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Abstract Consider a number of parallel queues, each with an arbitrary capacity and
multiple identical exponential servers. The service discipline in each queue is first-
come-first-served (FCFS). Customers arrive according to a state-dependent Poisson
process. Upon arrival, a customer joins a queue according to a state-dependent policy
or leaves the system immediately if it is full. No jockeying among queues is allowed.
An incoming customer to a parallel queue has a general patience time dependent
on that queue after which he/she must depart from the system immediately. Parallel
queues are of two types: type 1, wherein the impatience mechanism acts on the wait-
ing time; or type 2, a single server queue wherein the impatience acts on the sojourn
time. We prove a key result, namely, that the state process of the system in the long
run converges in distribution to a well-defined Markov process. Closed-form solu-
tions for the probability density function of the virtual waiting time of a queue of
type 1 or the offered sojourn time of a queue of type 2 in a given state are derived
which are, interestingly, found to depend only on the local state of the queue. The
efficacy of the approach is illustrated by some numerical examples.
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queues
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1 Introduction

We consider s parallel queues where the ith queue has a capacity Ki ≤ ∞ and mi

identical exponential servers with service rate μi , 1 ≤ i ≤ s. Customers arrive accord-
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ing to a state-dependent Poisson process with rate λ, where λ is a function of the num-
ber of customers in each queue in the system. Upon arrival in a state n = (n1, . . . , ns),
where ni is the number of customers in the ith queue, 1 ≤ i ≤ s, a customer joins the
j th queue, 1 ≤ j ≤ s, with a probability rn(j) (where

∑s
j=1 rn(j) = 1). No jockey-

ing among queues is allowed. Customers in each queue are served in the order of their
arrival and leave the system after they finish their service requirements. Each incom-
ing customer to the ith queue has a deadline. The difference between the deadline of
this customer and his/her arrival time, referred to as a relative deadline, is a random
variable with a general probability distribution function Gi(.), where Gi(0) = 0. Cus-
tomers leave the system and are considered lost as soon as they miss their deadlines.
Each parallel queue belongs to one of two types: type 1 or type 2. In a type 1 queue
a customer keeps his/her deadline only until he/she begins service, so that once he/she
begins service he/she will complete his/her service. A type 2 queue has only a single
server. In such a queue a customer keeps his/her deadline until he/she ends service,
so that he/she may miss his/her deadline during his/her service. Customer service
times and relative deadlines form sequences of mutually independent i.i.d. random
variables. Given the number of customers in the system at any time, the future arrival
process is conditionally independent of the past history of the system.

The above system is an instance of a queueing system with impatient customers
where customers have deadlines and may not stay in the system indefinitely [3, 4,
6–10, 12]. Recently, such queues have also been studied in Markovian random envi-
ronments [1, 2, 14, 16]. Moreover, due to the difficult nature of the analysis for such
models, almost all of them are assumed to be single-queues. Apart from an earlier
work by the author [13], no other analysis of the dynamic assignment of impatient
customers to parallel queues has been reported. The current paper is in fact an ex-
tension to this latter work in the following respects. First, it considers an arbitrary
combination of parallel queues of type 1 or type 2 instead of only parallel queues
of type 1. Secondly, the arrival process is more general, i.e., it is a state-dependent
Poisson process with a generally state-dependent rate, not necessarily dependent on
the total number of customers in the system as was the case in the previous work.
Thirdly, the customer impatience is more general here where the relative deadline of
an incoming customer to a parallel queue may depend on that queue. Fourthly, im-
portant new performance variables along with some interesting closed-form solutions
for the probability density functions of these variables are introduced that were not
considered in the previous work. Fifthly, the proof of the main results are presented
differently and more rigorously here. Finally, the model properties and numerical re-
sults in the current paper are more enriched. Dynamic routing of impatient customers
among some parallel queues often occurs in practice and has many important ap-
plications. In most of today’s high-speed packet switching networks, for example,
individual packets usually have some real-time constraints and must dynamically be
routed among some high-speed links.

An important application domain of interest in this paper is a class of real-time sys-
tems called firm real-time (FRT) [5]. Contrary to hard real-time (HRT) systems, FRT
systems are not required to meet all their deadlines. Deadlines in such systems can
be met statistically with an upper bound on the fraction of allowed deadline misses,
where the ability to respect this bound is very much affected by the scheduling mech-
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anism being used. Some examples are multimedia-related applications in mobile de-
vices or target tracking applications in sensor networks. Moreover, contrary to soft
real-time (SRT) systems wherein jobs (customers) missing their deadlines can con-
tinue their execution with degraded values, such jobs (customers) in FRT systems
are of no value and are usually thrown away. Two models of job (customer) behavior
are considered in such systems: deadlines until the beginning of service and deadlines
until the end of systems. Jobs (customers) in the former model are usually assigned to
type 1 queues while those in the latter model are usually scheduled to type 2 queues
(see the previous paragraphs) for further processing. Often, it is essential to find a
dynamic policy that assigns incoming jobs (customers) to such parallel queues ap-
propriately.

This paper presents an analytical modeling method for a dynamic assignment of
customers with general impatience to a number of parallel queues of type 1 or type
2 as mentioned earlier. The method is novel and in fact, to the best of our knowl-
edge, no other analytical method for a similar problem exists. The paper is organized
as follows. Section 2 identifies some performance measures of interest. Section 3
introduces some important parameters and performance variables. Closed-form solu-
tions for these parameters and the probability density function of these variables are
derived. The latter results are used in an analytical model of the system in Sect. 4.
Finally, Sect. 5 presents some simple numerical examples to illustrate the efficacy of
our method.

