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The plausibility of embedding cycles of different lengths in the graphs of a network (known
as the pancyclicity property) has important applications in interconnection networks,
parallel processing systems, and the implementation of a number of either computational
or graph problems such as those used for finding storage schemes of logical data structures,
layout of circuits in VLSI, etc. In this paper, we present the sufficient condition of the
pancyclicity property of OTIS networks. The OTIS network (also referred to as two-level
swapped network) is composed of n clones of an n-node original network constituting its
clusters. It has received much attention due to its many favorable properties such as high
degree of scalability, regularity, modularity, package-ability and high degree of algorithmic
efficiency. Many properties of OTIS networks have been studied in the literature. In this
work, we show that the OTIS networks have the pancyclicity property when the factor
graph is Hamiltonian. More precisely, using a constructive method, we prove that if the
factor graph G of an OTIS network contains cycles of length {3,4,5, l}, then all cycles
of length {3, . . . , l2}, can be embedded in the OTIS-G network. This result resolves the
open question posed and tracked in Day and AlAyyoub (2002) [2], Hoseiny Farahabady and
Sarbazi Azad (2007) [4] and Shafiei et al. (2011) [14].

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

The Optical Transpose Interconnection System (OTIS)
networks, also known as swapped networks generate a
wide class of high-performance scalable interconnection
networks [11,19]. In this architecture, processors are di-
vided into groups where electronic interconnects are used
to connect processors within each group, while optical in-
terconnects are used for inter-group communication. The
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processors of an N2 processors within an OTIS system are
partitioned into N groups of N processors [11]. It has been
shown in [6] that when the number of processors in a
group equals the number of groups, both the bandwidth
and the power consumption in a group shaped network
are optimized while both the system area and the volume
of system are minimized. The OTIS-hypercube and OTIS-
mesh are two of the most widely studied instances of the
OTIS architecture [2,12,14]. A number of algorithms have
been developed for OTIS networks, such as routing, selec-
tion, and data rearrangement and sorting [13,16], matrix
multiplication [15], and broadcasting [2]. Many of topo-
logical properties of these systems such as node degree,
diameter, β-cut, and bisection width are addressed in pre-
vious studies [2]. Furthermore in [4] it was proved that
if G is a Hamiltonian-connected graph, so is the OTIS-G .
In [12] the performance merits of the OTIS-hypercube and
the effect of different structural and workload parameters
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on the overall performance are investigated. Their results
reveal that the OTIS multi-computers are good candidates
for interconnection networks of future generation of paral-
lel computers.

In this paper, we fully solve the problem addressed and
tracked in [2,4,14]. These works showed that if G contains
a cycle of length l, then there exist both cycles of length
l2, l2 − l and l2 − kl, 1 � k < l, in OTIS-G , respectively. In
[4], it was also demonstrated that if there exists a Hamil-
tonian path between every two arbitrary nodes of graph G
(i.e. G is Hamiltonian-connected), then all cycles of lengths
{7,8, . . . , |G|2} can be constructed in the OTIS-G .

The pancyclicity of a specified system is an essential
feature in determining whether the system topology is able
to imitate rings of different length. It is identified that a lot
of standard parallel algorithms have a circle construction
[7]. To perform a circle-structure corresponding algorithm
on a particular system efficiently, the processes of the par-
allel algorithm need to be plotted to the nodes of the
interconnection network in the system in such a way that
any two processes that are adjacent in the circle structure
are mapped to two adjacent nodes of the network. Hence,
a well-organized mapping requires that the system owns a
cycle of a specified length. In addition, ring structure may
be employed as control structures for distributed systems.
Regarding these wide range of applications, it is preferred
that an interconnection network be pancyclic. A graph G is
pancyclic if G contains a cycle of length l for each integer
l with 3 � l � V (G).

Nevertheless, the techniques of build up Hamiltonian
cycles or the methodology of pancyclicity verification in
different networks are not similar and merely is appropri-
ate for their own particular topology. As there is not any
unique outlook to these alternatives, it is hard to extend
the proof consequences of one topology to another one
even in the same family.

Here, we prove that if the factor graph G contains a
cycle of length l, l � N (N being the size of the net-
work, i.e. |V (G)| = N), we can form all cycles of lengths
{7, . . . , l2}, in the OTIS-G . In addition, we present a suffi-
cient condition in the factor graph for the pancyclicity of
OTIS networks. The rest of the paper is organized as fol-
lows. In Section 2, some definition OTIS networks is given.
Section 3 presents our results. Finally Section 4 concludes
the paper.

