
J Supercomput
DOI 10.1007/s11227-013-0994-8

Bi-level fuzzy based advanced reservation of Cloud
workflow applications on distributed Grid resources

Sahar Adabi · Ali Movaghar ·
Amir Masoud Rahmani

© Springer Science+Business Media New York 2013

Abstract The increasing demand on execution of large-scale Cloud workflow appli-
cations which need a robust and elastic computing infrastructure usually lead to the
use of high-performance Grid computing clusters. As the owners of Cloud applica-
tions expect to fulfill the requested Quality of Services (QoS) by the Grid environ-
ment, an adaptive scheduling mechanism is needed which enables to distribute a large
number of related tasks with different computational and communication demands on
multi-cluster Grid computing environments. Addressing the problem of scheduling
large-scale Cloud workflow applications onto multi-cluster Grid environment regard-
ing the QoS constraints declared by application’s owner is the main contribution of
this paper. Heterogeneity of resource types (service type) is one of the most impor-
tant issues which significantly affect workflow scheduling in Grid environment. On
the other hand, a Cloud application workflow is usually consisting of different tasks
with the need for different resource types to complete which we call it heterogeneity
in workflow. The main idea which forms the soul of all the algorithms and tech-
niques introduced in this paper is to match the heterogeneity in Cloud application’s
workflow to the heterogeneity in Grid clusters. To obtain this objective a new bi-level
advanced reservation strategy is introduced, which is based upon the idea of first per-
forming global scheduling and then conducting local scheduling. Global-scheduling
is responsible to dynamically partition the received DAG into multiple sub-workflows

S. Adabi (B) · A.M. Rahmani
Department of Computer Engineering, Science and Research Branch, Islamic Azad University,
Tehran, Iran
e-mail: Adabi.Sa@ieee.org

A.M. Rahmani
e-mail: Rahmani@srbiau.ac.ir

A. Movaghar
Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
e-mail: Movaghar@sharif.ac.ir

mailto:Adabi.Sa@ieee.org
mailto:Rahmani@srbiau.ac.ir
mailto:Movaghar@sharif.ac.ir

S. Adabi et al.

that is realized by two collaborating algorithms: (1) The Critical Path Extraction al-
gorithm (CPE) which proposes a new dynamic task overall critically value strategy
based on DAG’s specification and requested resource type QoS status to determine
the criticality of each task; and (2) The DAG Partitioning algorithm (DAGP) which
introduces a novel dynamic score-based approach to extract sub-workflows based on
critical paths by using a new Fuzzy Qualitative Value Calculation System to evalu-
ate the environment. Local-scheduling is responsible for scheduling tasks on suitable
resources by utilizing a new Multi-Criteria Advance Reservation algorithm (MCAR)
which simultaneously meets high reliability and QoS expectations for scheduling dis-
tributed Cloud-base applications. We used the simulation to evaluate the performance
of the proposed mechanism in comparison with four well-known approaches. The re-
sults show that the proposed algorithm outperforms other approaches in different QoS
related terms.

Keywords Large-scale workflow · Cloud application scheduling · Application
graph · QoS · Multi-cluster Grid · Advanced reservation · Fuzzy Inference System

1 Introduction

Today’s concept of Cloud computing is extremely used by a High Performance Cloud
Computing (HPCC) environment to perform an advanced reservation for large-scale
workflow application on high-performance resources which may result in an Infras-
tructure as a Service (IaaS) delivery model. To fulfill the demands of a large-scale
application, a large number of resources have to be available for HPCC. On the other
hand, Grid [1, 52] computing infrastructures provide sharing and dynamic allocation
of distributed and high-performance computational resources while minimizing the
ownership and cost. This makes the Grid an ideal infrastructure for handling the mas-
sive amount of computational workloads of Cloud large-scale high-performance ap-
plications. Suitable elastic mechanisms for managing Grid clusters enable the Cloud
to utilize an environment, which exactly matches its actual demand and workload
while eliminates the need to purchase and operate private hardware and software.

Large-scale distributed applications are usually submitted in the form of work-
flows with certain Quality of Services (QoS) requirements. Some workflows are com-
posed of small and compact tasks but are numerous. Some others consist of heavy and
long tasks. Directed Acyclic Graph (DAG) is mostly used by users to express their
workflow applications [2, 3].