2 Performance measures

In this section, we identify some performance measures of interest. These measures
depend on the types of parallel queues. Recall that each parallel queue may belong to
one of two types: type 1 or type 2. Different performance variables will be of interest
for each type. Throughout this paper, we will assume statistical equilibrium and use
τ to denote a variable with values in the set of non-negative real numbers. Let us
first assume that the ith parallel queue is type 1, i.e., the deadlines of customers are
effective until the beginning of their service. An important performance variable for
this type of queue may be defined as

Ui ≡ the time an incoming customer to the ith queue with no

deadline must wait before he/she begins his/her service in

the long run. (2.1)

We assume Ui = ∞ if the arriving customer to the ith queue is blocked due to the
queue’s being full. Ui is called the virtual waiting time of the ith queue. We will be
interested in finding the probability distribution function of Ui , denoted as FUi (.), or
equivalently, its probability density function fUi (.).

More specific measures of performance may also be defined. Let θi be a random
variable representing the relative deadline of a customer, i.e., the difference between
the deadline of a customer and his/her arrival time in the ith queue, and ρi the time
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average fraction of customers joining the ith queue in the long run. We will be inter-
ested in the probability of missing deadline of the ith queue, defined as

αi
d = ρiP

(
θi < Ui < ∞) = ρi

∫ ∞

0
Gi(τ) dFUi (τ ). (2.2)

αi
d represents the steady-state probability that a customer misses his/her deadline in

the ith queue. When the ith queue has a finite capacity (i.e., Ki < ∞), where blocking
is allowed, an important measure of performance is the probability of blocking αi

b ,
defined as

αi
b = ρiP

(
Ui = ∞) = ρi

(
1 − FUi (∞ − 0)

)
. (2.3)

αi
b is interpreted as the steady-state probability that an arriving customer is rejected

due to full capacity at the ith queue.
Next, we assume that the ith queue is type 2, i.e., the deadlines of customers are

effective until the end of their service. Our principal performance variable for this
type of queue may be defined as

V i ≡ the time an incoming customer to the ith queue with no

deadline must wait before he/she completes his/her service in

the long run. (2.4)

We assume V i = ∞ if the arriving customer to the ith queue is blocked due to the
queue’s being full. V i is called the offered sojourn time of the ith queue. We will also
be interested in finding the probability distribution function of V i , denoted as FV i (.),
or equivalently, its probability density function fV i (.).

Similarly, the probability of missing deadline of the ith queue may be defined as

αi
d = ρiP

(
θ < V i < ∞) = ρi

∫ ∞

0
G(τ)dFV i (τ ). (2.5)

The probability of blocking of the ith queue, αi
b , may also be defined as

αi
b = ρiP

(
V i = ∞) = ρi

(
1 − FV i (∞ − 0)

)
. (2.6)

More general measures of performance may also be considered. In particular, we
may define the probability of missing deadline of the system as

αd =
s∑

i=1

αi
d . (2.7)

αd represents the steady-state probability that a customer misses his/her deadline in
the system. Similarly, we may define the probability of blocking of the system as

αb =
s∑

i=1

αi
b. (2.8)
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αb represents the steady-state probability that an incoming customer to the system is
rejected due to the queue’s being full.

Combining the last two measures, we may define the probability of loss of the
system as

α = αd + αb. (2.9)

α is viewed as the steady-state probability that a customer is lost due to either missing
his/her deadline or being rejected due to full queue.

When all parallel queues are type 1 (i.e., all customers in the system have deadlines
until the beginning of their service), we may define a more relevant performance
variable as follows. Let

U ≡ the time an incoming customer with no deadline to the

system must wait before he/she begins his/her service

in the long run. (2.10)

U is referred to as the virtual waiting time of the system. We will be interested in
finding the probability distribution function of U , denoted as FU(.), or equivalently,
its probability density function fU(.). Similarly, when all parallel queues are type 2
(i.e., all customers in the system have deadlines until the end of their service), we can
define the performance variable

V ≡ the time an incoming customer with no deadline to the

system must wait before he/she completes his/her service

in the long run. (2.11)

V is called the offered sojourn time of the system. We will be interested in finding
the probability distribution function of V , denoted as FV (.), or equivalently, its prob-
ability density function fV (.).

3 Loss rate functions

This section presents notions of some important parameters and performance vari-
ables. Closed-form solutions for these parameters and the probability density func-
tion of these variables are derived. These results will be used in an analytical model
of the system in the next section.

Let n = (n1, . . . , ns) be a s-tuple of natural numbers. Denote ψi(t,n, ε) to be the
probability that a customer in the ith queue, 1 ≤ i ≤ s, misses his/her deadline during
[t, t + ε), given there are nj customers in the j th queue, 1 ≤ j ≤ s, at time t . Define

Γi(t,n) = lim
ε→0

ψi(t,n, ε)

ε
. (3.1)

Assuming statistical equilibrium, we have

Γi(n) = lim
t→∞Γi(t,n), (3.2)
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where Γi(.) is said to be the loss rate function of the ith queue.
Barrer [4] first introduced a similar function for a single queue with Poisson arrival

process and deterministic customer impatience. He found some closed-form solutions
for this function in terms of service rate (μ) and mean relative deadline (θ ) for both
queue types mentioned earlier. Barrer’s results have been extended to a single queue
with a state-dependent Poisson arrival process and a generally distributed customer
impatience [7, 12]. We further extend these results to a larger class of models, namely,
the class of parallel queues considered in this paper. In particular, we demonstrate a
very interesting result, namely, that the loss rate for the ith queue is a function only
of ni .

