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Abstract

In this paper, Stochastic Activity Networks (SANs) are exploited to model and evaluate
the power consumption and performance of virtualized servers in cloud computing. The
proposed SAN models the physical servers in three different power consumption and provi-
sioning delay modes, switching the status of the servers according to the workload of the
corresponding cluster if required. The Dynamic Voltage and Frequency Scaling (DVFS)
technique is considered in the proposed model for dynamically controlling the supply volt-
age and clock frequency of CPUs. Thus, Virtual Machines (VMs) on top a physical server
can be divided into several power consumption and processing speed groups. According to
the workload of the system and the number of waiting requests, the proposed SAN decides
to scale up or down the VMs, so it helps the overall system to save power when it still
preserves satisfiable performance. After modeling the servers and VMs using SAN formal-
ism, some performance related measures together with the power consumption metric are
defined on the proposed model. The results obtained by solving the proposed SAN model
configured with real data show the prominence of the proposed model in comparison with
some baselines and previously proposed models.

Keywords: Cloud computing, virtualization, power consumption, performance modeling,
stochastic activity network.
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MC Markov Chain
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SLA Service Level Agreement
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SSDN Stochastic Service Decision Net
VM Virtual Machines
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1. Introduction

Cloud Computing has attracted increasing attention from both researchers and prac-
titioners as a new paradigm of information technology, which principles have numerous
applications [12, 36]. According to the definition by National Institute of Standards and
Technology (NIST), “cloud computing is a model for enabling convenient, and on-demand
network access to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released with min-
imal management effort or service provider interaction” [4]. Cloud computing includes
three major delivery models: Software-as-a-Service (SaaS) in which the consumer is able to
use an application to meet specific needs, Platform-as-a-Service (PaaS) which provides the
consumer with a hosting environment for application development, and Infrastructure-as-a-
Service (IaaS) in which the consumer has a greater access to computing resources including
processing power, storage, networking components and middleware [4, 36]. In this paper,
we focus on IaaS clouds. It is essential in all kinds of delivery models that clients have
guarantees from providers on service delivery. Typically, these guarantees are provided by
Service Level Agreements (SLAs) between cloud service providers and clients [5, 12, 34]. The
SLAs contain a number of good measurable objectives such as power consumption, delivered
performance, storage space, availability, security, and the penalties for the supplier for every
unit of order that he is unable to satisfy.

Recently, virtualization has enabled the abstraction of computing resources such that
a physical server is able to function as a set of multiple logical Virtual Machines (VMs)
[7, 12, 30]. Most of the modern cloud data centers are equipped with virtualized clusters,
running hypervisors on virtualization-supported hardware. Virtualization in cloud data
centers allows performance isolation, optimization of power consumption, fault tolerance
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and improved system management with seamless VM [7]. Alongside with virtualization,
power consumption is utmost important in modern data center and enterprise environments
since it directly impacts both the deployment (peak power delivery capacity) and operational
costs (power supply and cooling) [13, 16]. In 2013, US data centers consumed an estimated
91 billion kilowatt-hours of electricity, equivalent to the annual output of 34 large (500
megawatt) coal-fired power plants [3]. Data center electricity consumption is projected to
increase to roughly 140 billion kilowatt-hours annually by 2020, the equivalent annual output
of 50 power plants, costing American businesses $13 billion annually in electricity bills and
emitting nearly 100 million metric tons of carbon pollution per year [3]. Therefore, among
the main challenges currently faced by most of data centers is the optimization of power
consumption of the virtualized data centers. Mechanisms such as grouping servers of a data
center into several power consumption pools, and moving servers among these pools if it
is required, may be applied [9, 10, 20, 21]. Another managing mechanism to reduce the
power consumption of a virtualized server is to adapt the server speed to the workload. By
applying Dynamic Voltage and Frequency Scaling (DVFS), unlike shutting down or sleeping
idle servers, a server runs at different factors of the peak service rate by scaling up or down
the processing speed of its CPUs [14, 33, 34]. DVFS is a commonly used technique to save
power on a wide range of computing systems from embedded, laptop and desktop systems
to high performance server-class systems [32].

In IaaS clouds, which provide users with virtualized computing resources over the net-
work, the need for methods to accurately evaluate the power consumption of the system when
different energy saving methods are applied is of utmost importance. In addition to assess the
power consumption of the system, a good modeling technique should be able to evaluate the
performance delivered to end-users to decide whether the SLA conditions of hosted user are
met or not. There are various ways to achieve this evaluation, namely measurement-based
evaluation, modeling with simulation, and analytical modeling [9, 10, 19]. Measurement-
based evaluation on cloud systems, and generally, on any complex and highly distributed
system, needs an extensive experimentation with different workloads and system configu-
rations, which may not be feasible due to the large network size, and time and budget
limitations. Modeling with simulation could be useful for such systems, but it may take
time to get dependable results because the model needs to be run several times to get an
average result. Moreover, to consider the impact of any modification in each input param-
eter, separate runs of the simulation model are required which makes the running times
more severe. Using analytical modeling in this context not only can help providers to assess
power consumption and performance related measures in different situations, but it can also
be useful in terms of budget and time constraints. To fulfill this requirement, an analytical
model based on Stochastic Activity Networks (SANs) [26, 28] is proposed in this paper to
evaluate the power consumption and performance related measures of virtualized servers of
a cluster in cloud computing environments.

The proposed SAN simultaneously models two techniques in different steps, namely
grouping servers in power consumption pools and DVFS technique, to save energy within
cloud data centers. The main contribution of the proposed model, which makes it different
from other related work presented in this context, can be summarized in three major cate-
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gories. (1) A more flexible analytical model based on SAN formalism is proposed to evaluate
both power consumption and performance measures of virtualized servers. Compared to the
previously presented models, the proposed stochastic model is scalable enough to model
large scale systems, and simultaneously, compute performance and power consumption esti-
mates. (2) The DVFS mechanism is modeled using SANs, which makes it possible to scale
up or down the speed of CPUs as needed. Therefore, not only the horizontal scaling of a
cloud system with increasing and decreasing the working VMs can be modeled using the
proposed SAN, but also the vertical scaling of VMs can be appropriately addressed in the
proposed model. (3) SANs are exploited in the body of an optimization problem to ap-
propriately change the power/speed mode of VMs according to the overall workload of the
corresponding cluster. The model presented in this paper uses the specific characteristics of
SANs and its capability to code inside input/output gates to scale up and down the speed of
CPUs according to the workload of the cluster. It allows to maintain the power consumption
of physical servers in an acceptable level while performance considerations are taken into
account.

The remaining of this paper is organized as follows. Section 2 presents the related work
done on analytical modeling of cloud and grid computing environments. In Section 3, the
formal definition of SANs and the background of structure and behavior of SAN models
are given. Section 4 presents the architecture of the system under study, and explains the
concept of DVFS. In Section 5, the proposed SAN model is described with details and
some interesting measures are introduced which can be assessed with the proposed model.
Section 6 presents numerical results obtained from solving the proposed SAN model and
compares the model with some baselines and another model previously proposed in this
area. Moreover, the sensitivity of output parameters of the proposed model to the variation
of some input parameters is analyzed in Section 6. Finally, Section 7 concludes the paper,
and presents some guidelines for future work that can be done in this research field.

2. Related Work

There have been proposed many analytical models to evaluate the power consumption,
performance, and dependability of distributed computing systems. These models usually
use various extensions of Markov Chains (MCs) and Petri Nets (PNs) for modeling and
evaluation of grid and cloud computing systems.