As the Grid infrastructure is chosen for scheduling Cloud applications, the
scheduling of the workflow application focuses on assigning and managing the ex-
ecution of tasks on Grid resources to satisfy some performance criterion [4]. Many
heuristics have been proposed to solve the workflow scheduling problem in Grid en-
vironment, but only few researches focus on scheduling Cloud applications in Grids.
The heterogeneity and a variety of the available resource types (service types) in
each Grid cluster is an issue which dramatically affects the complexity of schedul-
ing workflows. On the other hand, a Cloud application workflow consists of different
tasks with the need for different resource types (service types) to complete which

Bi-level fuzzy based advanced reservation of Cloud workflow

we call it heterogeneity in workflow. The main idea which forms the soul of all al-
gorithms and techniques introduced in this paper is to match the heterogeneity in
Cloud application’s workflow to the heterogeneity in Grid clusters. Thus, this paper
mainly focuses on using the idea of matching heterogeneity between clusters and
dynamically extracted sub-workflows to maximize the possibility of scheduling sub-
workflows locally. In order to obtain the idea mentioned above, we face two main
challenges: (1) to efficiently create sub-workflows from the main one, and (2) to as-
sign tasks of extracted workflows to the appropriate resources. To overcome such
problems, we proposed a new system with three main units: Cluster Observation
Unit (COU), Cluster Coordination Unit (CCU) and Application Management Unit
(AMU).

The AMU focuses on the extraction of sub-workflows from the main workflow re-
garding critical paths. Unlike the previous works that use the critical path heuristic to
minimize the execution time, the AMU is equipped with two new algorithms: (1) the
Critical Path Extraction (CPE) algorithm, and (2) the DAG Partitioning algorithm
(DAGP). The CPE algorithm extracts critical paths based on the task’s Overall Criti-
cality Value (OCV). The OCV indicates the criticality of each task and is calculated
by considering DAG specification and the status of the resources with requested re-
source type. Grid environments are composed of the autonomous and unpredictable
resources that can be added to or taken away from the environment continuously
without notice, and the status of the resources can be changed in the time. Therefore,
task’s OCV is dynamically calculated by CPE algorithm.

The DAGP algorithm introduced to extract sub-workflows from the main work-
flow according to the results of CPE algorithm (i.e., extracted critical paths). The
DAGP does this work step-by-step while distributed resources are being reserved.
Note that in this paper we use the term “partition” for the sub-workflows extracted by
DAGP algorithm. The DAGP extracts the partitions according to both features of the
application’s main graph and the status of target resources by using the Cluster Re-
source Type Quality Value (CRTQV) that indicates the suitability degree of a Grid’s
cluster for executing a specific task. The CRTQV is calculated by Cluster Observation
Unit.

The COU is equipped with a new Fuzzy Qualitative Value Calculation System
(FQVCS) to evaluate the clusters’ suitability for assigning a specific task. This output
of FQVCS is the CRTQV value, which is used by DAGP to extract “good” partitions.
The FQVCS evaluates each cluster’s overall qualitative value according to four pa-
rameters: cluster’s tasks score density, cluster’s availability, cluster’s computational
power, and cluster’s request rate.

The CCU is responsible for scheduling partitions generated by the DAGP. The
objective function of this unit is to create a schedule that satisfies the QoS constraints.
The Multi-Criteria Advance Reservation (MCAR) algorithm is introduced for this
unit to schedule the tasks of each created sub-workflow.

The novel features of this work are the following:

• Introducing a new dynamic mechanism to extract critical tasks from the submitted
Cloud application DAG according to DAG specifications and requested resource
types (like service type) status. To the best of the authors’ knowledge most of the

S. Adabi et al.

proposed methods before this work use the parameters originated from applica-
tion’s DAG (for example, computational cost and communication cost) to assign
score (that is, priority) to each task [5, 7]. This point of view has been chosen
by previous works even though the current and the future QoS status of requested
resources by the application’s tasks are crucial when we want to determine the crit-
icality of the application’s tasks. It is also important to be aware of Grid’s dynamic
nature in which the status of resources may change. To show the point, assume that
current time is 10 and the workload history shows that there may be a workload
peak in the time between 11 and 11.50. To decrease the rejection rate of more im-
portant tasks in the mentioned time, we have to schedule more critical tasks which
requested some resources during the time 11–11.50, more quickly. This example
shows that both resource status and task status must be noticed.