Let us first assume that the ith queue in the system is type 1 and in a busy period
(i.e., the number of customers in the ith queue is at least mi ). We may define the
following random variable:

Ui
n(t) ≡ the time a virtual customer with no deadline and arriving at

the ith queue at time t must wait before he/she begins service,

given there are nj customers in the j th queue, j = 1, . . . , s,

at time t . (3.3)

Ai
n(t) ≡ the time a customer being served by one of the ith queue’s

servers at time t has spent in the system, given there are nj

customers in the j th queue, j = 1, . . . , s, at time t . (3.4)

Ui
n(t) above is referred to as the conditional virtual waiting time of the ith queue at

time t . The second random variable above is also well-defined when there are multi-
ple servers at the ith queue, i.e., mi > 1. This is because all such multiple severs are
supposed to be busy and have similar exponentially distributed service times. Thus,
this random variable must have similar distribution for any given server of the ith
queue and hence it is uniquely defined up to distribution. It is called the conditional
attained waiting time of the ith queue at time t . Let T i

k be the time of the kth arrival
at the ith queue and Si

k the time of the kth arrival of a customer who will successfully
be served at the ith queue, k = 1,2, . . . , i = 1, . . . , s, given the arrival observes that
the number of customers in each queue is represented by a vector n. For any time t ,
we also use t+ and t− to denote a time immediately after and before t , respectively,
and =d to denote the equality in distribution among random variables. Assuming
statistical equilibrium, we may define the following random variables:

Ui
n =d lim

k→∞Ui
n
(
T i

k −)
, (3.5)

Û i
n =d lim

k→∞Ui
n
(
Si

k+
)
, (3.6)

Ũ i
n =d lim

t→∞Ui
n(t), (3.7)

Ai
n =d lim

k→∞Ai
n
(
T i

k −)
, (3.8)

Âi
n =d lim

k→∞Ai
n
(
Si

k+
)
. (3.9)
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Ãi
n =d lim

t→∞Ai
n(t), (3.10)

Ui
n and Û i

n above represent the conditional steady-state virtual waiting time in the ith
queue immediately before the arrival of a new customer and immediately after the
arrival of a new successful customer at the ith queue, respectively. Ũ i

n represents the
conditional steady-state time average of the virtual waiting time in the ith queue. Sim-
ilarly, Ai

n and Âi
n above represent the conditional steady-state attained waiting time

in the ith queue immediately after the departure of customer and immediately before
the departure of a successful customer from the ith queue, respectively. Ãi

n represents
the conditional steady-state time average of the attained waiting time in the ith queue.

Let θi
n and Ei

n represent the relative deadline of the nth customer in the ith queue
and the time between when this customer begins service, if ever, and the next ser-
vice completion, respectively, in the long run. Thus, θi

n is a random variable with a
probability distribution function Gi(.) and Ei

n is a random variable with an expo-
nential probability distribution function with rate miμi . Moreover, {θi

n;n ≥ 0} and
{Ei

n;n ≥ 0} form independent sets of i.i.d. random variables. Also, let n =
(n1, . . . , ni, . . . , ns) be a s-tuple of natural numbers and ei one such s-tuple with
value of 0 at each coordinate except for coordinate i at which it has a value
of 1, i.e., ei = (0, . . . ,1, . . . ,0). Denote n + ei = (n1, . . . , ni + 1, . . . , ns) and
n − kei = (n1, . . . , ni − k, . . . , ns), where k is a natural number no greater than ni .
We show:

Lemma 3.1 For ni ≥ mi ,

P
(
Ui

n ≤ τ
) = P

(
Ui

n−ei
+ Ei

ni
≤ τ |Ui

n−ei
≤ θi

ni

)
, (3.11)

where Ei
ni

is a random variable with an exponential probability distribution function

with rate miμi which is independent of Ui
n−ei

and θi
ni

.

Proof Consider now that the system is in equilibrium run where the ith queue is in a
busy period and the number of customers in each queue is represented by the vector
n − ei . Suppose, a new customer arrives at the ith queue which will successfully be
served. Clearly, the virtual waiting time in the ith queue before and after this new
arrival can be represented by Ui

n−ei
, conditioned by the event {Ui

n−ei
≤ θi

ni
}, and Û i

n,
respectively. Moreover, the virtual waiting time will increase immediately after the
new arrival by exactly the same value as the time between when this new arrival
begins service and the next service completion. Thus, for ni ≥ m, we have

P
(
Û i

n ≤ τ
) = P

(
Ui

n−ei
+ Ei

ni
≤ τ |Ui

n−ei
≤ θi

ni

)
, (3.12)

where Ei
ni

is an exponentially distributed random variable with rate miμi which is
independent of Un−ei

and θi
ni

. We need to show

P
(
Û i

n ≤ τ
) = P

(
Ui

n ≤ τ
)
. (3.13)

Let SAi
n(t − ε, t) be the event that a customer who will successfully be served arrives

at the ith queue during [t − ε, t) given there are nj customers in the j th queue,
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1 ≤ j ≤ s, at time t . Clearly, we have

P
(
Û i

n ≤ τ
) = lim

t→∞ lim
ε→0

P
[
Ui

n(t) ≤ τ |SAi
n(t − ε, t)

]
. (3.14)

Equation (3.13) can now be proved by induction on ni . For ni < mi , (3.13) is ob-
viously true because we simply have Û i

n = Ui
n = 0. For the induction step, suppose

(3.13) is true for all ni < ki where ki ≥ mi . We need to prove (3.13) is also valid
for ni = ki . From (3.12) and the induction assumption, it can easily be shown that
P(Û i

n ≤ τ) is independent of the overall system arrival rate λ(n) when ni = ki . (For
more clarification, please see Lemma 3.3.) On the other hand, for any t > 0 and a
sufficiently small ε > 0, we have