2. The OTIS network

Interested reader is referred to [2] for an in-depth ac-
count of basic concepts and properties of the OTIS net-
works such as topology, routing algorithms, broadcasting,
embedding of graphs, etc.

Definition 1. Let G = (V (G), E(G)) be an undirected graph,
which called the factor graph of OTIS-G , then the OTIS-G =
(V (OT), E(OT)) graph is an undirected graph where:

V (OT) = {〈g, p〉 ∣∣ g, p ∈ V (G)
}

and
E(OT) = {(〈g, p1〉, 〈g, p2〉
) ∣∣ g ∈ V (G), p1, p2 ∈ E(G)

}

∪ {(〈g, p〉, 〈p, g〉) ∣∣ g, p ∈ V (G), g �= p
}

OTIS-G is composed of exactly |V G | = N copies of
graph G , each of which called a group and denoted as
G1, G2, . . . , G N . A node 〈g, p〉 in OTIS-G corresponds to
node p in group G g . An intra-group edge of the form
(〈g, p1〉, 〈g, p2〉) corresponds to an electronic link, while
an inter-group edge of the form (〈g, p〉, 〈p, g〉) corresponds
to a transpose (optical) link.

In [20] OTIS is used to realize interconnection networks
such as hypercube, 4-D mesh, mesh of trees and butter-
fly for multiprocessor systems, also show some of wires
in these networks can replace with transmitter and re-
ceiver by OTIS architecture, and conclude interesting result
in speed, power consumption and space reduction.

There are several interesting features; especially when
the number of groups equals the number of processors in
each group; as illustrated in [2]. Also there were several
basic operations and topological properties were developed
in OTIS network, including optimal routing, data sum, size,
degree, diameter [2,16]. In addition, a large set of prob-
lems in OTIS networks are solved include routing [12,13],
load balancing [10], selection [13], sorting [13,16], matrix
multiplication [15], polynomial interpolation and polyno-
mial root finding [5,9] and image processing [17].

3. Pancyclicity of OTIS networks

Pancyclicity in a network is an important issue which
enables that networks to exploit many algorithms designed
for cycles. The pancyclicity of a large set of networks, like
crossed cubes, Möbius cube, k-Ary n-Cube, WK-Recursive
network and OTIS-mesh network are proven in [3,8,14,18].
Indeed similar properties of network can be defined by
applying a few changes in the definition of pancyclicity.
These properties are issue of great importance and inter-
ests. For example, a new work conducted recently deals
with the panconnectivity and edge-pancyclicity of k-Ary n-
Cube graph reported in [8]. As well, there are several gen-
eral results deal with the pancyclicity property of graph.
Bondy in [1] has proved that if the minimum degree of a
network of size N is N/2, then it is a pancyclic graph. In
[1], it is shown that every Hamiltonian network G of size
N with a minimum number of edges N2/4 is pancyclic.
Zhang [21] has shown that if G is a Hamiltonian network
with N vertices of maximum and minimum degree �(G)

and δ(G), then it is pancyclic if �(G) + δ(G) � N .
None of the above cases is applicable to the OTIS-G net-

work. In this paper, we deal directly with this particular
network to prove that any OTIS-G is pancyclic.

Definition 2. A Hamiltonian cycle (path) is a cycle (path)
containing every vertex of G . A graph is Hamiltonian if it
contains a Hamiltonian cycle.

Definition 3. A graph G is called pancyclic if it contains
every k-cycle for 3 � k � V (G). More precisely, for a graph
G = (V , E) and a given set Σ = {3,4, . . . , V (G)}, graph G
is called to be Σ-pancyclic if G contains all cycles of length
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σ ∈ Σ , comparably, G is said to be Σ̄-pancyclic if G con-
tains all cycles of length σ ∈ {3,4, . . . , V (G)} − Σ [4].

In this paper, we prove that if there exists an l-cycle in
the factor graph G , then all cycles of length 7 to l2 can
be formed in OTIS-G . Furthermore, if there exist cycles of
lengths {3,4,5, N} in the factor graph G , then OTIS-G is
pancyclic.

Theorem 1. If there exists an L-cycle in G, then there exists a
cycle of length L2 − L in OTIS-G [2].