• Proposing a new dynamic partitioning algorithm which efficiently extracts sub-
workflows according to critical paths by taking into account the data and control
dependencies implied by the Cloud application’s DAG. In most of the previous
literature, static partitioning mechanisms are used for extracting sub-workflows
from the submitted DAG. This means that as soon as the DAG is submitted by
the user, the partitions (the sub-workflows) are extracted from the DAG before
the scheduling starts. The created partitions remain intact during the scheduling.
As the static strategy does not suit for Grid environment, we introduce a dynamic
partitioning algorithm which considers the dynamic nature of Grid resources. To
the best of our knowledge, no other research reflects this requirement.

• Evaluating the quality of the resources of the Grid by utilizing a lightweight lin-
ear strategy. We introduce a method to assess the quality of resources which is
designed based on weighted combination of multiple QoS related parameters. The
following parameters are taken into account for determining Quality of Resource
(QoR): resource availability, score density, communication cost, utilization, idle
time slots, and job failure rate. These parameters are crucial to determine QoR of
each resource and to find the best possible candidate resource for a specific task.

• Evaluating the Grid clusters status by utilizing a new Fuzzy Qualitative Value Cal-
culation System (FQVCS). As performing good schedules need awareness about
environment’s dynamic changes, we propose a new method that assesses the qual-
ity of each cluster as a combination of multiple QoS related parameters of the
resources of the cluster. The cluster’s availability, computation power, request rate,
and a new parameter which we call the score density, are included in the pro-
posed cluster’s quality assessment method. The score density reflects the current
and midterm workload of each resource in a more realistic fashion compared with
classic workload concept.

The remainder of the paper is organized as follows. Section 2 reviews related
works. Section 3 introduces the mathematical system model and Sect. 4 describes the
assumption and the related terminology. In Sect. 5 the proposed system is described in
detail including all units, the proposed fuzzy evaluation system and all the introduced
algorithms. Comparative performance evaluation of the proposed system, which is
performed by software simulation is presented in Sect. 6 and in Sect. 7 the research
summary and future directions are described.

Bi-level fuzzy based advanced reservation of Cloud workflow

2 Related work

Scheduling is a process that assigns and monitors the execution of tasks on distributed
resources. Various heuristics are proposed to solve the problem of task scheduling in
Grid environment. Most of them consider single QoS parameter (for example, the
makespan [5–7, 43, 48] of tasks) and few of them consider multiple QoS parameters.

In [5–7] scheduling methods that imply the task’s priority concept are proposed.
In this concept the priority is assigned to each task. Tasks are selected according to
their priority and assigned to the processor which satisfies the tasks predefined re-
quirements. In [5] the priority can be calculated by considering the pair of available
processor and ready node without considering the communication costs. In Dynamic
Critical Path (DCP) algorithm [6], critical tasks will be selected and assigned to ap-
propriate resources. The lower bound and upper bound of the task’s start time are
the two parameters which determined the task’s priority. The Heterogeneous Earliest
Finish Time (HEFT) [7] algorithm calculates the priority of each task regarding two
attributes, communication cost and computational cost. These algorithms perform the
static scheduling, which assigns the task’s priority at the beginning of the scheduling
process. They also neglect the dynamic nature of Grid in calculation task’s priority.

Clustering algorithms are categorized as one of the most important classes of
large-scale application scheduling algorithm [8–12, 18–23] which is categorized in
an NP-complete [17] problem. The communication volumes significantly decrease
by using this method in Grid environment [16]. This method efficiently schedules
large-scale applications according two phases. In the first phase it generates a group
of tasks and in the second phase it assigns the tasks of generated groups to the same
resources. To minimize the schedule length, Cheng and Zeng [8] proposed a dy-
namic partitioning approach. To increase the flexibility, Tan and Fan [9] proposed
the dynamic workflow partitioning model. A partitioning method that partitions the
parallel tasks on homogeneous cluster is introduced in [19]. Pegasus [20–22] stati-
cally groups the tasks into clusters to be executed as a single task. This method is
not performing well in migrating workflows. Dong and Akl [23] proposed a two-
layered workflow scheduling which uses a look-ahead technique. To minimize the
completion time Wong and Ahmad [18] proposed a clustering algorithm with trade-
off between the concurrency and communication. Although these workflow partition-
ing methods consider different aspects, they are not efficiently scheduling large-scale
workflow applications. All the proposed algorithms create clusters at the beginning
of the scheduling process and the status of the resources and tasks does not consider
in partitioning tasks of graph. On the other hand, most of the proposed algorithms in
this category consider the same resource to schedule the group of tasks, located in the
same cluster. This may cause a major problem when most of the important tasks are
assigned to unreliable resource (e.g., rescheduling).

