNs.
In the graphical representation of GSPNs, immediate
and timed transitions are drawn as bars and white
rectangular boxes, respectively. A marking of a GSPN is
said to be vanishing if at least one immediate transition
is enabled in that marking and is said tangible otherwise.

A Stochastic Reward Net (SRN) is obtained by
associating reward rates with markings of a GSPN [19].
SRN allows the automated generation of Markov Reward
Models (MRM), making easy the combined evaluation
of performance and dependability of degradable fault-
tolerant systems. We associate a reward rate ri with
every tangible marking of the SRN, then the expected
reward rate at steady state can be computed as

∑
i riπi,

where πi denotes the steady state probability for the
SRN to be in marking i. Several other extensions have
been made in SRNs which include allowing multiplicity
of arcs to be marking dependent, enabling functions
or guards may be associated with transitions. SRN
models can be automatically transformed into MRMs,
and then, steady state and transient analysis of the
obtained MRMs can produce the required measures of
the original SRNs [19, 20, 41].

4 Problem Definition

In order to model the black-hole and gray-hole attacks
in WANETs, the following assumptions are considered
in this paper. These assumptions are commonly made in
many research papers done in this research area [31, 46,
47, 48, 49, 50]. They can provide a general view of the
network and type of the attacks, and help us to model
the various aspects of the system and assess the useful
measures exploiting the models.
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• Assumption 1. There are a single specific source
node and a specific destination node in the
network. The source node acts as a sender and
initiates the message broadcasting process, and the
destination node acts as a receiver.

• Assumption 2. There are N independent
intermediate nodes in the network which receive
the route request message sent by the source node,
and may reply this message with a fake route reply
message.

• Assumption 3. The sending times of route
request and route reply messages in both black-
hole and gray-hole attacks follow exponential
distribution.

• Assumption 4. There is an IDS in the network
which can detect attack while m attacks are seen
from a specific intermediate node. It is clear that
the total number of attacks in the network may
exceed the value of parameter m, but the IDS only
detects the attack if all m attacks are done by a
single node.

• Assumption 5. In the black-hole attack, if a route
request message is attacked by an intermediate
node, the other messages will be attacked by that
node certainly. In other words, it is impossible
to deliver a safe route request message to the
destination node if the previous message has been
attacked by an intermediate node.

• Assumption 6. In the black-hole attack, the
attacker which attacks all route request messages
is a single specific node.

• Assumption 7. In the gray-hole attack, it
is possible to safely deliver the route request
messages to the destination node even after the
first attack. In other words, all attacks in the gray-
hole attack are independent, and do not influence
on each other.

• Assumption 8. In the gray-hole attack, the
attacker may differ in each attack. However, the
node which has attacked in previous phases is most
prone to attack the other route request messages.

Considering the assumptions mentioned above, the
proposed CTMC and SRN models are described in
Section 5 and Section 6, respectively.

5 The Proposed CTMCs

The proposed CTMCs for modeling the black-hole and
gray-hole attacks are presented in this section with
details. The models realize the assumptions mentioned
in Section 4.

5.1 The First Proposed CTMC

Figure 1 shows the proposed CTMC for the black-hole
attack. The aim of this CTMC is to model sending
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Figure 1 The proposed CTMC model for a black-hole
attack

a message from a single specific source to a given
destination to find a route between the source and the
destination while there are some intermediate nodes
which may disturb this procedure by sending fake replies
to the source pretending itself as the destination. State 1
and state 2 in the CTMC shown in Fig. 1 represent
the initial states of the network in which a source node
broadcasts a route request message to find a route.
The message is assumed to be either safely received by
the destination or attacked by one of the intermediate
nodes existing in the network. Denoting p1 and p2
the probabilities of successful reception of the message
by the destination and occurrence of an attack in the
network, respectively, the CTMC will be in state 1 with
probability p1 and in state 2 with probability p2 in
the beginning. Let λ1 and λ2 denote the route request
message sending rates whenever the message is delivered
by the destination and intermediate nodes, respectively.
Therefore, if the message is safely received by the
destination, the CTMC transits from state 1 to state 3
with rate λ1, otherwise, it transits to state 4 with rate
λ2.

If the message is safely received by the destination,
it replies this message with a new message called route
reply message. Denoting µ1 the route reply message
sending rate, the CTMC shown in Fig. 1 transits from
state 3 to state 1 and state 2 with rates p1µ1 and
p2µ1, respectively. It emphasizes that the source node
has broadcasted the next route request message after
delivering the route reply message which may be safely
delivered by the destination node (with probability p1)
or attacked by one of the intermediate nodes (with
probability p2). The probabilities p1 and p2 depend
on the number of the intermediate nodes existing in
the network. Increasing the number of the intermediate
nodes, denoted by N , the attack probability, p2, also
increases. Therefore, appropriate values should be set for
both probabilities p1 and p2 according to the value of N .
One simple possibility is assigning the values 1− N

100 and
N
100 to probabilities p1 and p2, respectively. These values
satisfy the required condition in which increasing the
value of N increases the probability of attack (p2), and
decreases the probability of safe delivering of message by
the destination node (p1).