Theorem 2. If graph G contains an L-cycle then there exists an
L2-cycle in OTIS-G [4].

Theorem 3. If a factor graph G has a cycle of length l, then
OTIS-G has all cycles of lengths 7 to l2 − 1.

Proof. Take an arbitrary graph G with a cycle of length l,
l � 8.

Remark. For the special cases when 4 � l � 7, please refer
to Appendix A for further details.

Without loss of generality we can assume the cy-
cle is of the form Cl = 〈γ1, γ2, . . . , γl, γ1〉, that contains
edges of the form (γv , γv+1) (for 1 � v < l) and edge
(γl, γ1). It is worthy to mention that if Cl is of the an-
other form like 〈γ f (1), γ f (2), . . . , γ f (l), γ f (1)〉 for some func-
tion f : {1,2, . . . , l} → {1,2, . . . , V (G)}, we could replace
the value of i with f (i) and the proof goes true since we
could use edges of the form (〈γ f (i), γ f ( j)〉, 〈γ f (i), γ f ( j+1)〉),
(〈γ f (i), γ f (l)〉, 〈γ f (i), γ f (1)〉) and (〈γ f (i), γ f ( j)〉, 〈γ f ( j), γ f (i)〉)
instead of edges of the form (〈γi, γ j〉, 〈γi, γ j+1〉), (〈γi, γl〉,
〈γi, γ1〉) and (〈γi, γ j〉, 〈γ j, γi〉), respectively, without the
need to change any of the other symbols.

Let Gi denote the i-th group of OTIS-G , and let
(〈γi, γ j〉) denote the j-th node within the group Gi .

To form the cycle of length q (7 � q � l2), we consider
the three separated cases:

Case 1. q � 3l.
To form the q-cycle within OTIS-G , where q = 2x + 1,

7 � q � 2l + 1, the following construction method can be
used (note that these cycles only use three different groups
in OTIS-G , namely G1, G2 and Gx):

Cq=2x+1:
(〈γ1, γ2〉, 〈γ1, γ3〉, . . . , 〈γ1, γx〉〈γx, γ1〉,

〈γx, γ2〉‖〈γ2, γx〉, . . . , 〈γ2, γ2〉, 〈γ2, γ1〉‖〈γ1, γ2〉
)

Symbol ‖ represents an intra-group link within the OTIS-G .
We use the following schema to build up the cycle of

length q, where q = 2x + l − 1, l + 5 � q � 3l − 1, and l
is the length of given cycle in the factor graph (note that
this cycle passes only through the vertices of groups G1,
G2 and Gx within the OTIS-G):

Cq=2x+l−1:
(〈γ1, γ2〉, 〈γ1, γ3〉, . . . , 〈γ1, γx〉‖〈γx, γ1〉,

〈γx, γl〉, 〈γx, γl−1〉, . . . , 〈γx, γ2〉‖〈γ2, γx〉,
〈γ2, γx−1〉, . . . , 〈γ2, γ2〉, 〈γ2, γ1〉‖〈γ1, γ2〉

)

To form the cycle of length q, where q = 6 + 2((y −
x + l) mod l), 8 � q � 2l + 4, 3 � x, y � l, the following
schema may be applied (note that this type of cycle passes
through the vertexes of groups G1, G2, Gx and G y within
the OTIS-G):

Cq=6+2(y−x):
(〈γ1, γx〉, 〈γ1, γx+1〉, . . . , 〈γ1, γy−1〉,

〈γ1, γy〉‖〈γy, γ1〉, 〈γy, γ2〉‖〈γ2, γy〉,
〈γ2, γy−1〉, . . .〉, 〈γ2, γx〉‖〈γx, γ2〉, 〈γx, γ1〉
‖〈γ1, γx〉

)

In a similar manner to the one presented above, we can
construct a cycle C of length q, where:

q = l + 4 + 2(y − x); l + 6 � q � 3l + 2, 3 � x, y � l

It is worth to mention that this cycle passes through the
vertices of only four groups, namely G1, G2, Gx and G y :

Cq=l+4+2(y−x) : (〈γ1, γx〉, 〈γ1, γx+1〉, . . . , 〈γ1, γy−1〉,
〈γ1, γy〉‖〈γy, γ1〉, 〈γy, γ2〉‖〈γ2, γy〉,
〈γ2, γy−1〉, . . .〉, 〈γ2, γx〉‖〈γx, γ2〉, 〈γx, γ3〉,
. . . , 〈γx, γl〉, 〈γx, γ1〉‖〈γ1, γx〉

)

Altogether, we have found all cycles of length 7 to 3l in
the OTIS-G .