Ghosh et al. have presented a scalable stochastic analytical model for performance quan-
tification of an IaaS cloud [21]. They divided the physical machines into three different pools
according to their power consumption and provisioning delays. Since the performance of IaaS
clouds can be affected by a large set of parameters (e.g. workload, system charactristics and
management policies), a multi-level interacting sub-model solution was proposed in [21] to
overcome the intractability of traditional analytical models [21]. It has been shown that
the proposed model based on the interaction of sub-models is much more scalable than the
monolithic model. Ghosh et al. [22] have also proposed an analytical model based on MCs to
an end-to-end performability analysis of a cloud service where two Quality of Service (QoS)
metrics, service availability and provisioning response delays, are taken into account. The
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most important novelty of that approach was to reduce the complexity of analysis by divid-
ing the overall model into sub-models, and then, obtaining the overall solution by iterating
over individual sub-model solutions.

Bruneo et al. have proposed the Stochastic Reward Net (SRN)-based model for compar-
ing two different energy policies in green clouds [9, 10]. The SRN models presented in [9]
and [10] consider physical machines that are moved among three pools named sleep, idle
and running, and allocate VMs on top of those physical machines to the user requests.
Although these models can appropriately estimate the power consumption and performance
related measures of green clouds, they cannot handle the DVFS technique inside the SRN,
so they use some parameters obtained by analyzing the proposed model to compute the
power. The main drawback of those models is that no optimization method in assigning
user requests to the running VMs is supported which causes to run all VMs at their highest
speed. Both allocation mechanisms presented in [9] and [10] only assign requests to the
VMs without considering the number of running VMs and waiting requests. Longo et al.
have proposed an SRN model to evaluate the availability of large scale IaaS clouds in which
component failures are quite common [25]. The physical machine failures are considered to
happen when they migrate among three pools: cold, warm, and hot. These failures may
lead to occasional system downtime and eventual violation of SLAs on the cloud service
availability. To reduce the complexity of analysis and the solution time, interacting SRN
models are used and the interacting sub-models were solved with the fixed-point iteration
method.

Wang et al. have investigated the DVFS technique and proposed a Continuous-Time
Markov Decision Process (CTMDP) model to maximize the total profit of a cluster in a
cloud environment [34]. The total profit is defined as the total price earned from serving
the clients subtracted by the operation cost of the cluster. The total price depends on the
average request response time for each client, while the operation cost is related to the total
energy consumption. The CTMDP model only takes into account the price without paying
any attention to the performance requirements. Tian et al. have proposed a Stochastic
Service Decision Net (SSDN) to investigate energy-efficient speed scaling for web servers in
cloud computing [33]. The SSDN considers two different speeds for a web server, selected
according to the number of waiting tasks when a user submits a task to the system. The
process of accessing the cache, memory and disk was also modeled using the SSDN model in
[33]. Entezari-Maleki et al. have proposed three SRN models to jointly evaluate performance
and availability of a single grid resource, and their use to model an entire grid environment
[19]. Since the exact monolithic model of an entire grid shows state space explosion, two
approximate models were proposed to estimate the performability of a grid [19]. All SRN
models for a single grid resource and the models presented for an entire gird environment are
aimed to evaluate the performability without paying any attention to the power consump-
tion. Entezari-Maleki et al. have also proposed a Markov Reward Model (MRM) to model
and evaluate the performability of a single grid resource [17]. Although MRM presented
in [17] is a mathematical model for a grid resource, it ignores details of the resource such
as various numbers of processors inside a resource, failing the processors servicing grid and
local tasks, and energy consumption of processors which can be seen in real systems.
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Roohitavaf et al. have proposed a SAN model to evaluate the availability of virtual data
centers in cloud computing [29]. The proposed SAN was used to investigate the impact
of different managing mechanisms in the service availability of virtual data centers in IaaS
clouds. Entezari-Maleki et al. have proposed a SAN model for assessing the availability of a
grid environment composed of grid manager and many grid resources [18]. The SAN model
presented in [18] considers the grid manager to be composed of several servers, and grid
resources to be geographically distributed within the grid environment, trying to dispatch
the tasks submitted to the manager to the servers and resources. The impact of applying
different task scheduling policies to dispatch both grid and local tasks among grid resources
has been appropriately studied by the SAN model proposed in [18].

In addition to the papers referred above, which apply analytical models to evaluate wide
range of parameters in cloud and grid systems, there have been proposed some measurement-
based approaches to compute the power consumption and performance related measures on
distributed systems. As examples of these efforts in cloud computing, several work can be
mentioned [6, 7, 13, 16, 23]. Each of the methods has advantages and disadvantages. One
drawback of those approaches is that only a few of them evaluate both power consump-
tion and performance related measures. The research work that consider both, only do
experiment-based analysis and do not propose any analytical framework to be applied to a
wide range of similar systems. Moreover, the problem of switching servers among different
power consumption modes, and scaling up and down the speed of CPUs considering the
workload of the related cluster have not been tackled properly. Hence, we try to address the
aforementioned problems in this paper by proposing a SAN to model and compute the power
consumption and performance related measures of virtualized servers in an IaaS cloud.

3. Overview of SANs

Stochastic Activity Networks (SANs) are the stochastic generalization of Petri Nets
(PNs) generally defined for the modeling and analysis of distributed real-time systems
[26, 28]. SANs are more powerful and flexible than other stochastic extensions of PNs
such as Stochastic Petri Nets (SPNs) and Generalized Stochastic Petri Nets (GSPNs) [27].
If N denotes the set of natural numbers, an activity network can be formally defined as a
7-tuple (P, IA, TA, IG,OG, IR,OR) [27], where:

• P is a finite set of places,

• IA is a finite set of instantaneous activities,

• TA is a finite set of timed activities,

• IG is a finite set of input gates; each input gate has a finite number of inputs; to each
G ∈ IG with m inputs, it is associated a function fG : Nm → Nm, called the function
of G, and a predicate gG : Nm → {true, false}, called the enabling predicate of G,

• OG is a finite set of output gates; each output gate has a finite number of outputs; to
each G ∈ OG with m outputs, it is associated a function fG : Nm → Nm, called the
function of G,
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Figure 1: Graphical representation of SAN elements

• IR ⊆ P × {1, ..., |P |} × IG× (IA ∪ TA) is the input relation; IR satisfies the following
conditions:

– for any (P1, i, G, a) ∈ IR such that G has m inputs, i ≤ m,

– for any G ∈ IG with m inputs and i ∈ N , i ≤ m, there exist a ∈ (IA ∪ TA) and
P1 ∈ P such that (P1, i, G, a) ∈ IR,

– for any (P1, i, G1, a), (P1, j, G2, a) ∈ IR, i = j and G1 = G2,

• OR ⊆ (IA∪TA)×OG×{1, ..., |P |}×P is the output relation; OR satisfies the following
conditions:

– for any (a,G, i, P1) ∈ OR such that G has m outputs, i ≤ m,

– for any G ∈ OG with m outputs and i ∈ N , i ≤ m, there exist a ∈ (IA ∪ TA)
and P1 ∈ P such that (a,G, i, P1) ∈ OR,

– for any (a,G1, i, P1), (a,G2, j, P1) ∈ OR, i = j and G1 = G2.

In General, SANs are probabilistic extensions of activity networks that are equipped
by a set of activity time distribution functions, reactivation predicates and enabling rate
functions. The nature of the extension is similar to the one that constructs SPNs from
classical PNs. SANs were defined with the express purpose of facilitating unified perfor-
mance/dependability (performability) evaluation, as well as more traditional performance
and dependability evaluation [31]. More detailed information about SANs can be found in
[26, 27, 28, 31].