P
(
SAi

n(t − ε, t)
) = λ(n)rn(i)P

(
Ui

n−ei
(t − ε) ≤ θi

ni

)
ε + o(ε), (3.15)

where limε→0
o(ε)
ε

= 0. This means that by varying λ(n) arbitrarily, the value of

P(Û i
n ≤ τ) must remain unchanged when ni = ki . We may choose λ(n) large enough

so that P(SAi
n(t − ε, t)) = 1. Then, from (3.9), we must have

P
(
Û i

n ≤ τ
) = lim

t→∞P
(
Ui

n(t) ≤ τ
) = P

(
Ũ i

n ≤ τ
)
. (3.16)

Using conditional PASTA [15], we get

P
(
Ũ i

n ≤ τ
) = P

(
Ui

n ≤ τ
)
, (3.17)

which completes the proof. �

Let θi
1 and Ei

1 represent the relative deadline of a customer who is to depart next
from the ith queue and the time between when this customer completes service and
the previous service completion at the ith queue, respectively, in the long run. Thus,
θi

1 is a random variable with a probability distribution function Gi(.) and Ei
1 is a

random variable with an exponential probability distribution function with rate miμi .
We have

Lemma 3.2 For ni ≥ mi ,

P
(
Ai

n ≤ τ
) = P

(
Ai

n−ei
+ Ei

1 ≤ τ |Ai
n−ei

≤ θi
1

)
, (3.18)

where Ei
1 is an exponentially distributed random variable with rate miμi which is

independent of Ai
n−ei

and θi
1.

Proof Consider that the system is in equilibrium where the ith queue is in a busy
period and the state of the system is represented by a vector n. Suppose a customer
completes his/her service successfully at the ith queue. Clearly, the attained waiting
time in the ith queue right before this service completion can be represented by Âi

n
which, by definition, is equal to Ai

n−ei
+ Ei

1, conditioned by the event {Ai
n−ei

≤ θi
1},
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where Ei
1 is an exponentially distributed random variable with rate miμi which is

independent of Ai
n−ei

and θi
1. Thus, for ni ≥ mi , we can write

P
(
Âi

n ≤ τ
) = P

(
Ai

n−ei
+ Ei

1 ≤ τ |Ai
n−ei

≤ θi
1

)
. (3.19)

Denote by SDi
n(t, t + ε) the event that a customer in the ith queue completes his/her

service successfully during (t, t + ε], given there are nj customers in the j th queue,
1 ≤ j ≤ s, at time t . Obviously, we have

P
(
Âi

n ≤ τ
) = lim

t→∞ lim
ε→0

P
[
Ai

n(t) ≤ τ |SDi
n(t, t + ε)

]
. (3.20)

We note that for any t > 0, ni ≥ m and a sufficiently small ε, the successful customer
departures from the ith queue will form a Poisson process with the rate miμi . More-
over, the event {Ai

n(t) ≤ τ } is independent of the event SDi
n(t, t + ε), and we can

write

lim
ε→0

P
[
Ai

n(t) ≤ τ |SDi
n(t, t + ε)

] = P
[
Ai

n(t) ≤ τ
]
, (3.21)

or

P
(
Âi

n ≤ τ
) = lim

t→∞P
(
Ai

n(t) ≤ τ
) = P

(
Ãi

n ≤ τ
)
. (3.22)

Using conditional reverse ASTA [11], we get

P
(
Ãi

n ≤ τ
) = P

(
Ai

n ≤ τ
)
, (3.23)

which completes the proof. �

Let FUi
n
(.) (FAi

n
(.)) and fUi

n
(.) (fAi

n
(.)) denote the probability distribution func-

tion and the probability density function of Ui
n (Ai

n), respectively.
From Lemma 3.1, we have

FUi
n
(τ ) = 1, if ni < mi,

FUi
n
(τ ) = 1

P(Ui
n−ei

≤ θi
ni

)

∫ τ

0

(
1 − e−miμi(τ−x)

)(
1 − Gi(x)

)
dFUi

n−ei
(x), (3.24)

if ni ≥ mi,

or, equivalently,

fUi
n
(τ ) = 0, if ni < mi,

fUi
n
(τ ) = miμie

−miμiτ

P (Ui
n−ei

≤ θi
ni

)

∫ τ

0
fUi

n−ei
(x)emiμix

(
1 − Gi(x)

)
dx, (3.25)

if ni ≥ mi.
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A solution for (3.25) may be found as

fUi
n
(τ ) = 0, if ni < mi,

fUi
n
(τ ) = (miμi)

ni−mi+1

(ni − mi)!∏ni−mi

k=1 P(Ui
n−kei

≤ θi
(ni−k+1))

(3.26)

×
[∫ τ

0

(
1 − Gi(x)

)
dx

]ni−mi

e−miμiτ , if ni ≥ mi.

Similarly, using Lemma 3.2, one can show

fAi
n
(τ ) = 0, if ni < mi,

fAi
n
(τ ) = (miμi)

ni−mi+1

(ni − mi)!∏ni−mi

k=1 P(Ai
n−kei

≤ θi
(ni−k+1))

(3.27)

×
[∫ τ

0

(
1 − Gi(x)

)
dx

]ni−mi

e−miμiτ , if ni ≥ mi.