In situation in which the message is attacked by
an intermediate node, the source node would receive a
fake reply from the attacker. Let µ2 denote the fake
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route reply message sending rate. Transition from state 4
to state 5 with rate µ2 shows sending a fake route
reply message to the source node by the attacker. After
receiving the fake message by the source node, it starts
a new session to check the existence of a route between
itself and the destination. According to the Assumption
6 mentioned in Section 4, the same attacker will certainly
attack the other route request messages sent by the
source in next steps. Therefore, the proposed CTMC
should transit from state 5 to the next state to represent
the second attack in the network. It is worthwhile to
mention that the rate of transition from state 5 to the
next state is λ2 which implies p1 = 0 and p2 = 1 after
the first attack. Consequently, the CTMC transits to
another state with rate µ2 to start a new route request
message sending phase. This procedure is continued
till the predefined number of attacks (m) is occurred.
After happening m attacks in the network by a specific
intermediate node, the IDS detects the attack and the
sequence finishes.

Variable M in the CTMC shown in Fig. 1
represents the number of the states of this CTMC
(|S|). This variable is related to the number of the
attacks which should be done by a single intermediate
node to trigger IDS to detect the attack. As can
be seen in Fig. 1, this variable is computed as
|S| = M = 2 + 1 + 2m = 1 + 2(m+ 1) in which the last
state, state M, is an absorbing state. In the CTMC
proposed for the black-hole attack, there is only one
absorbing state (|A| = 1), but the CTMC definitely
reaches this state if it transits from state 2 to state 4
(occurring the first attack in the network). As an
example, for an IDS which wishes to detect the attack
after 3 times of attack occurrences (m = 3), we have
|S| = M = 9 and |A| = 1. Increasing the number of
attacks increases the number of states in the proposed
CTMC. It should be noted that although the number
of intermediate nodes does not influence the number
of states directly, it highly influences the final result
obtained from analyzing the proposed CTMC since it
affects the value of both probabilities p1 and p2. The
generator matrix Q of the CTMC shown in Fig. 1 can
be written as Eq. 8.

Q =



1 2 3 4 · · · M

1 −λ1 0 λ1 0 · · · 0
2 0 −λ2 0 λ2 · · · 0
3 p1µ1 p2µ1 −µ1 0 · · · 0
4 0 0 0 −µ2 · · · 0
...

...
...

...
...

. . .
...

M 0 0 0 0 · · · 0


(8)

Using this matrix and applying Eq. 1, the transient
state probability vector of the proposed CTMC can be
computed when the initial probability vector is assumed
as P0 = (p1, p2, 0, · · · , 0). Moreover, the cumulative state
probability vector can be computed using Eq. 3 and
Eq. 4. The matrix QN discussed in Subsection 3.1 can

also be achieved by removing both row and column M
from the matrix Q shown in Eq. 8. Afterwards, the mean
time to absorption (MTTA) of the proposed CTMC
which represents the expected time required to detect
an attack by IDS can be calculated by applying Eq. 7.
MTTA is a helpful measure in our study to estimate
the time to detect an attack by the IDS which can
be used in analyzing the IDS, and its sensitivity to
other parameters of the system such as number of the
intermediate nodes, number of the attacks which should
be done by a single node to be able to detect an attack in
the network, message sending and receiving rates and so
forth. In addition to the measure MTTA, the probability
of occurring k attacks in the network in time t, where
0 ≤ k ≤ m, can be computed by analyzing the proposed
CTMC.

5.2 The Second Proposed CTMC

Modeling a gray-hole attack using CTMCs is a little
difficult compared to modeling a black-hole attack
because of some differences existing between these
two types of attacks. The differences are discussed in
assumptions mentioned in Section 4, but in the following,
two important differences are noted clearly.

• The intermediate node which attacked the first
route request message may or may not attack
the next route request messages in the gray-hole
attack. Please remember that in the black-hole
attack, the first attacker attacks all other route
request messages, definitely. Therefore, there is a
possibility of safely delivering next route request
messages after the first attack by the destination
which is ignored in the first CTMC shown in Fig. 1.

• In the gray-hole attack, the attackers belong to
the pool of all intermediate nodes, and they are
randomly selected from this pool. The second
attacker may be different from the first attacker
and the third attacker may be different from
both the first and second attackers. Although the
node which attacked before for some times is
most tending to attack for the next times, the
other nodes have the chance to attack the next
route request messages, as well. It is different
from the situation considered in the black-hole
attack in which the attacker is fixed, and the node
that attacked for the first time attacks the next
messages in the next times surely.

In order to satisfy the specific requirements of
a gray-hole attack, the CTMC shown in Fig. 2 is
presented. State 1 and state 2 represent the initial states
of the network such as the corresponding states of
the first proposed CTMC. The route request message
sent by the source node is either delivered by the
destination node or attacked by one of the intermediate
nodes in the network. If the message is delivered by
the destination, the proposed CTMC transits from
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Figure 2 The proposed CTMC model for a gray-hole
attack

state 1 to state 3; otherwise, it transits from state 2
to state 4. Probabilities p1 and p2, and all rates
are the same as corresponding variables defined for
the first proposed CTMC. As mentioned earlier, the
probabilities p1 and p2 are functions of the number of
the intermediate nodes in the network (N). The only
condition for these probabilities is that increasing the
number of the intermediate nodes should increase the
attack probability (p2), and decrease the safe delivering
probability (p1) proportionally.