A SAN model can be graphically represented by simple elements such as circles, bars (or
rectangles) and triangles. Fig. 1 shows the graphical notations of SAN primitives. Modeling
and analysis with SANs need a software tool to help to construct and evaluate the model.
The original definition of SANs has been used as a modeling formalism in some modeling
tools, such as METASAN, UltraSAN and Möbius [31]. All of these tools are intended for the
evaluation of operational aspects (such as performance, dependability or performability) of
systems. In this paper, the Möbius tool [15] is used to construct and analyze the proposed
SAN model.
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4. System Description

Virtualization is an important enabling technology for many large data centers and cloud
computing environments. A cloud service provisions VMs with specific characteristics in
terms of number and frequency of CPU cores, memory, and storage according to the user
request [20]. VMs are deployed on servers each of which may be shared by multiple VMs
[21]. System virtualization is commonly supported on the hypervisor technology. Hypervi-
sor/Virtual Machine Monitor (VMM) is a software that allows the virtualization of resources
[24, 37]. There are various types of Hypervisors/VMMs in virtualized systems, but we skip
describing them because it is out of the scope of our paper. A general scheme of a virtualized
cloud data center is shown in Fig. 2, which contains N physical servers and M VMs on top
of each server.

Although virtualization is a useful tool for unifying the access and to reduce the power
consumption of a server in a data center, deploying more VMs into a single server results
in an increase in the execution time due to the bottleneck caused by sharing resources like
CPU, memory, and storage [38]. In addition to the increment in execution time of requests in
virtualized systems imposed by resource sharing, the VM deployment and provisioning time
should also be taken into account in modeling and assessing the performance of a virtualized
system. The performance degradation due to resource sharing can be mitigated by carefully
selecting the number of VMs on top of a single server, and the deployment and provisioning
times can be optimized by grouping servers into multiple pools characterized by different
degrees of provisioning delays and power consumptions. In this paper, we consider the
servers to be grouped into three pools named cold (turned off), warm (turned on, but not
ready) and hot (running). Power consumption of servers in the cold pool can be neglected
since they are turned off. When a cold server is selected to be moved into the warm pool, a
predefined time named server wake-up time is taken to the server be turned on. Although
the warm servers are turned on and consume power, they are not ready to service user
requests, so they should be moved into running state (hot pool) before being able to host
VMs. The power consumption of hot servers is much more than the power usage of warm
servers. Deciding about appropriately moving servers among cold, warm, and hot pools not
only influences the overall power consumption of the cluster, but also it affects the response
time to user requests. As an example, Fig. 2 shows Server 1 and Server i in cold and warm
pools, respectively. Moreover, since both Server 2 and Server N in Fig. 2 are considered
to be in hot pool, they can host VMs and be allocated to user requests.

In order to reduce the power consumption of a cluster while maintaining in an acceptable
level of performance, we consider that the DVFS technique is applied in each server. DVFS
has proven to be an effective method of achieving low power consumption for the CPU
while meeting the performance requirements. The key idea behind the DVFS technique is
to dynamically scale the supply voltage level of the CPU, so as to provide enough speed
for processing the system workload meeting the computation time and/or throughput con-
straints [14, 34]. According to the CPU allocated to a VM to run the specific user requests,
we can scale up or down the processing speed of the VM (its relevant CPU) to process
the requests faster if it is required or save power if it is the case. Therefore, considering
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Figure 2: The architecture of the virtualized system considered in this paper

the workload of the system, we can derive a mechanism to switch the VMs among various
power consumption/processing speed modes to reach a reasonable trade-off between power
consumption and system performance. According to the type of the CPU in each server and
its capability for supporting DVFS technique, we can consider several modes for a VM on
top of a server. For example in Fig. 2, VMs 1 and M in Server 2, and VM 1 in Server N
run in the same DVFS mode and VM 2 in Server 2 and VMs 2 and M in Server N run in
another DVFS mode.

5. The Proposed Model

This section presents the proposed SAN model in detail. Firstly, each component of the
proposed SAN and its relation with the others are explained in Subsection 5.A, and then
power consumption and performance related measures, which can be assessed by steady-state
analysis of the proposed model, are introduced in Subsection 5.B.

A. The SAN Model

Fig. 3 shows the SAN model proposed in this paper to evaluate the performance and
power consumption of virtualized servers of a cluster in an IaaS cloud with the architecture
presented in Fig. 2. Although the reference architecture shown in Fig. 2 is a simple and
abstract architecture of an IaaS cloud data center, mathematically modeling this simple
system structure, and analytically evaluate performance and power consumption measures
are of utmost importance. Moreover, in previous research papers presented in this context
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Figure 3: The proposed SAN model

that model real complex distributed systems using analytical methods considering an ab-
stract architecture of a system is a conventional way to relax the problem to be solved by
mathematics [7, 9, 10, 11, 14, 17, 18, 19, 20, 21, 22, 25, 29, 33, 34].

Since the proposed SAN model is complex and contains many components, we concep-
tually divide the entire model into four different parts named Request Arrivals, Servers,
V irtual Machines and DV FS, and present them in this subsection with details.

• Request Arrivals. The request arrivals to the system is modeled by the part of Fig. 3
surrounded with a box tagged with Request Arrivals. We use Markov Modulated
Poisson Process (MMPP) to model different arrival rates of requests during day and
night hours. MMPPs, which are a subclass of the doubly stochastic Poisson processes,
can be used to model time-varying arrival rates and important correlations between
interarrival times [8]. The input parameters associated with this part of the SAN
are: (1) the rate of transitioning between day and night hours (α and β), (2) the
request arrival rate at day and night hours (λday and λnight), and (3) the buffer size
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Table 1: Gate predicates/functions of Request Arrivals part of the SAN model shown in Fig. 3

Gate Predicate Function

IG1 Pday->Mark() > 0 Pday->Mark()--;

OG1 Pnight->Mark()++;

IG2 Pnight->Mark() > 0 Pnight->Mark()--;

OG2 Pday->Mark()++;

IG3 (Pday->Mark() > 0) && (Pqueue->Mark() < S) ;

OG3 Pqueue->Mark()++;

IG4 (Pnight->Mark() > 0) && (Pqueue->Mark() < S) ;

OG4 Pqueue->Mark()++;

of the cluster queue (S). The times associated with timed activities TAd 2 n, TAn 2 d,
TAarr d, and TAarr n follow exponential distributions with rates α, β, λday, and λnight,
receptively.

The existence of a token in place Pday (Pnight) shows that it is day (night) and we
should use the request arrival rate for day (night) hours to model request arrivals to
the system. Referring to Fig. 3, if there is a token in place Pday, the timed activity
TAd 2 n is activated and it can complete. With completion of this activity, a token is
removed from place Pday by input gate IG1 and a token is deposited into place Pnight
by output gate OG1. The inverse mechanism is done to show moving from night to day
by timed activity TAn 2 d, and gates IG2 and OG2. The input gate IG3 (IG4) checks
the existence of a token in place Pday (Pnight), and if there is a token in that place, it
activates the timed activity TAarr d (TAarr n). When the activity TAarr d (TAarr n)
completes, a token is put in place Pqueue by output gate OG3 (OG4) to show that a
new request just arrived to the queue, and it should be serviced by the system. We
consider a single queue for the cluster with limited capacity equal to S. If the number
of tokens inside place Pqueue reaches S, the input gate IG3 (IG4) prevents the activity
TAarr d (TAarr n) to complete, so the arriving requests are rejected from the system.
Table 1 shows the input predicates/functions of input gates IG1 to IG4 and the output
functions of output gates OG1 to OG4. In this table, the notation Pi− > Mark()
represents the number of tokens inside place Pi.