Define Φi
n(s) to be the Laplace transform of [∫ τ

0 (1 − Gi(x)) dx]n, i.e.,

Φi
n(s) =

∫ ∞

0

[∫ τ

0

(
1 − Gi(x)

)
dx

]n

e−sτ dτ. (3.28)

We have

Lemma 3.3

fUi
n
(τ ) = fAi

n
(τ ) = 0, if ni < mi,

fUi
n
(τ ) = fAi

n
(τ ) = 1

Φni−mi
(miμi)

[∫ τ

0

(
1 − Gi(x)

)
dx

]ni−mi

e−miμiτ , (3.29)

if ni ≥ mi.

Proof The proof is simple by noting that fUi
n
(τ ) and fAi

n
(τ ) are probability density

functions which can also be derived as in (3.27) and (3.28), respectively. �

Let θi
n be the relative deadline of the nth customer in the ith queue and θi

1 the
relative deadline of a customer who is to depart next from the same queue. Clearly,
P(Ui

n−ei
≤ θi

ni
) and P(Ai

n−ei
≤ θi

1) represent the ratio of the incoming customers to
and the ratio of the departing customers from the ith queue who meet their deadlines
in the long run, respectively, given the state of the system seen by these customers is
represented by the vector n − ei. We have
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Lemma 3.4

P
(
Ui

n−ei
≤ θi

ni

) = P
(
Ai

n−ei
≤ θi

1

) = 1, if 0 < ni ≤ mi,

P
(
Ui

n−ei
≤ θi

ni

) = P
(
Ai

n−ei
≤ θi

1

) = (miμi)Φ
i
ni−mi

(miμi)

(ni − 1)Φi
ni−mi−1(miμi)

, if ni > mi.

(3.30)

Proof Comparing (3.27) and (3.28) with (3.30), the proof is immediate. �

The above lemma indicates that the proportion of the incoming customers to and
the proportion of the departing customers from the ith queue of type 1 who meet their
deadlines in the long run, given the state of the system seen by these customers is
represented by a vector n, are the same and only depend on the number of customers
in the ith queue, i.e., ni , and do not depend on the number of customers in the other
queues, i.e., nj , j �= i, j = 1, . . . , s. This is an important result which can help us
derive a closed-form solution for the loss rate function for the case of a queue of
type 1, i.e., when customers have deadlines until the beginning of their service. More
specifically, let

γ 1
i (n) =

⎧
⎨

⎩
(n − mi)

Φi
n−mi−1(miμi)

Φi
n−mi

(miμi)
− miμi, if n > mi,

0, if n ≤ mi.

(3.31)

We have

Theorem 3.1 Let Γ 1
i (.) be defined as in (3.2), where the ith queue is type 1, and

γ 1
i (.) is defined as in (3.31). Then Γ 1

i (n) = γ 1
i (ni).

Proof Consider that the system is in equilibrium and in a state represented by a vector
n where ni ≥ mi . Suppose that a customer departs from the ith queue. Using the
definition of Γ 1

i (n) as in (3.2), the probability that this latter departure is successful
is simply

miμi

miμi + Γ 1
i (n)

.

On the other hand, by definition, the same probability may also be written as

P
(
Ai

n−ei
≤ θi

1

)
,

where θi
1 represents the relative deadline of the departing customer from the ith

queue. Thus, we have

P
(
Ai

n−ei
≤ θi

1

) = miμi

miμi + Γ 1
i (n)

. (3.32)
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Using Lemma 3.4, we finally get

Γ 1
i (n) = 0, if ni ≤ mi,

Γ 1
i (n) = (ni − mi)

Φi
ni−mi−1(miμi)

Φi
ni−mi

(miμi)
− miμi, if ni > mi,

(3.33)

which completes the proof. �

Next, we assume that the ith queue is type 2. Let

V i
n(t) ≡ the time a virtual customer with no deadline and arriving at the

ith queue at time t must wait before he/she completes service,

given there are nj customers in the j th queue, j = 1, . . . , s,

at time t . (3.34)

V i
n(t) is called the conditional offered sojourn time of the ith queue at time t . Let T i

k

and Si
k be defined as in the proof of Lemma 3.1. Assuming statistical equilibrium, we

have

V i
n =d lim

k→∞V i
n(Tk−), (3.35)

V̂ i
n =d lim

k→∞V i
n(Sk+). (3.36)

Ṽ i
n =d lim

t→∞Vn(t), (3.37)

V i
n and V̂ i

n above represent the conditional steady-state sojourn time in the ith queue
immediately before the arrival of a new customer and immediately after the arrival of
a new successful customer to the system, respectively. Ṽ i

n is simply the conditional
steady-state time average of the offered sojourn time in the ith queue.

V i
n is called the conditional offered sojourn time of the ith queue. A similar defin-

ition may be given for a departing customer from the ith queue as follows. Let

Si
n ≡ the offered sojourn time (previously) seen upon arrival by

a departing customer from the ith queue in the long run

who finds the number of customers left in each queue is

represented by a vector n. (3.38)

Si
n is called the conditional offered sojourn time seen by a departing customer from

the ith queue. Later, we will prove that these two random variables have similar
distributions. Let θi

n and Ei
n represent the relative deadline and service time of the

nth customer in the ith queue, respectively, in the long run. We have
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Lemma 3.5

P
(
V i

n ≤ τ
) = 1 − e−μiτ , if ni = 0,

P
(
V i

n ≤ τ
) = P

(
V i

n−ei
+ Ei

ni+1 ≤ τ |V i
n−ei

≤ θi
ni

)
, if ni > 0,

(3.39)

where Ei
ni+1 is independent of V i

n−ei
and θi

ni
.