Case 2. When either 3l + 1 � q � l2 − 5 or q = l2 − 3. We
can always take the following expression that contains the
new parameters ω, s and δ to write q, l � 8:

q = (ω + 3) ∗ (l + 1) − 2s − δ

where 1 � ω � l − 4; 1 � s � l − 4; δ ∈ {0,3,6}. A simple
program can easily calculate the value of parameters ω, s
and δ to make the true value of q.

To deal with this case, we define three different sets
of groups within the OTIS-G , namely pivot set, fragmentary
set and incremental set. Each of these three sets consists
of different nodes and serves a different role to form the
desired cycle within the OTIS-G . More precisely, we use
incremental set to constitute a path of length ω ∗ (l + 1),
nodes, pivot set to create a path of length l, and fragmen-
tary set to make a path of length 2(l− s)+3−δ. Altogether,
by connecting these three paths, we find a cycle with total
length of:

(l + 1) ∗ ω + l + 2 ∗ (l − s) + 3 − δ

= (ω + 3) ∗ (l + 1) − 2s − δ = q

In the rest of this section, we illustrate how to make these
three sets and connect them.

The incremental set contains the groups of G1, G2,

. . . , Gl−4. Each group of this set may or may not be used
to construct the desired q-cycle. If we use one of them, it
serves to contribute to form the q-cycle by sharing l + 1
edges. More specifically it shares l − 1 edges belong to that
group and 2 intra-group edges which connect this group
to two corresponding nodes within either the pivot set.
There is also a special group called G S . This group con-
nects the fragmentary section to the rest of the q-cycle
by sharing edges of the form (〈γS , γl−2〉, 〈γl−2, γS 〉) and



M. Malekimajd et al. / Information Processing Letters 111 (2011) 1114–1119 1117
Fig. 1. How to construct three groups of pivot nodes, fragmentary nodes
and incremental nodes.

(〈γS , γl−3〉, 〈γl−3, γS 〉). Hence, it can be easily inferred that
G S shares only l − 2 inter-group edges. For example, in
Fig. 1, groups namely Gx and G S are selected to be in
incremental set. Group Gx contributes to share both its
own l − 1 inter-group edges and also edges of the form
(〈γx, γl−1〉, 〈γl−1, γx〉) and (〈γx, γl〉, 〈γl, γx〉) to construct
the desired q-cycle.

Pivot set consists of groups Gl−1 and Gl which con-
tributes l edge to the q-cycle. The role of this set is to
make connections between the paths in groups of incre-
mental set. More precisely, each group of Gx in incre-
mental set, connects to the nodes (〈γl−1, γx〉, 〈γl, γx〉) and
within pivot set via intra-group edges. Pivot set shares ex-
actly one edge of the form (〈γl−1, γv〉, 〈γl−1, γv−1 mod l〉)
or (〈γl, γv 〉, 〈γl, γv−1 mod l〉), where 1 � v � l − 1. Let ω
be the number of groups in the incremental set and
α1,α2, . . . ,αω be the group numbers were selected to
make the incremental set, where α1 > α2 > · · · > αω . The
pivot set contains all the edges in a path of the form
(〈γl−1,αi〉, 〈γl−1,αi − 1〉, 〈γl−1,αi − 2〉, . . . , 〈γl−1,αi+1〉),
1 � i < ω, if i is odd. On the contrary, it contains
the edges in a path of the form (〈γl,αi〉, 〈γl,αi − 1〉,
〈γl,αi − 2〉, . . . , 〈γl,αi+1〉), 1 � i < ω, if i is even. More-
over, if ω is odd, a path in the form of (〈γl−1,αω〉,
〈γl−1,αω − 1〉, 〈γl−1,αω − 2〉, . . . , 〈γl−1,α1〉, 〈γl−1,αl〉‖
〈γl,αl−1〉, 〈γl,αl−2〉, . . . , 〈γl,α1〉) is belonging to the pivot
set. On the other hand, if ω is even, pivot set contains a
path like (〈γl,αω〉, 〈γl,αω − 1〉, . . . , 〈γl,1〉, 〈γl, l〉, 〈γl, l − 1〉,
〈γl, l − 2〉, . . . , 〈γl,α1〉).