If the message is safely delivered by the destination
node, it is replied by a route reply message with
rate µ1. Since the next route request message will be
safely delivered by the destination with probability p1
and attacked by one of the intermediate nodes with
probability p2, the transition from state 3 to state 1 and
state 2 is done with rates p1µ1 and p2µ1, respectively.
If the first route request message is attacked by an
intermediate node, the source node would receive a fake
reply from the attacker. Therefore, the CTMC transits
from state 4 to state 5 and state 6 with rates p1µ2 and
p2µ2, respectively, to show that the next route request
message can also be safely delivered by the destination
node (state 5) or attacked by an intermediate node
(state 6).

The aforementioned procedure is repeated among
states 5, 7, and 6 which is basically similar to the
procedure among states 1, 3, and 2. State 6 shows that
the second attack is done by one of the intermediate
nodes existing in the network. Transition from state 6
to state 8 represents sending the route request message
from the source node which is delivered by one the
intermediate nodes (the attacker). State 8 of the CTMC

shown in Fig. 2 is very similar to the state 4 in which
the attacker sends a fake route reply message to the
source node and the procedure continues with applying
probabilities p1 and p2 to the next route request message
after the second attack. However, there is a subtle point
here in that two different groups of intermediate nodes
exist in state 8 unlike the intermediate nodes existing
in state 4. In state 4, all of the intermediate nodes are
the same in the viewpoint of attack at which none of
them has attacked the messages, but in state 8 there are
two groups of intermediate nodes; group 1) the pool of
N − 1 nodes which have not attacked the messages yet,
and group 2) a node which has attacked for only one
time. Therefore, the second attacker can be selected from
either group 1 or group 2.

Let fi denote the probability of attacking an
intermediate node from the pool of the nodes which
have attacked for i times. Therefore, in state 8, if a new
intermediate node from the pool of N − 1 nodes attacks
the route request message as the second attack, CTMC
transits from state 8 to state 9 or state 10; otherwise,
it transits to state 11 or state 12. The selection is done
probabilistically based on f0, f1, p1 and p2. Therefore,
states 9 and 10 represent the situation in which two
different intermediate nodes have attacked two route
request messages separately, and states 11 and 12
represent the situation in which a given intermediate
node has attacked two route request messages. It turns
out that in all states 9 to 12, two attacks have been
happened, but the difference is that in state 9 and
state 10, the attacks have been done by two different
intermediate nodes, and in state 11 and state 12, two
attacks have been done by the same node.

The states 9, 13, and 10, and also the states 11,
15, and 12 are very similar to the states 5, 7, and 6
(or the states 1, 3, and 2). In state 14 and state 16,
the third attack has been done and the fake route
reply message is sent to the source node. In these
cases, potential attackers should be considered before
being able to properly transit to the other states with
appropriate rates. In state 14, one possibility is attacking
the message by one of the intermediate nodes existing in
the pool of N − 2 nodes which have not attacked yet. In
this case, the CTMC transits from state 14 to the next
states by two leftmost transitions shown in Fig. 2 with
rates f0p1µ2 and f0p2µ2. Another possibility is attacking
the message by one of the previous attackers. This
case differs from the aforementioned cases in state 14.
Since there is an intermediate node which attacked the
previous messages for two times in state 14, the proposed
CTMC transits from state 14 to the next states by two
rightmost transitions with rates f1p1µ2 and f1p2µ2 to
show that one of the intermediate nodes has attacked for
two times. Similarly, we can discuss about state 16, in
which the message is attacked by one of the intermediate
nodes existing in the pool of N − 1 nodes which have not
attacked yet. In this situation, the CTMC transits from
state 16 to the next states by two leftmost transitions
with rates f0p1µ2 and f0p2µ2. The other possibility is
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attacking the message by the previous attacker which has
been attacked for two times. In this case, the proposed
CTMC transits from state 16 to the next states by two
rightmost transitions with rates f2p1µ2 and f2p2µ2.

This procedure is continued till all possible states of
the CTMC are constructed. After generating all the state
space, applying Eq. 1 and Eq. 2 to the resulted CTMC,
the transient and steady state probability vectors of the
CTMC can be computed, respectively. Moreover, the
measure MTTA can be estimated by applying Eq. 7.
According to the combinations rules, the number of the
states of the CTMC shown in Fig. 2 is computed by
Eq. 9.

|S| = 4

(
N +m− 1

N

)
+

(
N +m− 2

N − 1

)
. (9)

Moreover, the number of the absorbing states (|A|)
in this CTMC is computed using Eq. 10.

|A| =
(
N +m− 2

N − 1

)
. (10)

As can be seen in Eq. 9 and Eq. 10, the number of
all states (|S|) and absorbing states (|A|) in the second
CTMC depend on both the number of intermediate
nodes and the number of attacks which should be done
by one node to trigger the IDS to detect the attack.