Workflow scheduling with QoS is addressed in some research [24, 25, 42, 51].
A two-phased scheduling algorithm proposed by Prodan and Wieczorek [24] is
scheduling the tasks according to three parameters: the primary criterion, the sec-
ondary criterion and the sliding constraints. All three parameters are determined by
the users. A game-theory-based approach introduced in [25] minimizes the overall
makespan and overall cost of a workflow, while meeting each workflow’s deadline.

S. Adabi et al.

In [42] a scheduling model which combines the benefits of both, resource provider
and consumer, is proposed. Luo et al. [51] proposed architecture for advance reser-
vation which adapts with dynamic nature of the Grid and guarantees the predefined
user’s QoS.

Some approaches use meta-heuristic methods to handle task scheduling prob-
lem [13–15, 26–28, 50]. An ant colony algorithm, which considers three QoS pa-
rameters (i.e., time, cost and reliability), is proposed in [27]. A particle swarm opti-
mization approach proposed by Tao et al. [28] optimizes the weighted sum method
for multi-parameter QoS. In [13] a two-phase algorithm which implies the genetic
algorithm is introduced to schedule tasks on heterogeneous distributed computing
systems. A genetic algorithm approach is introduced by Omara et al. [14] for task
scheduling problem. Two genetic algorithms are proposed which the main contribu-
tion of the first algorithm is to minimize the total execution time and the second one
is to concern the load balance satisfaction. A novel contention-aware task duplica-
tion scheduling algorithm proposed in [15]. In order to manage the Grid resources,
Cao et al. [53] proposed a multi-agent approach in global and local scheduling. In
spite of a good performance of meta-heuristic methods, they are usually more time-
consuming than other heuristics.

Workflow scheduling on the Cloud is also addressed in some research [29–34, 41,
49]. In order to execute deadline and budget constrained applications, two schedul-
ing methods, time optimization and cost optimization, are proposed in [29]. The idea
behind the time optimization policy is to minimize the schedule length by hiring
resources from a Cloud provider. If the cost optimization policy cannot meet the pre-
defined deadline, it hires more resources. However, these proposed algorithms do
not consider workflow applications. A particle swarm optimization approach which
minimizes the execution cost of a workflow application on the resources of Cloud
is introduced in [30]. To schedule the multiple workflows which require multiple
QoS constraints, Xu et al. proposed an algorithm in [31, 32]. Byun et al. proposed a
scheduling algorithm in [33] which executes an application in a predefined deadline
while estimating the minimum number of resources required executing the applica-
tion. They also extended their algorithm in [34] by considering the pricing policy
of the Clouds while meeting the user predefined deadline. The problem of finding
an appropriate service satisfying the users’ multiple QoS requirements is addressed
in [41] by considering three QoS parameters: service’s response time, trust degree
and monetary cost. Li and Li [49] proposed an optimal Cloud resource-provisioning
algorithm by applying two new algorithms which consider the QoS parameters.

3 The large-scale workflow scheduling system model

The proposed large-scale workflow scheduling system model consists of a Cloud
application model and a Grid resource model. A Cloud application is modeled by
a Directed Acyclic Graph (DAG), G = (V ,E,w, c), in which V and E are repre-
senting tasks and the communication between them, respectively. Let V = {ti |i =
1,2, . . . ,m} and E be the set of form 〈ti , tj 〉, where ti is called a prior of tj , and tj
is a successor of ti . An edge eij ∈ E represents the communication from ti to tj . The

Bi-level fuzzy based advanced reservation of Cloud workflow

non-negative weight w(t,RTx) represents the computational cost of task t ∈ V on
resource of type x where RTx ∈ RT and the weight c(eij) represents the communica-
tion cost of edge eij ∈ E. The set {tx ∈ V : eix ∈ E} off all direct successors of ti is
denoted by succti . If the task is without successors, it is named a sink task (succtsin k

).
The Grid model denotes the set of available clusters, that is CL = {Clid|id =

1,2, . . . , n}, where id is the unique identification number of the cluster, and n is
the number of clusters. The GRS = (grik)m×n represents a matrix, where grik = 1
expresses that task ti can be assigned to cluster Clk ; otherwise, grik = 0. Therefore,
the preconditions that a workflow can be assigned to the Grid is ∀ti ∈ V,∃Clk ∈
Grid • grik = 1.