• Servers. As described in Section 4, and it can be seen in Fig. 2, we consider the physical
servers to transit among three pools to save power: cold, warm, and hot. Transitions
among the pools are modeled in the part Servers shown in the most left side of the
SAN model shown in Fig. 3. The input parameters of this part of the proposed SAN
are: (1) the number of servers (N), (2) the wake-up rate of a server which is the rate
of moving a server from the cold pool to the warm pool (γ), (3) the rate of moving a
server from the warm pool to the cold pool (δ), which is actually a timer that tells a
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warm server to be switched off when it is idle for a certain amount of time.

Place Pcold represents the cold servers of a cluster. We assume that there are N cold
servers in the beginning, and if there is no request waiting to receive service in the
cluster, all N servers are in their cold states. If there is at least one waiting request
in place Pqueue, and there is no VM to be assigned to the waiting request, one of the
servers in the cold pool is selected to be moved to the warm pool. This movement
is done by instantaneous activity IAc 2 w, but before moving a token from place Pcold
to place Pon, we should make sure that the number of already existing tokens inside
place Pon is not enough to service all waiting requests. This check is required to
save power and prevent the cold servers to be turned on when they are not actually
needed. As shown in Table 2, the check is done by predicate of input gate IG5, where
(Pfree low− > Mark()) + (Pfree high− > Mark()) denotes the number of idle VMs
existing in the cluster, as described below in the DV FS part of the SAN model.

The existence of a token in place Pon shows that a server has already been selected
to be moved into the warm pool, causing the timed activity TAo 2 w to be activated.
The time required for a cold server to become a warm server follows an exponentially
distributed function with mean 1/γ. The rate assigned to timed activity TAo 2 w

is Mark(Pon).γ, which shows that the completion rate of this activity is marking
dependent. So, the actual completion rate of activity TAo 2 w is computed as k.γ,
where k is the number of tokens in place Pon and 1/γ is the mean time required
to wake-up a server (moving a server from the cold pool to the warm pool). With
completion of timed activity TAo 2 w, a token is removed from place Pon and deposited
into place Pwarm through gates IG6 and OG6. Tokens in place Pwarm represent warm
servers waiting to go to the hot pool. If a server waits for more than a predefined
time in the warm pool, we switch off this server to save power. This action is done by
completion of timed activity TAw 2 c, which moves a token from place Pwarm to place
Pcold. The rate of this activity also follows an exponentially distributed function with
rate δ for each server. Since the completion rate is place dependent, we show it as
Mark(Pwarm).δ in Fig. 3. The predicates and functions corresponding to all input and
output gates of the Servers part of the proposed SAN are given in Table 2.

• DV FS. As mentioned in Section 1 and Section 4, we model the application of the DVFS
technique in the proposed SAN to reduce power consumption. In addition to the
DVFS mechanism, other techniques such as resource allocation methods are also very
important in this area, and they have direct impact on both performance and power
consumption measures, but herein we are just focused on modeling DVFS technique
using SANs. It is worthwhile to mention that applying resource allocation techniques
in SAN models has been done before in [18], in the context of grid computing envi-
ronments. Although the model presented in [18] just considers the performance and
dependability measures, paying no attention to power consumption aspects, using the
methods mentioned in that paper, one can model resource allocation mechanisms in
other distributed computing systems such as IaaS clouds. Applying DVFS mecha-
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Table 2: Gate predicates/functions of Servers part of the SAN model shown in Fig. 3

Gate Predicate Function

IG5 (Pcold->Mark() > 0) && (Pwarm->Mark() == 0) && Pcold->Mark()--;

(Pqueue->Mark() > M*(Pon->Mark())) &&

(Pfree low->Mark() + Pfree high->Mark() == 0)

OG5 Pon->Mark()++;

IG6 Pon->Mark() > 0 Pon->Mark()--;

OG6 Pwarm->Mark()++;

IG7 Pwarm->Mark() > 0 Pwarm->Mark()--;

OG7 Pcold->Mark()++;

nism, different power consumption modes and their related processing speeds can be
considered for each VM. Without loss of generality, assume we have only two states of
power consumption and processing speeds, designated low and high. One can easily
extend the number of power consumption/processing speed states and use the method
mentioned below to handle them. The DV FS part of the proposed model can be seen
in the right most dashed box of the SAN shown in Fig. 3.

Places Pfree low and Pfree high in this figure show the idle VMs in the system in low
and high states, respectively. If there is a token in place Pfree low (Pfree high), it
means that there is an idle VM ready to be allocated to a request submitted to the
queue. The mechanisms related to putting tokens in place Pfree low or removing tokens
from both places Pfree low and Pfree high are described in the next bullet, where the
V irtual Machines part of the proposed SAN is explained. Input gates IG8 and IG9

check the existence of tokens in places Pqueue, Pfree low, and Pfree high. In order to
save power and scale down idle high speed VMs when they are not needed, we assign
higher priority to instantaneous activity IAhigh against IAlow. For this reason, the in-
put gate IG9 first checks the existence of at least one token in both places Pqueue and
Pfree high, and if the condition is evaluated to true, the instantaneous activity IAhigh
is activated and it completes. The predicate of input gate IG8 checks the condition
in which there is no token inside place Pfree high and at least one token in both places
Pqueue and Pfree low. According to this mechanism, if there is at least one idle high
speed VM, we allocate this VM to the waiting request, and an idle low speed VM is
allocated to a waiting request only when there is no idle high speed VM. We can easily
extend this mechanism to a system which contains more than two power consump-
tion/processing speed states and check VMs with higher power/speed to be allocated
to a waiting request each time an allocation wants to be happened. The predicates
and input functions of input gates IG8 and IG9 are given in Table 3.

With completion of instantaneous activity IAhigh, a token from place Pqueue together
with another token from place Pfree high is removed and a token is placed in either
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place Phigh 2 high or place Phigh 2 low. The selection between two places Phigh 2 high and
Phigh 2 low is done inside output gate OG9 in which the numbers of tokens in places
Pfree high and Pqueue are compared to each other. If the number of tokens inside place
Pfree high is higher than the number of tokens in place Pqueue, it shows that the number
of idle high speed VMs is more than it is required, so it is better to scale down those
VMs, so the output gate OG9 puts a token in place Phigh 2 low. The existence of a
token in place Phigh 2 low shows that a VM has been allocated to a request, but it has
been scaled down, so the VM runs in its low power consumption/processing speed
mode. If the condition in output gate OG9 is evaluated to false, which means that
the number of tokens in place Pfree high is equal to or less than the number of tokens
in place Pqueue, a token is deposited into place Phigh 2 high. The existence of a token in
place Phigh 2 high shows that an idle high speed VM has been allocated to a request,
and it still runs in its high speed mode. Similarly, output gate OG8 selects one of
places Plow 2 high or Plow 2 low to put token in. According to the predicate of input gate
IG8, the instantaneous activity IAlow completes only when there is no token in place
Pfree high. Therefore, in output gate OG8, we are sure that there is no high speed VM,
so we can decide to scale up a low speed VM inside this gate if required. To do this,
we compare the number of tokens in place Pqueue with the queue size. If the number
of tokens in place Pqueue is more than the half of the queue size, it means that we
need to service the requests faster because the queue is going to be full if we do not
appropriately service the waiting requests. In this case, we scale up a low speed VM
when allocating it to a waiting request, so a token is deposited into place Plow 2 high.
Otherwise (the number of tokens inside place Pqueue is equal to or less than the half of
the queue size), a token is deposited into place Plow 2 low to allocate a low speed VM to
a waiting request. The output functions of output gates OG8 and OG9 modeling the
aforementioned mechanism are given in Table 3. It should be mentioned that other
mechanisms can also be modeled inside those gates to scale up/down VMs according
to the user requests and provider policies.