The fragmentary set consists of two specified groups
of Gl−2 and Gl−3 which plays the role of completing the
length of the q-cycle remained already by compiling both
incremental and pivot sets. More precisely, fragmentary set
is used to create some paths of total lengths 2(l− s)+3−δ,
1 � s � l − 4; δ ∈ {0,3,6} which connected to the group Gs
within the incremental set, yielding the desired q-cycle. If
δ = 6, the path in the fragmentary set like in the form of:

Pfrag:
(〈γs, γl−2〉‖〈γl−2, γs〉, 〈γl−2, γs+1〉, . . . ,

〈γl−2, γl−3〉‖〈γl−3, γl−2〉, 〈γl−3, γl−3〉, . . . ,
〈γl−3, γs〉‖〈γs, γl−3〉

)

In addition, if δ = 3 or δ = 0, another path is added to the
previous cycle to create the q-cycle as follows:

Pδ=3:
(〈γl−1, γl−2〉‖〈γl−2, γl−1〉, 〈γl−2, γl〉‖〈γl, γl−2〉

)

Pδ=0:
(〈γl−1, γl−3〉‖〈γl−3, γl−1〉, 〈γl−3, γl〉‖〈γl, γl−3〉

)

Case 3. When q ∈ {l2 − 4, l2 − 2, l2 − 1}. Slightly modifying
the method used to prove Case 2, one can solve the re-
maining three cases. Let u < v . The sequence 〈γu, γu+1,

γu+2, . . . , γv−1, γv〉 forms a path between two arbitrary
nodes of u and v in factor graph G , group γi , can be shown
by Pγi (

−−−→u : v). On the other hand, we could form another
path between these two nodes in group γi as the follow-
ing which we have showed by Pγi (

←−−−u : v):

Pγi (
←−−−u : v): 〈γu, γu−1, . . . , γ2, γ1, γl, . . . , γv+1, γv〉

In a similar way, if u > v , we could define two mentioned
paths as follows:

Pγi (
−−−→u : v): 〈γu, γu+1, . . . , γl−1, γl, γ1, . . . , γv−1, γv〉

Pγi (
←−−−u : v): 〈γu, γu−1, . . . , γv+1, γv〉

Now, we can express our method to build three cycles of
length l2 − 4, l2 − 2, and l2 − 1.

Subcase 3.1. When l is even:

Cl2−4:
(

Pγ2(
←−−−−−−−−−
l − 1 : l − 3)‖Pγl−3(

−−−−−−→
2 : l − 2)‖

Pγl−2(
−−−−−−−−−→
l − 3 : l − 1)‖〈γl−1, γl−2〉, 〈γl−1, γl−3〉‖

〈γl−3, γl−1〉, 〈γl−3, γl〉‖〈γl, γl−3〉, 〈γl, γl−4〉‖
〈γl−4, γl〉, 〈γl−4, γl−1〉‖〈γl−1, γl−4〉, 〈γl−1, γl−5〉‖
Pγl−5(

←−−−−−
l − 1 : l)‖〈γl, γl−5〉, 〈γl, γl−6〉‖

Pγl−6(
−−−−−→
l : l − 1)‖ · · · Pγ2(

−−−−−→
l : l − 4)‖Pγl−4(

−−−−−−→
2 : l − 2)‖

Pγl−2(
←−−−−−
l − 4 : l)‖Pγl (

−−−−−−→
l − 2 : 1)‖Pγ1(

−−−−−−→
l : 1 − 1)‖

〈γl−1, γ1〉, 〈γl−1, γ2〉
)

Cl2−2:
(

Pγ1(
−−−−−→
l : l − 1)‖〈γl−1, γ1〉, 〈γl−1, γ2〉‖

Pγ2(
←−−−−−
l − 1 : l)‖〈γl, γ2〉, 〈γl, γ3〉‖Pγ3(

−−−−−→
l : l − 1)

· · · ‖Pγl−2(
←−−−−−
l − 1 : l)‖〈γl, γl−2〉, 〈γl, γl−1〉,

〈γl, γl〉, 〈γl, γ1〉‖〈γ1, γl〉
)

Cl2−1:
(

Pγ2(
−−−−−→
l : l − 1)‖〈γl−1, γ2〉, 〈γl−1, γ3〉‖

Pγ3(
←−−−−−
l − 1 : l)‖〈γl, γ3〉, 〈γl, γ4〉‖Pγ4(

−−−−−→
l : l − 1)