Proof Consider that the system is in equilibrium and in a state represented by the
vector n − ei where ni > 0. Suppose, a new customer arrives at the ith queue which
will successfully be served. Clearly, the offered sojourn time in the ith queue before
and after this new arrival may be represented by V i

n−ei
, conditioned by the event

{V i
n−ei

≤ θi
ni

}, and V̂ i
n , respectively. Moreover, the offered sojourn time will increase

immediately after the new arrival by the service time of the next (virtual) customer.
Thus, we can write

P
(
V̂ i

n ≤ τ
) = P

(
V i

n−ei
+ Ei

ni+1 ≤ τ |V i
n−ei

≤ θi
ni

)
, (3.40)

where Ei
ni+1 is an exponentially distributed random variable with rate μi , repre-

senting the service time of the next (virtual) arrival, which is independent of V i
n−ei

and θi
ni

. Let SAi
n(t − ε, t) be an event defined exactly in the same manner as in the

proof of Lemma 3.1. We can write

P
(
V̂ i

n ≤ τ
) = lim

t→∞ lim
ε→0

P
[
V i

n(t) ≤ τ |SAi
n(t − ε, t)

]
. (3.41)

Similarly, by induction on ni , we can show

P
(
V̂ i

n ≤ τ
) = lim

t→∞P
(
V i

n(t) ≤ τ
) = P

(
Ṽ i

n ≤ τ
)
. (3.42)

Using conditional PASTA [15], we get

P
(
Ṽ i

n ≤ τ
) = P

(
V i

n ≤ τ
)
, (3.43)

which completes the proof. �

Let θi
1 and Ei

1 represent the relative deadline and service time of a customer who
is to depart next from the ith queue in the long run. Thus, θi

1 is a random variable
with a probability distribution function G(.) and Ei

1 is a random variable with an
exponential probability distribution function with rate μi . We have

Lemma 3.6

P
(
Si

n ≤ τ
) = 1 − e−μiτ , if ni = 0,

P
(
Si

n ≤ τ
) = P

(
Si

n−ei
+ Ei

1 ≤ τ |Si
n−ei

≤ θi
1

)
, if ni > 0,

(3.44)

where Ei
1 is independent of Si

n−ei
and θi

1.
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Proof Recall Ai
n as defined in (3.8). By definition, we have

Si
n =d Ai

n + Ei
1, (3.45)

where Si
n is defined as in (3.38). Using similar reasoning as in the proof of

Lemma 3.2, we show:

P
(
Ai

n ≤ τ
) = P

(
Si

n−ei
≤ τ |Si

n−ei
≤ θi

1

)
. (3.46)

Using (3.45) and (3.46), the proof is immediate. �

Let FV i
n
(.) (FSi

n
(.))and fV i

n
(.) (fSi

n
(.)) represent the probability distribution func-

tion and the probability density function of V i
n (Xi

n), respectively. From Lemma 3.5,
we have

FV i
n
(τ ) = 1 − e−μiτ , if ni = 0,

FV i
n
(τ ) = 1

P(V i
n−ei

≤ θi
ni

)

∫ τ

0

(
1 − e−μi(τ−x)

)(
1 − Gi(x)

)
dFV i

n−ei
(x), if ni ≥ 1,

(3.47)

or, equivalently,

fV i
n
(τ ) = μie

−μiτ , if ni = 0,

fV i
n
(τ ) = μie

−μiτ

P (Vn−ei ≤ θi
ni

)

∫ τ

0
fV i

n−ei
(x)eμix

(
1 − Gi(x)

)
dx, if ni ≥ 1.

(3.48)

A solution for (3.48) may be given as

fV i
n
(τ ) = μie

−μiτ , if ni = 0,

fV i
n
(τ ) = μni+1

ni !∏ni

k=1 P(Vn−kei ≤ θi
(ni−k+1))

[∫ τ

0

(
1 − Gi(x)

)
dx

]ni

e−μiτ ,

if ni ≥ 1.

(3.49)

Similarly, using Lemma 3.6, one can show

fSi
n
(τ ) = μie

−μiτ , if ni = 0,

fSi
n
(τ ) = μni+1

ni !∏ni

k=1 P(Sn−kei ≤ θi
1)

[∫ τ

0

(
1 − Gi(x)

)
dx

]ni

e−μiτ , if ni ≥ 1.

(3.50)

We have

Lemma 3.7

fV i
n
(τ ) = fSi

n
(τ ) = 1

Φi
ni

(μi)

[∫ τ

0

(
1 − Gi(x)

)
dx

]ni

e−μiτ , (3.51)
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where Φi
ni

(μi) is defined as in (3.28).

Proof The proof is simple by noting that fV i
n
(τ ) and fSi

n
(τ ) are probability density

functions which are derived as in (3.49) and (3.50), respectively. �

Let θi
n be the relative deadline of the nth customer in the ith queue and θi

1 the
relative deadline of a customer who is to depart next from the same queue. Clearly,
P(V i

n−ei
≤ θi

ni
) and P(Si

n−ei
≤ θi

1) represent the proportion of the incoming cus-
tomers to and the proportion of the departing customers from the ith queue who meet
their deadlines in the long run, respectively, given the state of the system seen by
these customers is represented by the vector n − ei. We have

Lemma 3.8

P
(
V i

n−ei
≤ θi

ni

) = P
(
Si

n−ei
≤ θi

1

) = μiΦ
i
ni

(μi)

niΦ
i
(ni−1)(μi)

. (3.52)