Since the number of attacks done by each of the
intermediate nodes should be kept in each state, it is
not easy to depict the overall CTMC for the gray-hole
attack in general. In this case, each of the states with the
potential attackers in that state should be considered to
be able to draw the subsequent transitions and states.
The CTMC shown in Fig. 2 represents a general case for
only a few number of levels of the states and transitions.
If we set the parameter m to 1, the state 5 will turn into
an absorbing state, and the CTMC will contain only 5
states (|S| = 5 and |A| = 1). In this case, increasing the
number of the intermediate nodes (N) does not influence
the number of the states, because attacking only one
intermediate node causes the net to be halted.

As another example, if we assume N = 1 and m =
2, the state 9 should be considered as an absorbing
state. In this case, the number of the states is 9 which
one of them is absorbing state (|S| = 9 and |A| = 1).
When the values of the parameters N and m are set to
large numbers, the number of the states in the proposed
CTMC and its absorbing states become more than
can be solved by hand. As an example, if we set the
parameters N and m to 20 and 5, respectively, then the
number of all and absorbing states in the state space
will be |S| = 51, 359 and |A| = 8, 855 according to Eq. 9
and Eq. 10, respectively. It should be noted that these
values for parameters N and m are conventional values
in the real networks and IDSs. In order to overcome this
shortcoming, we need an automatic way to generate the
CTMC presented in Fig. 2. To fulfill this requirement,
SRNs are used in the next section to automatically
generate the proposed CTMCs, and compute the MTTA
of the CTMCs and other interesting measures.
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Figure 3 The proposed SRN model for a black-hole attack

6 The Proposed SRNs

The proposed SRNs for black-hole and gray-hole attacks
similarly model sending a message from a source node
to a destination node, and safe forwarding or dropping
the messages. The proposed models take the same
assumptions mentioned in Section 4 into consideration,
and try to find the mean time to attack detection by
analyzing the models. Moreover, other useful metrics
are measured using transient analysis of the proposed
SRNs. The most important advantage of the SRN
models presented in this section is that the models can
handle large numbers of intermediate nodes and different
numbers of attacks. As discussed in Section 5, drawing
and solving a CTMC modeling an IDS which deals
with many intermediate nodes (large values of N) and
detects a large number of attacks (large values of m) is
almost impossible. However, the proposed SRNs can be
easily used to automatically generate the corresponding
CTMCs of the black-hole and gray-hole attacks, and
manage different values of the parameters N and m.

6.1 The First Proposed SRN

The first SRN modeling the black-hole attack is shown
in Fig. 3. Input parameters of the model are: (1) Number
of the intermediate nodes (N), (2) sending rate of route
request message delivered by the destination (λ1), (3)
sending rate of route request message delivered by an
intermediate node (λ2), (4) sending rate of real route
reply message (µ1), and (5) sending rate of fake route
reply message (µ2). It should be mentioned that the
times assigned to all timed transitions follow exponential
distribution as mentioned in Assumption 3.

The aim of the SRN shown in Fig. 3 is the same
as the CTMC presented in Fig. 1 which is modeling
the route request message sending process from a single
specific source to a given destination to find a route
between the source and destination. There are some
intermediate nodes in the network which may disturb
this procedure by sending fake replies to the source
node. Places PSrc and PDest represent the source and
destination nodes, respectively. There are two immediate
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transitions, t1 and t2, connected to place PSrc which
show the attack occurrence process. The probabilities
p1 and p2 associated to immediate transitions t1 and
t2, respectively, are the same as probabilities used in
the CTMC shown in Fig. 1. As mentioned earlier,
these probabilities depend on the parameter N at which
increasing the value of N increases the probability p2
and decreases p1. Firing transition t1 moves the net to
the part related to successful delivering of route request
message by the destination node, and firing transition
t2 moves the net to the attack occurrence and detection
part. If immediate transition t1 fires, a token is removed
from place PSrc and a token is deposited into place
PNoAtt to show that the route request message will be
safely delivered by the destination. Existing a token
in place PNoAtt enables timed transition TSend1 which
represents the route request message sending process
from the source node to the destination. Upon firing
transition TSend1 with rate λ1, a token is removed
from place PNoAtt and deposited into place PDest which
enables timed transition TRet. Upon firing transition
TRet with rate µ1, a token is removed from place PDest
and put in place PSrc representing a real route reply
message has been sent to the source, and it is ready to
start another route request session.