· · · ‖Pγl−5(
←−−−−−
l − 1 : l)‖〈γl, γl−5〉, 〈γl, γl−4〉‖

〈γl−4, γl〉, 〈γl−4, γl−1〉‖〈γl−1, γl−4〉, 〈γl−1, γl−3〉‖
〈γl−3, γl−1〉, 〈γl−3, γl〉‖〈γl, γl−3〉, 〈γl, γl−2〉,
‖Pγl−2(

−−−−−→
l : l − 4)‖Pγl−4(

←−−−−−−
l − 2 : 1)‖Pγ1(

←−−−−−−−−−
l − 4 : l − 3)‖

Pγl−3(
−−−−−−→
1 : l − 2)‖Pγl−2(

−−−−−−−−−→
l − 3 : l − 1)‖

Pγ (
−−−−−→
l − 2 : l)‖〈γl, γl−1〉, 〈γl, γl〉, 〈γl, γ1〉, 〈γl, γ2〉

)

l−1
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Subcase 3.2. When l is odd:

Cl2−4:
(

Pγ2(
←−−−−−−−−−
l − 1 : l − 4)‖Pγl−4(

−−−−−−→
2 : l − 3)‖

Pγl−3(
−−−−−−−−−→
l − 4 : l − 1)‖〈γl−1, γl−3〉, 〈γl−1, γl−4〉‖

Pγl−4(
−−−−−→
l − 1 : l)‖〈γl, γl−4〉, 〈γl, γl−3〉‖

Pγl−3(
−−−−−→
l : l − 1)‖〈γl−1, γl−5〉, 〈γl−1, γl−6〉‖

Pγl−6(
←−−−−−
l − 1 : l)‖〈γl, γl−6〉, 〈γl, γl−7〉‖ · · ·

Pγ3(
←−−−−−
l − 1 : l)‖〈γl, γ3〉, 〈γl, γ2〉‖Pγ2(

−−−−−→
l : l − 5)‖

Pγl−5(
−−−−−−→
2 : l − 3)‖Pγl−3(

←−−−−−
l − 5 : l)‖〈γl, γl−3〉, 〈γl, γl−2〉‖

Pγl−2(
−−−−−→
l : l − 1)‖Pγl−1(

−−−−−→
l − 2 : l)‖〈γl, γl−1〉, 〈γl, γ1〉,

〈γl, γl〉‖Pγ1(
−−−−−→
l : l − 1)‖〈γl−1, γ1〉, 〈γl−1, γ2〉

)

Cl2−2:
(

Pγ1(
←−−−−−
l − 1 : l)‖〈γl, γ1〉, 〈γl, γ2〉‖

Pγ2(
−−−−−→
l : l − 1)‖〈γl−1, γ2〉, 〈γl−1, γ3〉‖

Pγ3(
←−−−−−
l − 1 : l) · · · ‖Pγl−2(

←−−−−−
l − 1 : l)‖〈γl, γl−2〉, 〈γl, γl−1〉‖

〈γl−1, γl〉, 〈γl−1, γ1〉
)

Cl2−1:
(

Pγ2(
←−−−−−
l − 1 : l)‖〈γl, γ2〉, 〈γl, γ3〉‖

Pγ3(
−−−−−→
l : l − 1)‖ · · · ‖Pγl−4(

−−−−−→
l : l − 1)‖

Pγl−3(
−−−−−→
l − 1 : l)‖〈γl, γl−3〉, 〈γl, γl−2〉‖

Pγl−2(
←−−−−−
l : l − 1)‖〈γl−1, γl−2〉,

〈γl−1, γl−1〉, 〈γl−1, γl〉‖〈γl, γl−1〉, 〈γl, γl〉‖
Pγ1(

−−−−−→
l : l − 3)‖Pγl−3(

−−−−−−→
1 : l − 2)‖Pγl−2(

←−−−−−−
l − 3 : 1)‖

Pγ1(
−−−−−−−−−→
l − 2 : l − 1)‖〈γl−1, γ1〉, 〈γl−1, γ2〉

) �
Theorem 4. The sufficient condition for pancyclicity of OTIS-G
is that the factor graph G contains all cycles of length {3,4,5,

|V (G)|}.