A cluster is a service site defined as Cli = ({TSD
Cli
RTx

}, {AVL
Cli
RTx

}, {CP
Cli
RTx

},
{RR

Cli
RTx

})
X∈ResourceTypes(Cli)

, where TSD
Cli
RTx

denotes the average summation of scores
density of the tasks which are currently assigned to the resources with type x;

AVL
Cli
RTx

, CP
Cli
RTx

and RR
Cli
RTx

denote respectively the average availability, average com-
putation cost and average resources request rate of cluster resources with type x.

The actual start time and actual finish time of task tj ∈ V on Rx ∈ R are denoted

by ASTRx
tj

and AFTRx
tj

, respectively. The estimated computation cost of task tj on
resource Rx is shown as w(tj ,Rx) and is calculated as:

w(tj ,Rx) = tj .Length

Rx.CyclePerSecond
(1)

The following conditions for all tasks are mandatory:

• The resource constraint requires that only one task can be executed by a resource
at any given time, which means that, for two tasks ti , tj ∈ V [35],

If
(
R(ti) = R(tj)

)
then

{
AFTRx

ti
≤ ASTRx

tj
or AFTRx

tj
≤ ASTRx

ti

}
(2)

• The precedence constraint is shown in Eq. (3). This constraint requires that, for
tasks ti , tj ∈ V the execution of the destination task tj can only be started after
the communication associated with ti and tj (shown as eij) has arrived at tj ’s
resource [35]:

ASTRx
tj

≥ AFT
Ry

ti
+ eij

EstimatedBandwidthBetween(Rx.Cluster,Ry.Cluster)
(3)

4 Assumptions

The following assumptions are considered in proposed system model.

Assumption 1 The cluster-to-cluster bandwidths are bilateral. If there is a connec-
tion between cli and clj , the cli can send data to clj and vice versa.

Assumption 2 High-speed links used to communicate between different resources
within clusters. This means that the communication cost between resources which
are both in a certain cluster is considered zero.

S. Adabi et al.

Assumption 3 Each task (a node of a DAG) requests one specific service (resource
type).

Assumption 4 There is no central terminal submitting Cloud application, and there-
fore users can submit their tasks to each of the clusters.

Assumption 5 A sub-workflow is a subset of the original DAG. The properties of all
tasks of a sub-workflow are similar to the original DAG.

5 The proposed system

Grid users often submit their applications in the form of workflows with certain re-
quirements of QoS. Some workflows are composed of small and compact tasks but
are numerous. Some others consist of heavy and long computational tasks which re-
quire thousands of hours of a total CPU time. The later type of workflows are usually
categorized as the large-scale workflows [47]. The proposed system addresses the
scheduling of large-scale applications on the distributed and heterogeneous resources
of the Grid. Figure 1 illustrates the general view of the system units. As can be seen
in Fig. 1, the proposed system consists of three main units as follows.

Fig. 1 A general architectural view of the system

Bi-level fuzzy based advanced reservation of Cloud workflow

• Cluster Observation Unit. Each cluster has a Cluster Observation Unit (COU),
which investigates the resources’ status and calculates the Cluster Resource Type
Quality Value (CRTQV) of each resource type of the cluster. The CRTQV is used
by AMU to extract sub-workflows from the main application DAG. Calculating
the CRTQV value classifies in the family of multi-objective optimization prob-
lems, and to transform it to a single-objective problem, a new fuzzy approach is
proposed. This unit is described in detail in Sect. 5.1.

• Application Management Unit. For each application there is a specific Applica-
tion Management Unit (AMU) which is responsible for performing Global-level
scheduling. Global-level scheduling is the process that extracts sub-workflows
from the main workflow based on two novel algorithms: (1) Critical Path Extrac-
tion algorithm (CPE) which extracts critical paths, and (2) DAG Partitioning algo-
rithm (DAGP) which creates sub-workflows according to the critical paths gener-
ated by CPE. In this unit, the critical path concept extensively is used to reach high
degrees of parallelism both in schedule generation and application execution. This
unit is described in Sect. 5.2.