According to the predicate of input gate IG12 (IG13), if there is a token in place
Phigh 2 high (Phigh 2 low), the timed activity TAhigh 2 high (TAhigh 2 low) is activated and
it can complete. With completion of activity TAhigh 2 high (TAhigh 2 low), a token is
deposited into place Pfree high (Pfree low) by output gate OG12 (OG13) to show that
a high (low) speed VM already finished servicing a request, and it is available to be
allocated to another request. It is worthwhile to mention that the completion rate
of timed activity TAhigh 2 high (TAhigh 2 low) is marking dependent and it is equal to
Mark(Phigh 2 high).µhigh

(
Mark(Phigh 2 low).µlow

)
, where µhigh (µlow) is the service rate

of a single VM when it is in high (low) power consumption/processing speed mode.
Similarly, the functionality of timed activities TAlow 2 low and TAlow 2 high can be easily
inferred according to the explanation of timed activities TAhigh 2 high and TAhigh 2 low

given above. The predicate and input/output functions of input/output gates related
to this part of the proposed SAN are presented in Table 3.
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Table 3: Gate predicates/functions of DV FS part of the SAN model shown in Fig. 3

Gate Predicate Function

(Pfree low->Mark() > 0) && Pqueue->Mark()--;

IG8 (Pqueue->Mark() > 0) && Pfree low->Mark()--;

(Pfree high->Mark() == 0)

if (Pqueue->Mark() > S/2)

OG8 Plow 2 high->Mark()++;

else

Plow 2 low->Mark()++;

IG9 (Pfree high->Mark() > 0) && Pqueue->Mark()--;

(Pqueue->Mark() > 0) Pfree high->Mark()--;

if (Pfree high->Mark() > Pqueue->Mark())

OG9 Phigh 2 low->Mark()++;

else

Phigh 2 high->Mark()++;

IG10 Plow 2 low->Mark() > 0 Plow 2 low->Mark()--;

OG10 Pfree low->Mark()++;

IG11 Plow 2 high->Mark() > 0 Plow 2 high->Mark()--;

OG11 Pfree high->Mark()++;

IG12 Phigh 2 high->Mark() > 0 Phigh 2 high->Mark()--;

OG12 Pfree high->Mark()++;

IG13 Phigh 2 low->Mark() > 0 Phigh 2 low->Mark()--;

OG13 Pfree low->Mark()++;
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Table 4: Gate predicates/functions of V irtual Machines part of the SAN model shown in Fig. 3

Gate Predicate Function

IG14 (Pfree low->Mark() + Pfree high->Mark() == 0) Pwarm->Mark()--;

&& (Pqueue->Mark() > 0) && (Pwarm->Mark() > 0)

OG14 Pfree low->Mark() =

Pfree low->Mark() + M;

Pfree low->Mark() =

IG15 (Pfree low->Mark() + Pfree high->Mark() Pfree low->Mark()

- Pqueue->Mark()) >= M - (M - Pfree high->Mark());

Pfree high->Mark() = 0;

OG15 Pwarm->Mark()++;

• V irtual Machines. In this part of the proposed SAN which is surrounded by a dashed
box tagged with V irtual Machines in Fig. 3, switching a server from the warm state
to the hot state and vice versa is modeled. The input gate IG14 checks the condition
required to change the status of a server from warm to hot. If there is a waiting request
in place Pqueue and no idle VM in places Pfree low and Pfree high to be allocated to the
waiting request, the input gate IG14 checks the existence of a token in place Pwarm,
and if there is any, it activates instantaneous activity IAw 2 h. With completion of
activity IAw 2 h, a token is removed from place Pwarm and deposited M tokens into
place Pfree low, where M is the number of VMs on top of each server, to show that the
status of a server has been changed from warm to hot. It should be mentioned that
we consider all VMs of a server to be in low state when the server just transits to the
hot state. This assumption is made to save power. If there are more waiting requests
in place Pqueue, our model automatically changes the status of low power/speed VMs
to high power/speed state to service the requests faster by executing output function
of output gate OG8.

This part of the proposed SAN is also responsible for switching the status of hot
servers to the warm if required. To do this, input gate IG15 checks the number of idle
VMs inside both places Pfree high and Pfree low. If the number of idle VMs is equal to
or greater than M , it collects M tokens from both places Pfree high and Pfree low and
activates instantaneous activity IAh 2 w. After completion of activity IAh 2 w, a token
is put in place Pwarm to show that a server has already been switched from the hot state
to the warm state. In order to save power, the tokens in pale Pfree high have higher
priority to be removed, so we first decrease the number of tokens in place Pfree low by
M −Mark(Pfree high), and then, empty all tokens of place Pfree high. The predicates
and input functions of input gates IG14 and IG15 together with output functions of
output gates OG14 and OG15 are presented in Table 4.
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B. Performance Measures

In order to evaluate the performance and power consumption of the servers modeled by
the proposed SAN, we need to define some reward functions on the SAN. This is done by
assigning appropriate reward rate to each feasible marking of the SAN model, and then,
computing the expected reward rates in the steady-state. Let ρi denote the reward rate
assigned to marking i of the SAN model shown in Fig. 3. If πi(t) denotes the probability
for the SAN model to be in marking i at time t, then the expected reward at time t can
be computed as

∑
i πi(t)ρi. The expected steady-state reward can be computed using the

same formula by replacing πi(t) by πi, representing the steady-state probability for the SAN
model to be in marking i. The interesting measures in the proposed SAN model are as
follows.

Blocking probability of arriving requests (Pb). The expected blocking probability
can be defined as the steady-state probability that arriving requests are rejected from the
system due to the queue saturation. It can be computed by assigning the reward rate shown
in Eq. 1 to the network, which compares the number of tokens inside place Pqueue with the
queue size S. If the number of tokens is greater than or equal to S, the queue is saturated
and the arriving requests will be rejected from the system.

ρi =

{
1, Mark(Pqueue) ≥ S

0, otherwise
(1)

Instant service probability (Pi). It is the probability that a request arrives to the
system and is instantaneously assigned to an idle VM without experiencing any waiting
time. To compute this time, the number of already queued requests and idle VMs should
be checked. If the number of waiting requests is zero and there exists at least one idle VM,
the request submitted to the queue can be immediately assigned to an idle VM. The reward
rate to compute this measure is given in Eq. 2.

ρi =

{
1,

(
Mark(Pqueue) = 0

)
and

(
Mark(Pfree low) +Mark(Pfree high)> 0

)
0, otherwise

(2)

Mean waiting time (W). The mean waiting time is the expected time spent by
requests in the queue to be assigned to a VM. To compute this time, we should first compute
the mean number of waiting requests in queue. Thus, a reward function is set up to return the
number of tokens in place Pqueue in the steady-state named E

[
Mark(Pqueue)

]
. Afterwards,

having the mean queue length, we can apply Little’s law [8] to compute the mean waiting
time of requests in the queue as Eq. 3.

W =
E
[
Mark(Pqueue)

]
λeff

(3)

where λeff denotes the effective request arrival rate, computed by Eq. 4.
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λeff = (1− Pb).λ (4)

where λ is the requests arrival rate to the system. Since the arrival rate of the requests in
day and night hours are different, we use the rate function given in Eq. 5 to compute the
measure λeff .