Proof. The proof here is fairly straightforward using The-
orems 1, 2, 3 and special cases which describe in Ap-
pendix A. When factor graph G has cycle of length
|V (G)|, all cycles of length 7 to |V (G)|2 in OTIS-G can
be made. Furthermore, using cycle of length 3 with vertex
〈γ1, γ2, γ3〉, a cycle of length 6 can be made as follows:

C6:
(〈γ1, γ2〉, 〈γ1, γ3〉‖〈γ3, γ1〉, 〈γ3, γ2〉‖

〈γ2, γ3〉, 〈γ2, γ1〉
)

Borrowing cycles of length 3, 4 and 5 in one of the fac-
tor graphs, we have all cycles of length 3 to |V (G)|2 in
OTIS-G . �
4. Conclusion

In this paper, we investigated one of the most impor-
tant properties of OTIS network which is a good candi-
date for on-chip networking of current multicore and CMP
systems-on-chip.

Our main result proves the conjecture expressed in [2,
4] that an OTIS-G network has every cycle of length 7
to l2, if the factor graph G contains an l-cycle. Moreover,
our result provides a sufficient condition for the purpose
Table 1
Cycles of particular length for special cases in OTIS-G .

|V (G)| |C | Actual cycle

4 13 (〈γ1, γ4〉, 〈γ1, γ1〉, 〈γ1, γ3〉‖〈γ3, γ1〉, 〈γ3, γ3〉,
〈γ3, γ2〉‖〈γ2, γ3〉, 〈γ2, γ2〉, 〈γ2, γ1〉, 〈γ2, γ4〉
‖〈γ4, γ2〉, 〈γ4, γ3〉, 〈γ4, γ1〉)

4 14 (〈γ1, γ3〉, 〈γ1, γ2〉‖〈γ2, γ1〉, 〈γ2, γ2〉, 〈γ2, γ3〉,
〈γ2, γ4〉‖〈γ4, γ2〉, 〈γ4, γ1〉, 〈γ4, γ4〉, 〈γ4, γ3〉
‖〈γ3, γ4〉, 〈γ3, γ3〉, 〈γ3, γ2〉, 〈γ3, γ1〉)

5 17 (〈γ1, γ5〉, 〈γ1, γ4〉, 〈γ1, γ3〉‖〈γ3, γ1〉, 〈γ3, γ5〉,
〈γ3, γ4〉, 〈γ3, γ3〉, 〈γ3, γ2〉‖〈γ2, γ3〉, 〈γ2, γ4〉
‖〈γ4, γ2〉, 〈γ4, γ3〉, 〈γ4, γ4〉, 〈γ4, γ5〉‖〈γ5, γ4〉,
〈γ5, γ5〉, 〈γ5, γ1〉)

5 18 (〈γ1, γ3〉, 〈γ1, γ2〉, 〈γ1, γ1〉, 〈γ1, γ5〉‖〈γ5, γ1〉,
〈γ5, γ5〉, 〈γ5, γ4〉, 〈γ5, γ3〉, 〈γ5, γ2〉‖〈γ2, γ5〉,
〈γ2, γ1〉, 〈γ2, γ2〉, 〈γ2, γ3〉‖〈γ3, γ2〉, 〈γ3, γ3〉,
〈γ3, γ4〉, 〈γ3, γ5〉, 〈γ3, γ1〉)

6 19 (〈γ1, γ5〉, 〈γ1, γ6〉, 〈γ1, γ1〉, 〈γ1, γ2〉, 〈γ1, γ3〉,
〈γ1, γ4〉‖〈γ4, γ1〉, 〈γ4, γ6〉‖〈γ6, γ4〉, 〈γ6, γ3〉,
〈γ6, γ2〉‖〈γ2, γ6〉, 〈γ2, γ5〉‖〈γ5, γ2〉, 〈γ5, γ3〉,
〈γ5, γ4〉, 〈γ5, γ5〉, 〈γ5, γ6〉, 〈γ5, γ1〉)

6 22 (〈γ1, γ5〉, 〈γ1, γ6〉, 〈γ1, γ1〉, 〈γ1, γ2〉, 〈γ1, γ3〉
‖〈γ3, γ1〉, 〈γ3, γ6〉, 〈γ3, γ5〉, 〈γ3, γ4〉, 〈γ3, γ3〉,
〈γ3, γ2〉‖〈γ2, γ3〉, 〈γ2, γ2〉, 〈γ2, γ1〉, 〈γ2, γ6〉,
〈γ2, γ5〉‖〈γ5, γ2〉, 〈γ5, γ3〉, 〈γ5, γ4〉, 〈γ5, γ5〉,
〈γ5, γ6〉, 〈γ5, γ1〉)