However, firing immediate transition t2, a token is
deposited into place PAtt which models occurrence of an
attack in the network. Existence of a token in place PAtt
enables timed transition TSend2 which models sending a
route request message to the intermediate nodes. Upon
firing timed transition TSend2 with rate λ2, a token
is removed from place PAtt and deposited into place
PAttOcc. Having a token in place PAttOcc causes the
timed transition TAtt 1 to be enabled, since there are N
tokens in place PAtt 0, and no tokens in places PAtt i,
1 ≤ i ≤ m− 1, in the beginning. Place PAtt 0 represents
the intermediate nodes existing in the network which
have not attacked yet. Firing transition TAtt 1, one token
from place PAttOcc together with another token from
place PAtt 0 is removed, and a token is deposited into
both places PAtt 1 and PSrc. Existing a token in place
PAtt 1 shows that an intermediate node has already
attacked and sent a fake route reply message to the
source node. As mentioned earlier, after attacking one
intermediate node in the black-hole attack, the same
node will certainly attack other route request messages
sent by the source node in next steps. Therefore, in
the first route request message after the first attack,
transition t1 cannot fire, and t2 is the only enabled
transition when there is a token in place PSrc. This
is modeled using the guard function g1 which prevents
transition t1 from firing when there is a token in at
least one of the places PAtt i, 1 ≤ i ≤ m− 1. This guard
function is described in Table 1.

Having one token in place PAttOcc, N − 1 tokens
in place PAtt 0, and one token in place PAtt 1 in the
second attack, both timed transitions TAtt 1 and TAtt 2

are enabled. To avoid transition TAtt 1 from firing and
provide the firing capability for transition TAtt 2 in this

Table 1 Guard functions of the SRN model shown in
Fig. 3

Guard Function Value

gi 1 if ∀ji≤j≤m[#PAtt j ] = 0
1 ≤ i ≤ m− 1 0 otherwise

situation, the guard function g1 is also associated with
transition TAtt 1. Hence, existing a token in place PAtt 1

prevents transition TAtt 1 to fire. Firing transition TAtt 2,
one token is removed from all its input places and added
to all its output places. Therefore, the source node can
send another route request message after the second
attack. In the third attack, we should prevent transition
TAtt 2 from firing to provide the firing capability for the
subsequent timed transition named TAtt 3 which is not
depicted in Fig. 3. This is modeled by guard function
g2 described in Table 1 which prevents transition TAtt 2

from firing when there is a token in at least one of
places PAtt i, 2 ≤ i ≤ m. This procedure is continued till
the number of attacks reaches the predefined threshold
named m. In this case, transition TAtt m fires and puts
a token in place PAtt m. Since the aim of the model
is detecting m attacks in the network, the termination
condition can be easily considered as existing a token in
place PAtt m. To do this, we do not return token to place
PSrc which causes a halt in the net.

Constructing the extended reachability graph of
the SRN shown in Fig. 3 and specifying its rates
and probabilities, the underlying Markov chain of this
SRN model can be obtained which is the same as
CTMC shown in Fig. 1. The interesting outputs in the
proposed SRN are also the same as outputs introduced
for the first proposed CTMC which are basically
MTTA and transient state probability vector of the
underlying Markov chain. It is worthwhile to mention
that the probabilities are defined on places in the SRN
context which are finally translated to the corresponding
probabilities and rewards in the underlying Markov
chain by SRN supporting tools.

6.2 The Second Proposed SRN

The second SRN is shown in Fig. 4. In this SRN, a
gray-hole attack is modeled at which an attacker may
or may not attack the next route request messages after
the first attack. To model this type of attacks, timed
transitions TAtt i, 1 ≤ i ≤ m of the first SRN are replaced
with immediate transitions tAtt i, 1 ≤ i ≤ m, and two
new components named PRet and TRet2 are added to
the net. Moreover, the guard functions and probabilities
associated with some of the transitions are changed in
the second SRN to be able to model the gray-hole attack.

The probability functions associated with transitions
t1 and t2 of the second SRN are the same as functions
defined for the first proposed SRN. Therefore, the first
attack can be done as it has been described for the
SRN shown in Fig. 3. In this case, if an attack occurred,
transition t2 fires and removes a token from place PSrc
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Figure 4 The proposed SRN model for a gray-hole attack

Table 2 Probability functions of transitions tAtt i,
1 ≤ i ≤ m shown in the SRN model of Fig. 4

Probability Function

fi
αi·[#PAtt i]∑m−1

j=0 αj ·[#PAtt j ]

0 ≤ i ≤ m− 1 αj ∈ R, 0 ≤ j ≤ m− 1

and deposits a token in place PAtt. Existing a token in
place PAtt enables timed transition TSend2. Upon firing
transition TSend2, a token is removed from place PAtt and
put in place PAttOcc. Existing a token in place PAttOcc
and N tokens in place PAtt 0, immediate transition tAtt 1

fires. Firing this transition, a token is removed from
both places PAttOcc and PAtt 0, and added to both
places PRet and PAtt 1. Existing a token in place PRet,
timed transition TRet2 is enabled. Once transition TRet2
fires, a token is removed from place PRet and deposited
into place PSrc. After the first attack, the source node
sends a route request message which can be either safely
received by the destination or attacked by one of the
intermediate nodes according to the mechanism defined
in the gray-hole attack. Therefore, in the case of attack,
one of the intermediate nodes existing in the network
can attack the route request message, and pretend itself
as the destination node. This intermediate node can be
assumed as one of the nodes which have not yet attacked
(N − 1 tokens inside place PAtt 0) or the node that has
attacked for the first time (1 token inside place PAtt 1).
Hence, having a token in place PAttOcc, N − 1 tokens in
place PAtt 0 and a token in place PAtt 1 in the second
attack, both immediate transitions tAtt 1 and tAtt 2 are
enabled, and they can fire. The probability functions
associated with enabled transitions tAtt i, 1 ≤ i ≤ m are
described in Table 2. For example, in situation that two
transitions tAtt 1 and tAtt 2 are enabled, the probabilities
f0 and f1 can be computed as Eq. 11 and Eq. 12,
respectively.