ρi =


λday,

(
Mark(Pqueue)<S

)
and

(
Mark(Pday) = 1

)
λnight,

(
Mark(Pqueue)<S

)
and

(
Mark(Pnight) = 1

)
0, otherwise

(5)

Throughput. It is the rate of request completion by the system. In order to compute the
total throughput of the system, the throughput of all timed activities servicing user requests
should be computed, and then combined together. For example, in the SAN model shown
in Fig. 3, there are four timed activities servicing requests, namely TAlow 2 low, TAlow 2 high,
TAhigh 2 low, and TAhigh 2 high. To compute the throughput of the entire network, the
throughputs of all these activities need to be computed. For example, let π(Plow 2 low = k)
denote the steady-state probability of there being k tokens in place Plow 2 low. Hence, the
throughput of timed activity TAlow 2 low can be computed by Eq. 6.

Throughput =
∑
k

π(Plow 2 low = k).k.µlow (6)

where µlow is the service rate of a VM in low power/speed mode. Similarly, the throughput of
high power/speed VMs can be computed by replacing their corresponding place probabilities
and service rates.

Mean response time (R). This is the expected time required to respond user requests,
which is computed for each request as the summation of the time spent by the request in
waiting queue and the time taken by a VM to process the request. Since we have computed
both the mean waiting time and the throughput of the system, we can use Eq. 7 to compute
the mean response time of the system to user requests.

R = W +
1

Throughput
(7)

Power consumption (P). As already mentioned in Section 4, we consider two mech-
anisms in our model to reduce the power consumption. One mechanism is scaling down
idle VMs when they are not required, and the other one is powering off servers whose VMs
are not being used. Since, the power consumption of VMs in different power/speed modes
and the power usage of servers in warm and hot pools are different, we need to compute the
number of VMs belonging to each power/speed mode and the number of servers in the warm
pool. Afterward, we can multiply the number of VMs and servers to their corresponding
power consumption value. Let E

[
Mark(Pwarm)

]
denote the number of servers in warm pool,

which is obtained by writing a reward function which returns the number of tokens in place
Pwarm in the steady-state. Moreover, let E[Low VMs] denote the expected number of VMs

18



in low power/speed mode which is computed by summing the mean number of tokens in
places Pfree low, Plow 2 low, and Phigh 2 low in the steady-state. Similarly, E[high VMs] shows
the expected number of VMs in high power/speed mode which is the sum of tokens in places
Pfree high, Phigh 2 high, and Plow 2 high in the steady-state. Now, using Eq. 8, the overall power
consumption of the system can be computed.

P = E
[
Mark(Pwarm)

]
.Pwarm + E[low VMs].Plow + E[high VMs].Phigh (8)

where Pwarm denotes the power consumption of a physical server in the warm state, and
Plow and Phigh denote the power consumption of a single VM in its low power/speed and
high power/speed modes, respectively. It is worthwhile to mention that the power model
used in this paper is a simplified version of the model proposed in [7] and [13], only the CPU
power consumption is herein considered. In the basic formula given in [7] and [13], beyond
the power consumption of CPU, the power consumption of cache, DRAM and disk have also
been taken into account.

6. Numerical Results

In this section, numerical results obtained from analytically solving the proposed SAN
model with Möbius tool [15] are presented. To assess the impact of powering off/on the
servers and scaling down/up the VMs on power consumption and performance measures
of virtualized servers in a cloud, different scenarios are considered, and the sensitivity of
results to the input parameters are analyzed. In the following, three subsections are devoted
to present numerical results and analyze the proposed model.

In Subsection 6.A, we use real data reported in related art to compare the proposed
model with two baselines in which all VMs of a server run in a single mode. The aim
of this subsection is to show the impact of DVFS technique on power consumption and
performance of the systems. Furthermore, the results reported in Subsection 6.A show that
the proposed model can be applied to real environments, and it can model and evaluate
both performance and power consumption appropriately. In Subsection 6.B, we change the
value of input variables to the numbers used in [9] and [10] to be able to fairly compare the
proposed model with the other models. Since the models presented in [9] and [10] do not
consider the DVFS technique, we do not claim that our model outperforms these models.
We select them for comparison because they are the only existing models in literature in the
same context of our proposed model, albeit with different formalism and assumptions. So,
we only compare the results obtained from our model with the results of those models to
show how the DVFS technique can be analytically modeled and evaluated in the context of
SAN formalism, and to show the advantage of this technique in appropriately using power
in servicing user requests to achieve efficiency. Finally, Subsection 6.C presents the output
parameters of the proposed model, when its input parameters change, so we can analyze the
sensitivity of final results to the variation of each input parameter.
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A. Comparing the Proposed Model with Two Baselines

In order to use more realistic data, we use some real settings reported in related publi-
cations. The number of servers in each cluster of the cloud is considered to be 20 (N = 20).
Several clusters in clouds are mentioned to work with about 20 servers, for example the
clusters of the Leiden University (LU), University of Amsterdam (UvA), and Netherlands
Institute for Radio Astronomy (ASTRON) with 16, 16 and 24 nodes, receptively, collabo-
rating in DAS-4 project [1] which experiments Green Clouds [13]. The number of VMs on
top of each server is typically 2, 4 or 8 [6, 13, 23], and we consider this number to be 4 in
our experiments (M = 4). The size of the queue is 30 (S = 30), the typical size considered
in many papers in this context is in the range between 10 and 50 [9, 10, 11, 19, 29, 34].
The power consumption and processing speed of a VM in its low state are Plow = 1.1 W
and µlow = 300 req/sec, respectively, and similarly for a VM in its high state we have
Phigh = 1.3 W (a variations of about 20% from Plow) and µhigh = 400 req/sec [14]. The
average power consumption of a server in warm state (Pwarm) is assumed to be half as the
power consumption when all VMs of the server is running at their low mode [34]. The rates
of transitioning between day and night (α and β) are set to 1/12 h−1. The mean wake-up
time of a server ( 1

γ
), which is the mean time required for a server to transit from the cold

pool to the warm is set to 3 ms [35]. The value set for idle time-out when a server is in its
idle mode is 20 (1

δ
= 20 min), which is the default value for Microsoft web servers [2].

In this subsection, we compare the proposed SAN model with two baselines. InBaseline 1,
all VMs on top of a physical server are considered to run in their low power/speed mode.
Therefore, the power consumption and processing speed considered for all VMs are Plow =
Phigh = 1.1 W and µlow = µhigh = 300 req/sec, respectively. In Baseline 2, all VMs are
considered to run in their high power/speed mode, so the power consumption and processing
speed parameters for all VMs are equal to Phigh = Plow = 1.3 W and µhigh = µlow = 400
req/sec, respectively. Since the proposed model runs a combination of VMs at high and low
levels, so it consumes less power but provide degraded performance in comparison with the
situation in which all VMs run in their high speed, and vice versa when all VMs run at low
speed. Therefore, the aim of comparing the proposed model with these two baselines is to
demonstrate the multi-purpose optimization of performance and power consumption.