6 29 (〈γ1, γ3〉, 〈γ1, γ2〉, 〈γ1, γ1〉, 〈γ1, γ6〉, 〈γ1, γ5〉,
〈γ1, γ4〉‖〈γ4, γ1〉, 〈γ4, γ6〉, 〈γ4, γ5〉, 〈γ4, γ4〉,
〈γ4, γ3〉, 〈γ4, γ2〉‖〈γ2, γ4〉, 〈γ2, γ3〉, 〈γ2, γ2〉,
〈γ2, γ1〉, 〈γ2, γ6〉, 〈γ2, γ5〉‖〈γ5, γ2〉, 〈γ5, γ1〉,
〈γ5, γ6〉, 〈γ5, γ5〉, 〈γ5, γ4〉, 〈γ5, γ3〉‖〈γ3, γ5〉,
〈γ3, γ4〉, 〈γ3, γ3〉, 〈γ3, γ2〉, 〈γ3, γ1〉)

7 29 (〈γ1, γ4〉, 〈γ1, γ5〉‖〈γ5, γ1〉, 〈γ5, γ7〉, 〈γ5, γ6〉,
〈γ5, γ5〉, 〈γ5, γ4〉, 〈γ5, γ3〉, 〈γ5, γ2〉〈γ2, γ5〉,
〈γ2, γ6〉, 〈γ2, γ7〉‖〈γ7, γ2〉, 〈γ7, γ1〉, 〈γ7, γ7〉,
〈γ7, γ6〉, 〈γ7, γ5〉, 〈γ7, γ4〉, 〈γ7, γ3〉‖〈γ3, γ7〉,
〈γ3, γ6〉, 〈γ3, γ5〉, 〈γ3, γ4〉‖〈γ4, γ3〉,‖〈γ4, γ4〉,
〈γ4, γ5〉, 〈γ4, γ6〉, 〈γ4, γ7〉, 〈γ4, γ1〉)

7 37 (〈γ1, γ4〉, 〈γ1, γ3〉, 〈γ1, γ2〉, 〈γ1, γ1〉, 〈γ1, γ7〉,
〈γ1, γ6〉, 〈γ1, γ5〉‖〈γ5, γ1〉, 〈γ5, γ7〉, 〈γ5, γ6〉,
〈γ5, γ5〉, 〈γ5, γ4〉, 〈γ5, γ3〉, 〈γ5, γ2〉‖〈γ2, γ5〉,
〈γ2, γ4〉, 〈γ2, γ3〉, 〈γ2, γ2〉, 〈γ2, γ1〉, 〈γ2, γ7〉,
〈γ2, γ6〉,‖〈γ6, γ2〉, 〈γ6, γ1〉, 〈γ6, γ7〉, 〈γ6, γ6〉,
〈γ6, γ5〉, 〈γ6, γ4〉, 〈γ6, γ3〉‖〈γ3, γ6〉, 〈γ3, γ5〉,
〈γ3, γ4〉‖〈γ4, γ3〉, 〈γ4, γ4〉, 〈γ4, γ5〉, 〈γ4, γ6〉,
〈γ4, γ7〉, 〈γ4, γ1〉)

of pancyclicity in the OTIS-G network, which is an im-
portant property that eases development of some useful
parallel algorithms. Evaluating the performance and power
consumption of on-chip networks based on OTIS topolo-
gies is left for future work.
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Appendix A

When the number of nodes in the factor graph G are
between 4 to 7, the problem of finding all cycles of length
7 to |V (G)|2 in an OTIS-G can be found by exploiting
the similar methods mentioned already through the proof
of Theorem 3. Nevertheless, there are a couple of special
cases which cannot be resolved directly by using those
methods. Table 1 demonstrates explicitly a detailed de-
scription of each case and a direct solution for making the
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desired cycle at any special case. As said already in Sec-
tion 3 of this paper, the other cycles can be made in the
same way explained in the proof of Theorem 3. (It is wor-
thy to mention that to create a specific cycle, for example
a cycle of length 13 within the OTIS-C4, both cycles of
length 3 and 4 in the factor graph G must be exploited,
e.g. C3 = 〈γ1, γ3, γ2〉 within the group γ3.)
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