f0 =
α0 · [#PAtt 0]

α0 · [#PAtt 0] + α1 · [#PAtt 1]
(11)

f1 =
α1 · [#PAtt 1]

α0 · [#PAtt 0] + α1 · [#PAtt 1]
(12)

where α0 and α1 are real numbers as mentioned in
Table 2.

Eventually, after firing tAtt 1 or tAtt 2, a token is
deposited into place PRet, and then, the procedure
continues. In the next route request messages, each of
the intermediate nodes can also attack the message
and pretend itself as the destination node. Thus, all
tokens existing in places PAtt i, 0 ≤ i ≤ m− 1 can be
considered as potential attackers. In situation in which
all transitions tAtt i, 1 ≤ i ≤ m are enabled, one of them
fires immediately based on the probabilities assigned to
each of them. As can be seen in Table 2, the probability
functions can easily handle the situations in which
only one or more transitions are enabled. Assigning
reasonable values for αj , 0 ≤ j ≤ m− 1, we can model
more realistic systems. For example, if we set α0 = 1,
α1 = 2, and α2 = 4 for an SRN model with m = 3, it
means that a node which has attacked for only one time
will attack for the second time with the probability of
two times greater than a node which have not attacked
yet. Also, the probability of third attack by a given node
is two and four times greater than the second and first
attacks of a single node, respectively. In order to force
the net to halt when the mth attack is done, the guard
function g is associated with both immediate transitions
t1 and t2. This guard function is shown in Table 3.

The SRN model presented in Fig. 4 generates a
Markov chain such as one described in Subsection 5.2.
This SRN can handle large values for both parameters
N and m. Therefore, it can be used to model and
evaluate most realistic situations in the network. After
modeling the network and setting the appropriate values
for input parameters of the proposed SRN for the gray-
hole attack, interesting measures such as MTTA and
transient probability vector of the underlying Markov
chain can be computed.

7 Numerical Results

Numerical examples are presented in this section to
show the applicability of the proposed CTMCs and
SRNs to compute the mean time to attack detection by
an IDS in WANETs. In this paper, symbolic hierarchical
automated reliability and performance evaluator
(SHARPE) [51] and stochastic Petri net package (SPNP)
[52] are used to solve the numerical examples of the
proposed CTMCs and SRNs, respectively. Using these
tools, MTTA in both CTMC and SRN models, and
transient and steady state probabilities of being in
each of the states of the proposed CTMCs and the
states of the underlying Markov chains of the proposed
SRNs can be computed. To achieve this and compare



12 R. Entezari-Maleki, et al.

Table 3 Guard function of the SRN model shown in Fig. 4

Guard Function Value

g 1 if [#PAtt m] = 0
0 otherwise

the results obtained from different situations, some
scenarios are designed and implemented in SHARPE
and SPNP. These scenarios are discussed in the following
subsections with details.

7.1 Scenario 1: Black-hole Attack

In this scenario, black-hole attack is investigated, and
two different measures are computed based on the
experiments. The first measure is mean time to attack
detection which is equivalent to MTTA in both CTMC
and SRN models. To do this, a network with N
intermediate nodes which contains a single source and
a single destination is assumed. The aim of the IDS in
this scenario is detecting a black-hole attack when m
consecutive attacks are done by a given intermediate
node. The parameters λ1 and λ2 are set to 10 and 20,
respectively, but generally, any value can be assigned to
them. The only important issue is their proportion which
should be set to an appropriate value. For example, we
assume that the time required for delivering a route
request message to the destination node is two times
greater than the time required for delivering the message
by one of the intermediate nodes in average. Moreover,
it is supposed that λ1=µ1 and λ2=µ2, because both the
request and reply messages transfer the same distance to
be delivered by their destinations.

Figure 5 shows the mean time to attack detection for
m ∈ {1, 2, · · · , 5}. The horizontal axis of the plot shown
in Fig. 5 represents the number of the intermediate
nodes which varies from 10 to 50, and the vertical axis
represents the mean time to attack detection. As can
be seen in Fig. 5, the mean time to attack detection
decreases when the number of intermediate nodes in the
network increases (parameter N gets large numbers). It
turns out that the value of parameter N influences on
the probabilities p1 and p2 which affects the MTTA
in both CTMC and SRN models. It is worthwhile to
mention that probabilities p1 and p2 are set to 1− N

100

and N
100 , respectively. The bigger value for parameter

N , the higher probability for attack occurrence will
be resulted, and consequently, the lower mean time to
attack detection is obtained. In addition to investigate
the impact of parameter N on mean time to attack
detection, the impact of parameter m can also be
observed in Fig. 5. As it can be concluded from Fig. 5,
the mean time to attack detection increases when the
number of the attacks which is needed to be done by
a single node to trigger the IDS to detect the attack
(parameter m) increases. For example, the mean times to
attack detection in a network with N = 50 intermediate
nodes are about 0.3 and 0.7 when m = 1 and m = 5,
respectively. The reason behind this result is that more

Figure 5 The mean time to attack detection in black-hole
attack for different values of parameters N and m

Figure 6 The probability of happening 1, 2, and 3 attacks
in black-hole attack when N = 10 and m = 3

time is required for a single attacker to attack for m
times when the parameter m is set to a bigger value.