It is worthwhile to mention that scale up and scale down, also known as vertical scaling,
means increasing or decreasing the size of a VM in response to an existing workload. It is
different from horizontal scaling, also referred to as scale out and scale in, where the number
of VMs differs according to the workload. If we change the number of VMs for a specific
user, it may need to power off/on physical servers, but by increasing or decreasing the size
of a VM (VMs), when it is permitted, the old data of the VM(s) are retained without any
need to deploy a new VM. Scaling up/down can be useful when: (1) a service built on VMs
is under-utilized, e.g. at weekends, in which reducing the size of a VM can reduce the power
consumption and monthly costs, and (2) increasing VM size to cope with large demands
raised through executing an application without creating additional VMs. On the other
hand, provisioning a VM or a set of VMs may need a physical server to be powered on if
all capacity of already available servers is allocated to the existing users and there is no
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enough VM(s) to be allocated to the new user(s). In this case, a server is selected from the
pool of cold servers, and powered on to be allocated to the new user(s). In contrast with
powering on a server when it is required, we can power off a server when all its VMs have
been released. In this case, a free server is powered off to save power. As another example,
we can mention the migration technique in a virtualized environment, which migrates the
VMs of a physical server to another server to be able to power off an under-utilized server.
In the proposed model, vertical and horizontal scalings are done by DV FS and Servers
parts of the SAN shown in Fig. 3, respectively. The results obtained for the proposed model
and two baselines are reported in the graphs of Fig. 4.

(a) (b)

(c) (d)

(e) (f)

Figure 4: Results obtained for comparing the proposed model with two baselines considering the: (a) blocking
probability; (b) instant service probability; (c) mean waiting time; (d) throughput; (e) power consumption;
and (f) mean response time.
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In all plots of Fig. 4, the arrival rate of requests in day hours (λday) is varied from 50, 000
to 100, 000 req/sec and the arrival rate in night hours is λnight = 1

5
λday. As can be seen in

Fig. 4, the measures related to the performance of the system (e.g. the blocking probability,
instant service probability, mean waiting and response times, and system throughput) for
Baseline 2 which runs all VMs in high power/speed mode, are much better than the related
measures of Baseline 1 which runs all VMs in low power/speed mode. On the contrary, the
power consumption of Baseline 2 is higher than that of Baseline 1, which is an expected
result. Since the proposed model uses both high and low power/speed VMs to service user
requests, the performance and power consumption values are between those of Baseline 1
andBaseline 2. Hence the results reported in Fig. 4 emphasize that scaling up/down running
VMs can help cloud providers to decrease the power consumption of the data centers, with
a penalty in terms of performance that can be modeled and assessed. This performance
degradation, which is controllable should be acceptable.

B. Comparing the Proposed Model with Previously Presented Models

In this subsection, we use the values reported in [9] and [10] to compare the proposed
model with the SRN model presented in those papers. The values for input parameters of
the model are reported in Table 5. Since the model proposed in [10] has some differences in
comparison with our model, in the sense of allocation mechanism, turning on/off VMs and
switching off idle servers, we made the required modifications in our model for the purpose
of comparison. As mentioned earlier, the model presented in [10] does not consider the
DVFS technique and uses another formalism to solve the problem, so we only compare the
results obtained from both models to show the effectiveness of DVFS technique introduced
in the proposed SAN. The power consumption and two performance measures, blocking
probability and throughput, obtained with the proposed SAN model and the model in [10]
(the saturation strategy) are given in Fig. 5-(a) to Fig. 5-(c). In Fig. 5, the horizontal
axis shows the arrival rate of requests to the system in day hours (λday) which varies from
0.1 to 1 req/min. The request arrival rate in night hours is λnight = 1

5
λday. As it can be

seen in Fig. 5-(a) and Fig. 5-(c), although the power consumption of the proposed model
is lees than the model presented in [10], the throughput resulted from our model is more
than the throughput of the model in [10]. Fig. 5-(b) shows that the blocking probability of
both models increases with increasing the arrival rate of requests, however with negligible
difference, the blocking probability of our model is slightly more than that of model presented
in [10]. Since the result of other performance measures is very close to each other (like
results presented in Fig. 5-(b)), we do not present them in Fig. 5. Comparing the results
obtained with the proposed model and the model presented in [10] shows that using DVFS
technique, dispatching requests among VMs with different power/speed modes and switching
VMs among different states of power consumptions and processing speeds according to the
system workload, we can reach a better performance with acceptable power usage.

In addition to comparing the proposed SAN model with two baselines, and the model
presented in [10], we compare it with the system that does not use the virtualization mech-
anism, so it allocates each server to only one user. Although some performance measures
such as the mean response time may be improved by a non-virtualized system, the power
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Table 5: The configuration of the system considered in Subsection 6.B

Parameter Value Parameter Value Parameter Value

N 20 M 2 S 10

µlow 5/18 req/h µhigh 1/3 req/h Plow 7 W

Phigh 10 W Pwarm 7 W α 1/12 h−1

β 1/12 h−1 γ 1/2 min−1 δ 1 min−1

consumption of such a system is significantly higher than that of a virtualized system as
shown in Fig. 5-(d). It is worthwhile to mention that since an idle physical server is switched
off when there is no waiting request in the queue, the instant service probability of a non-
virtualized system is zero for all arrival rates.

(a) (b)

(c) (d)

Figure 5: Results obtained for comparing our proposed model with the model presented in [10] considering
the: (a) power consumption; (b) blocking probability; and (c) throughput. (d) Power consumption resulted
from our model and a non-virtualized system.

23



C. Sensitivity Analysis

In this subsection, we study the sensitivity of output parameters to the variation of
input parameters. To reach this, each input parameter should be varied in a valid range,
and then, the sensitivity of a result to the variation of that parameter is analyzed. For the
sake of brevity, we only investigate the sensitivity of the results to the variation of three
important parameters: (1) the rate of moving a cold physical server to the warm state,
named wake-up rate shown by γ, (2) the rate of moving a server from the warm pool to the
cold pool named time-out rate denoted by δ, and (3) the rate of transitioning between day
and night hours denoted by α and β, respectively. However, other input parameters can
also be included in the study. To achieve this, we consider a cloud system with the values
reported in Subsection 6.A for the input parameters. Moreover, the arrival rate of requests
in all scenarios studied in this subsection is set to 50, 000 req/sec.

In the first scenario, which studies the impact of variation of the wake-up rate (γ) on the
final results, we change the value of mean wake-up time (1/γ) from 1 ms to 10 ms with a time
step of 1 ms. It should be mentioned that in the system considered in Subsection 6.A, this
parameter is set to 3 ms. According to the results obtained from the steady-state analysis
of the proposed SAN, the measures throughput and power consumption of the network are
almost fixed numbers, which do not change by modifying the mean wake-up time. The value
of throughput and power consumption are around 20757 and 74.91, respectively, for all 10
variations of mean wake-up time. However, other output parameters change with changing
the mean wake-up time of servers as shown in Fig. 6.

As can be seen in Fig. 6-(a), the blocking probability of requests increases when the
mean wake-up time gets higher, which is an expectable result, because according to the
proposed SAN shown in Fig. 3, increasing the mean wake-up time (decreasing the value
of rate γ) causes more tokens to be queued inside place Pqueue, resulting in the waiting
queue of requests to reach the maximum size, so the newly arriving requests are blocked.
Moreover, increasing the number of waiting requests in the queue and delaying in responding
the waiting requests, which are the results of increasing the wake-up time of a server, cause
the mean waiting time and mean response time of requests to increase as shown in Fig. 6-(c)
and Fig. 6-(d). On the other hand, increasing the mean wake-up time of a server causes the
probability of finding the waiting queue empty, and immediately servicing a newly arriving
request to increase, which results in decreasing the instant service probability as shown in
Fig. 6-(b).

In the second scenario, we fix the mean wake-up time to 3 ms, and vary the mean time-
out (1/δ) from 3 to 30 min, with a time step of 3 min. According to the results obtained from
the steady-state analysis of the proposed SAN, the only measure which varies by varying the
time-out rate is power consumption. The values of the blocking probability, instant service
probability, mean waiting time, throughput, and mean response time are 0.276107, 0.289449,
8.5128 × 10−4, 20756.627, and 8.9946 × 10−4, respectively, for all 10 variations of time-out
rate. The values of power consumption for (1/δ) = 3 to 30 min are shown in Fig. 7.
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(a) (b)

(c) (d)

Figure 6: Results showing the impact of variation of mean wake-up time of servers on the: (a) blocking
probability; (b) instant service probability; (c) mean waiting time; and (d) mean response time.