Proof Comparing (3.49) and (3.50) with (3.51), the proof is immediate. �

The above lemma indicates that the proportion of the incoming customers to and
the proportion of the departing customers from the ith queue of type 2 who meet their
deadlines in the long run, given the state of the system seen by these customers is
represented by a vector n, are the same and only depend on the number of customers
in the ith queue, i.e., ni , and do not depend on the number of customers in the other
queues, i.e., nj , j �= i, j = 1, . . . , s. This is similar to an earlier result for the case of
a queue of type 1 as implied by Lemma 3.3. Similarly, this result will help us derive
a closed-form solution for the loss rate function for the case of a queue of type 2, i.e.,
when customers have deadlines until the end of their service. More specifically, let

γ 2
i (n) =

{
n

Φi
n−1(μi)

Φi
n(μi)

− μi, if n > 0,

0, if n = 0.
(3.53)

We have

Theorem 3.2 Let Γ 2
i (.) be defined as in (3.2), when the ith queue is type 2, and γ 2

i (.)

is defined as in (3.53). Then Γ 2
i (n) = γ 2

i (ni).

Proof Consider a scenario where the system is in the long run and the state is repre-
sented by a vector n for ni > 0. Suppose that a customer departs from the ith queue
in this system. Using the definition of Γ 2

i (n) as in (3.2), the probability that this latter
departure is successful is simply

μi

μi + Γ 2
i (n)

.

On the other hand, the same probability may also be derived as

P
(
Si

n−ei
≤ θi

1

)
,
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where θi
1 represents the relative deadline of the departing customer from the ith

queue. Thus, we have

P
(
Sn−ei

≤ θi
1

) = μi

μi + Γ 2
i (n)

. (3.54)

Using Lemma 3.8, we finally get

Γ 2
i (n) = 0, if ni = 0,

Γ 2
i (n) = ni

Φi
ni−1(μi)

Φi
ni

(μi)
− μi, if ni > 0,

(3.55)

which completes the proof. �

4 Analytical models

Consider the system described in Sect. 1 where queues of both type 1 and type 2
may be used. We now prove a key result, namely, that the state process of the system
in the long run converges in distribution to a well-defined Markov process. Let n =
(n1, . . . , ns) be a s-tuple of natural numbers. Define the following notations:

Ωn = {
(j1, . . . , js) : ji = 0,1, . . . , ni, i = 1, . . . , s

};
q(n) = {i : ni > 0, i = 1, . . . , s};

|n| =
s∑

i=1

ni;

0 = (0, . . . ,0);
K = (K1, . . . ,Ks).

Let

p(t;n) ≡ the probability that there are ni customers in the ith queue, i = 1, . . . , s,

at time t . (4.1)

Considering the limiting state behavior of the system during [t, t + Δ] as Δ → 0, we
can write

dp(t;0)

dt
= − λ(0)p(t;0) +

s∑

i=1

(
μi + Γi(t, ei )

)
p(t; ei ),

dp(t;n)

dt
=

∑

i∈q(n)

λ(n − ei )rn−ei
(i)p(t;n − ei )

−
(

λ(n) +
s∑

i=1

(
min(mi, ni)μi + Γi(t,n)

)
)

p(t;n)

+
s∑

i=1

(
min(mi, ni + 1)μi + Γi(t,n + ei )

)
p(t;n + ei ),

if |n| > 0 and n ∈ ΩK − {K},

(4.2)
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where min(m,n) represents the minimum of m and n, Γi(t,n) is defined as in (3.1),
and rn(i) is the probability that an incoming customer in state n is assigned to the
ith queue. A sufficient condition for the statistical stability of the above system of
equations in the long run may be given as

∃k such as ∀n > k
[

λ(n)
∑s

i=1(miμi + γi(ni + 1))
< 1

]

. (4.3)

where k,n ∈ ΩK and γi(.) is defined as in (3.31) or (3.53), depending on whether
the ith queue is type 1 or type 2, respectively. It is interesting to note that (4.3) will
be satisfied if the system is finite; i.e., |K| < ∞, or if the overall arrival process is
Poisson, i.e., λ(n) is independent of n. Assuming statistical equilibrium, let

p(n) = lim
t→∞p(t;n). (4.4)

Using Theorems 3.1 and 3.2, we have

0 = −λ(0)p(0) +
s∑

i=1

(
μi + γi(1)

)
p(ei ),

0 =
∑

i∈q(n)

λ(n − ei )rn−ei
(i)p(n − ei )

−
(

λ(n) +
s∑

i=1

(
min(mi, ni)μi + γi(ni)

)
)

p(n)

+
s∑

i=1

(
min(mi, ni + 1)μi + γi(ni + 1)

)
p(n + ei ),

if |n| > 0 and n ∈ ΩK − {K}.

(4.5)

We also note that
∑

n∈ΩK

p(n) = 1. (4.6)

The system of equations in (4.5) and (4.6) can uniquely be solved for p(n) using
standard solution techniques. Accordingly, the probability of missing deadline at the
ith queue (αi

d ) can be derived as

αi
d =

∑
n∈ΩK

γi(ni)p(n)
∑

n∈ΩK
λ(n)p(n)

, (4.7)

where γi(.) is defined as in (3.31) or (3.53), depending on whether the ith queue is
type 1 or type 2, respectively. The probability of missing deadline in the system (αd )
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may also be obtained as

αd =
s∑

i=1

αi
d . (4.8)

Let π(n) represent the steady-state probability that an incoming customer finds the
state of the system to be n in the long run. Thus, we have

π(n) = λ(n)p(n)
∑

j∈ΩK
λ(j)p(j)

. (4.9)

When the ith queue has a finite capacity (i.e., Ki < ∞), where blocking is allowed,
the probability of blocking at the ith queue (αi

b) may be derived as

αi
b =

∑

n ∈ ΩK
ni = Ki

π(n)rn(i). (4.10)