Figure 6 shows the probability of happening 1, 2, and
3 attacks in a black-hole attack when the parameters N
and m are set to 10 and 3, respectively. Since the mean
time to attack detection for this setting is about 2.1, the
horizontal axis showing the time variable is varied from
0 to 5 with incremental step 0.2. As can be seen in Fig. 6,
the probabilities of occurring 1 and 2 attacks decrease
when the time increases. Instead, the probability of
occurring 3 attacks which finally results in absorbing the
proposed CTMC and SRN models, increases when the
time increases. It should be mentioned that this measure
can be computed in both CTMC and SRN models
using SHARPE and SPNP tools directly, but generally,
computing this measure is very straightforward in SRN
using SPNP. In SRN case, it suffices to compute the
probability of existence a token in places PAtt i when we
wish to estimate the probability of happening i attacks
in the network.

7.2 Scenario 2: Gray-hole Attack

In the scenario related to the gray-hole attack, different
experiments are studied. In the first experiment, the
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Figure 7 The mean time to attack detection in gray-hole
attack for different values of parameters N and m
where αi=1, ∀i, 0 ≤ i ≤ m− 1.

mean time to attack detection for different values of
parameter N and m ∈ {1, 2, · · · , 5} is computed as same
as the experiment for black-hole attack (Fig. 5). The
result of this experiment is summarized in Fig. 7. In
this experiment, all parameters αi for 0 ≤ i ≤ m− 1 are
set to 1. As a result, the probability of attacking an
intermediate node from the pool of the nodes which
have not attacked yet is equal to the probability of
attacking a node which has been attacked for i times
where 1 ≤ i ≤ m− 1. The values obtained for the mean
time to attack detection in this experiment are very
similar to the values shown in Fig. 5 for the black-
hole attack in which the mean time to attack detection
decreases when the number of intermediate nodes (N)
increases. Moreover, this measure increases when the
number of the attacks which is needed to be done by
an intermediate node to trigger the IDS to detect the
attack (parameter m) increases. Similar to the scenario
related to the black-hole attack, in this experiment, the
probabilities p1 and p2 are also set to 1− N

100 and N
100 ,

respectively.

In the second and third experiments of the gray-hole
attack, the parameter m is assumed to be a fixed number
(m = 3) and the effects of probabilities p1 and p2, and
parameters αi to the mean time to attack detection are
investigated. Figure 8 shows the mean time to attack
detection for different number of intermediate nodes and
different values of probabilities p1 and p2. As can be
seen in Fig. 8, the values set for probabilities p1 and
p2 are constant numbers, and they do not depend on
the parameter N . Decreasing the value of probability p1
(increasing the probability p2), the mean time to attack
detection decreases, because the probability of occurring
an attack in the network by one of the intermediate
nodes increases. Moreover, in this situation, increasing
the number of the intermediate nodes in the network
(N) increases the mean time to attack detection. This is
against to the result shown in Fig. 7. The reason behind
this result is that setting bigger values for parameter N
when fixed probabilities are set for p1 and p2 implies the
bigger values for probabilities fi for smaller indexes. In

Figure 8 The mean time to attack detection in gray-hole
attack for different values of parameter N where
m = 3 and constant values are considered for
probabilities p1 and p2

other words, the probability of attacking a node with
low number of attacks increases when the parameter N
increases according to Table 2 which leads to the late
absorption of the proposed CTMC and SRN models for
gray-hole attack. It should be noted that in this case, the
parameters α1, α2 and α3 are 1, 2 and 4, respectively
(please remember that m = 3 in Fig. 8).

Figure 9 shows the mean time to attack detection
for different number of intermediate nodes and various
values of parameter αi, 0 ≤ i ≤ m− 1, where m = 3.
As shown in Fig. 9, four different combinations for
parameters αi are considered where α0 = 1, α1 = i, α2 =
i2 and i ∈ {2, 3, 4, 5}. In this experiment, probabilities
p1 and p2 are also set to 1− N

100 and N
100 , respectively.

Similar to the result shown in Fig. 7, the mean time
to attack detection decreases when the number of
intermediate nodes increases. It can be concluded from
Fig. 9 that assigning bigger values for α1 and α2 leads to
the lower mean time to attack detection. For example,
if we set α0 = 1, α1 = 5 and α2 = 25, it means that a
node that has attacked for only one time will attack for
the second time with the probability of 5 times greater
than a node which have not attacked yet. Moreover, the
probability of third attack by a given node is 5 and 25
times greater than the second and first attacks of a single
node, respectively. This setting provides higher chance
for a node that has attacked for one time to attack for
the second time compared to the setting in which α1 = 4
and α2 = 16.