As can be observed in Fig. 7, increasing the value of time-out (decreasing the time-
out rate) increases a bit the power consumption. This is a reasonable conclusion because
powering a server off reduces power consumption of a cloud data center, and if it takes more
time to power off a server, the server will consume more power. Analyzing the SAN model

Figure 7: The impact of variation of time-out value on power consumption of an IaaS cloud data center
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Table 6: Results obtained from the variation of transitioning rate between day and night hours

1/α
Pb Pi

W Throughput R P

(h) (sec) (req/sec) (sec) (W )

8 0.276104 0.289454 8.5128× 10−4 20756.511 8.99460× 10−4 74.902315

9 0.276105 0.289452 8.5128× 10−4 20756.539 8.99462× 10−4 74.902416

10 0.276105 0.289451 8.5128× 10−4 20756.572 8.99463× 10−4 74.902505

11 0.276106 0.289450 8.5128× 10−4 20756.606 8.99464× 10−4 74.902582

12 0.276107 0.289449 8.5128× 10−4 20756.627 8.99464× 10−4 74.902662

13 0.276107 0.289448 8.5128× 10−4 20756.657 8.99466× 10−4 74.902741

14 0.276108 0.289447 8.5129× 10−4 20756.677 8.99467× 10−4 74.902809

15 0.276109 0.289445 8.5129× 10−4 20756.708 8.99468× 10−4 74.902888

16 0.276109 0.289444 8.5129× 10−4 20756.731 8.99469× 10−4 74.902968

presented in Fig. 3, we can also get the same result, because if the value of time-out gets
higher (the rate δ decreases), tokens spend more time inside place Pwarm resulting in more
power consumption according to Eq. 8.

In the third scenario, to study the impact of variation of the transitioning rates between
day and night hours (α and β) on final results, we fix the mean wake-up time and time-out
values to 3 ms and 20 min, respectively, and vary the rates α and β. In the experiment
considered in Subsection 6.A, the values of rates α and β are considered to be the same
and equal to 1/12 h−1, which shows day and night have nearly exactly the same length (12
hours). Here, we assume the day hours to vary from 8 to 16, and consequently, the night
hours vary from 16 to 8. Hence, the value of 1/α changes from 8 to 16 and 1/β changes from
16 to 8. The output parameters resulting from the steady-state analysis of the proposed
SAN, including the blocking probability (Pb), instant service probability (Pi), mean waiting
time (W ), throughput, mean response time (R), and power consumption (P ) of the new
setting, are reported in Table 6.

As can be observed in Table 6, changing the transitioning rate between day and night
hours changes all output parameters, but the modifications are really negligible. Since we
considered, in all experiments, the rate of arrivals in day hours to be 5 times bigger than
that of night hours, it is expected that decreasing the parameter α will increase the arrival
rate of requests. Increasing the arrival rate of requests to the system accordingly increases
the blocking probability, mean waiting time, throughput, mean response time, and power
consumption, and deceases the instant service probability. This can be seen in Table 6,
when we traverse the table from the first row to the last in which parameter α decreases
(1/α increases).
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7. Conclusions and Future Work

Virtualization is one of the techniques which can be applied to a data center to reduce
power consumption. It helps providers to consolidate several virtual servers on a single
physical server. Using Virtual Machines (VMs) on top of a single physical server reduces
the amount of hardware in use, and consequently, reduces the cost. Recently emerging
technology, cloud computing, leverages the virtualization of computing resources aiming at
allowing customers to provision resources on-demand over the internet on a pay-as-you-go
pricing strategy. Cloud providers try to deliver reliable QoS to the users in terms of Service
Level Agreements (SLAs) specifying QoS targets (e.g. throughput, response time and so
forth) and economical penalties associated to SLA violations. Hence, to evaluate the perfor-
mance delivered by each managing mechanism, and its related power consumption and cost,
cloud providers have to deal with power-performance trade-off as aggressive consolidation
of VMs can lead to performance loss.

To fulfill the need for analytical models to assess the power consumption and performance
of virtualized servers in clouds, we propose a Stochastic Activity Network (SAN) model to
evaluate power and performance of resource management techniques in Infrastructure-as-
a-Service (IaaS) clouds. The proposed model considers two levels of power optimization
techniques, one at the physical server layer and the other at the VM level. It models
the Dynamic Voltage and Frequency Scaling (DVFS) technique which is a mechanism that
dynamically adjusts the voltage and frequency to save power according to the workload of
the system. The results obtained from solving the proposed stochastic analytical model show
that our proposed model can be applied to real systems, and the optimization approach used
in its body shows that better results are achieved in comparison to the models previously
proposed. One interesting extension which can be considered as a future work, would be
to use colored extensions of SANs and Petri Nets (PNs) to model the virtualized servers
for making it possible to handle different user requests with different requirements in the
network. If we could use different colors of tokens inside places representing different user
requests and VMs, it would be possible to assign a given request type to only some predefined
types of VMs. In the proposed model, all user requests have the same type, and the number
of VMs on top of a physical server is a fixed number for all servers. Moreover, all VMs are
considered to be of a single type. Using colored extensions of SANs and PNs (e.g Colored
Petri Nets (CPNs)), one can model different types of requests and VMs in the system.

Another interesting extension to the SAN model presented in this paper is to use Markov
Decision Process (MDP) in the DV FS part of the proposed SAN. Although the mechanism
applied to the input and output gates of the DV FS part of the proposed SAN finally leads
to appropriate power consumption and performance, there is no guarantee to say that this
mechanism is the optimal one. If we use MDP in this part of the network, and define the goal
of the network as minimizing the power consumption, we may reach better results. There
have been proposed some formalisms to combine MDPs and PNs like Markov Decision Petri
Nets (MDPNs) and Markov Decision Well-formed Nets (MDWNs), which may be used for
this purpose.Using interactive sub-models to overcome the scalability problem raised by the
proposed SAN, when a large number of physical servers or VMs is set, can be mentioned
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as another guideline for future work. Since the proposed model is a monolithic model,
it eventually encounters the state space explosion problem like other monolithic models
previously presented in this area. Although the proposed model can easily handle real
settings of cloud systems, dividing it into interactive sub-models and approximating the
monolithic model by some good approximation models can decrease the number of states of
the underlying Markov chain.

Considering the networking aspects of an IaaS cloud data center, and taking the topol-
ogy of the network and the connectivity of the resources into account are other interesting
and important extensions to the current work. In the architecture considered in this paper,
the physical servers are not connected to each other, and only their connection with cen-
tral manager has been considered in the investigation. Since the performance and energy
consumption of a data center depend on the structure of the network too, modeling a more
realistic architecture of the system can help to reach more dependable results. As another
interesting work which can be done in this research area is modeling different resource allo-
cation mechanisms inside an IaaS cloud, in order to reduce power consumption. Although
DVFS is a typical technique for enhancing energy efficiency of a computing system, IaaS
cloud data centers often also employ other techniques to reduce power consumption. Since
resource allocation technologies can be applied to consolidate VMs in order to minimize the
number of physical servers for hosting VMs, they have direct impact on both performance
and energy consumption. Therefore, modeling DVFS technique together with appropriate
resource allocation mechanisms using SANs can provide even more realistic view of an IaaS
cloud data center.
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