The probability of blocking in the system (αb) can be given as

αb =
s∑

i=1

αi
b. (4.11)

The time average fraction of customers joining the ith queue in the long run (ρi ) can
be written as

ρi =
∑

n∈ΩK

π(n)rn(i). (4.12)

Let us first assume that the ith queue is type 1 (i.e., the customers in the ith queue
have deadlines until the beginning of their service). The probability density function
of the virtual waiting time of the ith queue (as defined in (2.1)) may be found as

fUi (τ ) = 1

ρi

∑

n∈ΩK

π(n)rn(i)fUi
n
(τ ), (4.13)

where fUi
n
(τ ) is obtained from Lemma 3.3. Suppose next that the ith queue is type

2 (i.e., the customers in the ith queue have deadlines until the end of their service).
Then, the probability density function of the offered sojourn time of the ith queue (as
defined in (2.4)) may be derived as

fV i (τ ) = 1

ρi

∑

n∈ΩK

π(n)rn(i)fV i
n
(τ ), (4.14)

where fV i
n
(τ ) is obtained from Lemma 3.7.

We now consider the case where all parallel queues are of the same type (i.e., all
customers in the system have either deadlines until the beginning of the service or
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deadlines until the end of service). When all queues are type 1, we have

fU(τ) =
s∑

i=1

∑

n∈ΩK

π(n)rn(i)fUi
n
(τ ), (4.15)

where fU(τ) is the probability density function of the virtual waiting time of the
system (as defined in (2.10)) and fUi

n
(τ ) is obtained from Lemma 3.3. Finally, when

all queues are type 2, we get

fV (τ) =
s∑

i=1

∑

n∈ΩK

π(n)rn(i)fV i
n
(τ ), (4.16)

where fV (τ) is the probability density function of the offered sojourn time of the
system (as defined in (2.11)) and fV i

n
(τ ) is obtained from Lemma 3.7.

For the case of a finite capacity model (i.e., Ki < ∞, i = 1, . . . , s) where incoming
customers are blocked only when all the queues are full, the probability of blocking
(αb), defined (in (2.8)) as the probability that an incoming customer is denied entering
the system in the long run due to full queue, can be given as

αb = λ(K)p(K)
∑

n∈ΩK
λ(n)p(n)

. (4.17)

Similarly, the probability of loss (α), defined (in (2.9)) as the probability that an
incoming customer is lost due to missing deadline or blocking in the long run, may
be obtained as

α = αd + αb, (4.18)

where αd and αb are given as in (4.8) and (4.17), respectively.

5 Numerical results

We now study simple examples to illustrate the efficacy of the modeling approach
proposed in this paper. We consider two parallel single-sever queues (i.e., m1 =
m2 = 1) with finite capacities K1 = 5 and K2 = 4, and a Poisson arrival process of
constant rate λ. Two types of customer impatience are considered: deterministic and
exponentially distributed. They are referred to as type I and II customer impatience,
respectively. We assume that the mean relative deadline θ = 1 for both types of cus-
tomer impatience, where θ is normalized with respect to 1/μ2. We also consider two
kinds of stationary policies for assigning incoming customers to parallel queues. One
is the policy of joining shortest non-full queue (SNQ), which is a dynamic (state-
dependent) policy that assigns an incoming customer to the shortest non-full queue.
The other is the policy of joining each parallel queue with equal probability (RAN-
DOM), which is simply a static (state-independent) policy. Figures 1 and 2 represent
the probability of loss (α) for RANDOM and SNQ policies when we have determin-
istic (type I) customer impatience, μ1 = 2 and μ2 = 1, for the cases of deadlines until
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Fig. 1 Probability of loss for
deterministic customer
impatience and the case of
deadlines until the beginning of
service

Fig. 2 Probability of loss for
deterministic customer
impatience and the case of
deadlines until the end of service

Fig. 3 Probability of loss for
exponential customer
impatience and the case of
deadlines until the beginning of
service

the beginning of service (i.e., both parallel queues are type 1) and deadlines until the
end of service (i.e., both parallel queues are type 2), respectively. Figures 3 and 4
depict similar results for the case of exponential (type II) customer impatience. It is
shown that the probability of loss for SNQ policy is always smaller than RANDOM
policy. Figures 5 and 6 represent the probability of missing deadline (αd ) for deter-
ministic (type I) and exponential (type II) customer impatience when we have SNQ
policy and μ1 = μ2 = 1, for the cases of deadlines until the beginning of service
(i.e., both parallel queues are type 1) and deadlines until the end of service (i.e., both
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Fig. 4 Probability of loss for
exponential customer
impatience and the case of
deadlines until the end of service

Fig. 5 Probability of missing
deadline for SNQ policy and the
case of deadlines until the
beginning of service

Fig. 6 Probability of missing
deadline for SNQ policy and the
case of deadlines until the end of
service

parallel queues are Type 2), respectively. Figures 7 and 8 depict similar results when
the performance measure of interest is the probability of blocking of a customer in
the system (αb). It is shown that the probability of missing deadline for deterministic
(type I) customer impatience is always smaller than exponential (type II) customer
impatience. However, for the probability of blocking, the opposite is true; that is,
the probability of blocking for exponential (type II) customer impatience is always
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Fig. 7 Probability of blocking
for SNQ policy and the case of
deadlines until the beginning of
service

Fig. 8 Probability of blocking
for SNQ policy and the case of
deadlines until the end of service

smaller than deterministic (type I) customer impatience. Figures with odd numbers
have also been used in [13].
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