Figure 10 shows the probability of happening 1, 2,
and 3 attacks in a gray-hole attack when the parameters
N and m are set to 10 and 3, respectively. In addition,
in this experiment, probabilities p1 and p2 are 1− N

100

and N
100 , respectively, and α0 = 1, α1 = 2, α2 = 4. Since

the mean time to attack detection for this setting is
about 13, the horizontal axis showing the time variable
is varied from 0 to 30 with incremental step 1. As can
be seen in Fig. 10, the probabilities of occurring 1 and
2 attacks start from zero and increase to reach a fixed
value. These fixed values for occurring 1 and 2 attacks
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Figure 9 The mean time to attack detection in gray-hole
attack for different values of parameter N where
m = 3 and different values for αi, 0 ≤ i ≤ m− 1
are considered

Figure 10 The probability of happening 1, 2, and 3
attacks in gray-hole attack when N = 10 and
m = 3

are 0.90 and 0.52, respectively. However, the probability
of occurring 3 attacks which finally leads to absorption
in both CTMC and SRN models, increases to get 1 by
increasing the time.

7.3 Scenario 3: Comparing Black-hole and
Gray-hole Attacks

In this scenario, the experiments done for gray-hole and
black-hole attacks are considered together. Figure 11
shows the mean time to attack detection for one black-
hole and two gray-hole attacks. In all three experiments
shown in Fig. 11, the parameter m is 3 and the number of
intermediate nodes vary from 10 to 50. This figure shows
the third case of the experiment shown in Fig. 5 named
Black hole, the third case of the experiment shown in
Fig. 7 named Gray hole 1, and the first case of the
experiment shown in Fig. 9 (α0 = 1, α1 = 5, α2 = 25)
named Gray hole 2 in a single plot. As can be seen in
Fig. 11, the mean time to attack detection in black-hole
attack is less than the related measure in both gray-hole
attacks. This result is reasonable because in a black-hole
attack, the attacker which has been attacked for the first

Figure 11 The mean time to attack detection in
gray-hole and black-hole attacks where m = 3 and
different values for parameter N are considered

time will attack the other route request messages in the
future, but in the gray-hole attack there is a possibility
of safely delivering the route request message to the
destination node even after the first attack. Therefore,
in both CTMC and SRN models, reaching the absorbing
state(s) happens rapidly in black-hole attack compared
to the both gray-hole attacks.

In addition to comparing black-hole and gray-hole
attacks, two different settings in the case of gray-hole
attack can be compared using the plot shown in Fig. 11.
As can be concluded from Fig. 11 (and considering
Fig. 9), when it is assigned a higher attack probability
to the nodes which have attacked already compared to
the nodes which have not attacked yet, more precisely
αi+1 > αi, ∀i, 0 ≤ i ≤ m− 2, the mean time to attack
detection becomes a small value, and converges to the
related measure in the black-hole attack.

8 Conclusions and Future Work

Wireless network is always a target of different passive
and active attacks which may harm the security of the
network. Black-hole and gray-hole are two important
active attacks which try to scratch the availability
attribute of the security in this kind of networks. To
detect such attacks, IDS can be used as a very effective
mechanism. In order to evaluate the performance of the
IDSs, we model IDSs within WANETs using CTMCs
and SRNs. The mean time to attack detection and
probability of happening i attacks in the network at time
t are two important measures which can be assessed
using our proposed models. Numerical examples are used
to show different settings of IDSs and their effectiveness
where the number of intermediate nodes and the number
of attacks in the network are taken into account.

There are some open problems in this area which
are interesting to solve. The first important issue is
improving the models to handle different number of
attacks in a single SRN (and consequently a CTMC).
In current SRN models, the number of attacks which



IDS Modeling and Evaluation in WANETs against Black/Gray-hole Attacks using Stochastic Models 15

should be done by a single node to trigger the IDS to
detect the attack is modeled by a sequence of places
and transitions in both black-hole and gray-hole attacks.
The difficulty with this method is the scalability issue
of the proposed models. If the number of attacks is
changed, the whole SRN model should be changed to
handle the new value. In the proposed SRN models, the
number of intermediate nodes are shown with tokens
inside a place which makes the model more scalable.
One possible solution for improving the scalability of
the models in the viewpoint of the number of attacks
is modeling the attacks with tokens inside the net as
same as the intermediate nodes. Using this mechanism,
the models can handle different numbers of intermediate
nodes and attacks by a single structure.

The second important subject which can be
considered as a topic of another related research is
modeling several IDSs together, and then, relating the
models to each other to reflect the cooperation among
the IDSs. Existing several IDSs in a network which
cooperate with each other to find the attacker can also
be modeled using SRNs. In this case, the mean time to
attack detection will decrease because IDSs can inform
each other from the status of each of the intermediate
nodes, and finally, detect the attack faster. Moreover,
using high level extensions of Petri nets and activity
networks such as colored extensions, it is possible to
recognize the attacker from the pool of intermediate
nodes.
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