• Cluster Coordination Unit. Each cluster has a Cluster Coordination Unit (CCU)
which is responsible for performing Local-level scheduling. Local-level schedul-
ing is the process that schedules the prioritized tasks on cluster’s resources. The
CCU uses a new advance reservation mechanism called Multi-Criteria Advance
Reservation (MCAR) to select the best resource, which meets the QoS constraints.
This unit described in Sect. 5.3.

5.1 Cluster Observation Unit (COU)

Each COU uses a Fuzzy Inference System called Fuzzy Qualitative Value Calcula-
tion System (FQVCS) to calculate CRTQV values for its corresponding Grid cluster
for a particular task. The remainder of this section describes the FQVCS in detail.
The COU hosts the FQVCS_FIS function and responds to the requests of an AMU
(specifically DAGP function) about CRTQV value of the cluster. Algorithm 1 de-
scribes the details of FQVCS_FIS function.

5.1.1 Fuzzy Qualitative Value Calculation System (FQVCS)

The distinguishing feature of the proposed approach is assigning qualitative values
to each Grid’s computational cluster. For each resource type in a cluster, the Fuzzy
Qualitative Value Calculation System (FQVCS) calculates Cluster Resource Type
Quality Value (CRTQV) by using a novel Fuzzy Inference System (FIS). Cluster’s
Quality Value Array (CQVA) is a series of CRTQV values (calculated by FQVCS)
which reflects the worth of the cluster’s resources.

Notions about parameters that make numerical value of CRTQV (that is,
CRTQV_value) are vague and uncertain to be expressed by clear mathematical mod-
els. However, it is often possible to describe the CRTQV_value by means of building
fuzzy models. As a common source of information for building fuzzy models is the
knowledge of expert, we used this approach for designing and developing the FIS of
the COU.

A Fuzzy decision controller [37] is composed of the following parts:

S. Adabi et al.

Algorithm 1 FQVCS_FIS function

Input: t as Task
Output: float CRTQV

float FQVCS_FIS (Task T){

1: float TSD,AVL,CP,RR;
2: TSD=Calculate_TSD(thisCluster, t . ResourceType); //using Eq. (5)
3: AVL=Calculate_AVL(thisCluster, t . ResourceType); //using Eq. (6)
4: CP=Calculate_CP(thisCluster, t . ResourceType); //using Eq. (7)
5: RR=Calculate_RR(thisCluster,T); //using Eq. (8)
6: Float CRTQV=FIS(TSD,AVL,CP,RR);

//using Fuzzy Inference System described in Sect. 5.1
7: Return CRTQV;

} //End Function

(1) Input and output variables, which are usually determined based on knowledge of
experts. The input and output variables of the FQVCS are discussed in Sect. 5.1.2.

(2) Fuzzification Interface (FI), which has the effect of transforming clear values of
input variables to fuzzy sets. The FI of the FQVCS, which includes the member-
ship functions for the input variables, is illustrated in Sect. 5.1.3.

(3) Fuzzy rule base (RB), in which a set of fuzzy rules is determined. These rules
are used for the fuzzy inference process. The RB of the FQVCS is illustrated in
Sect. 5.1.4.

(4) Defuzzification interface (DFI) that translates the output of the fuzzy inference
process, from fuzzy linguistic values to a clear real number by using a defuzzifi-
cation method. The DFI of the FQVCS, which includes the membership function
for the output variable, is illustrated in Sect. 5.1.3.

In the following, the four parts of the FQVCS are discussed.

5.1.2 Input and output variables of the FQVCS

Output The FQVCS has one output CRTQVtx
Cli

(i.e., degree of suitability of as-

signing task tx to the cluster Cli). Note that CRTQVtx
Cli

= CRTQV(RTA,[TS,TE])
Cli

where
RTA is the resource type, which is requested by tx , and [TS,TE] is the time slot indi-
cated by start time and finish time of task tx . Start time and finish time of a task are
calculated by the estimation method described in Sect. 5.2.1 (Eqs. (17)–(20)).

Input set Four qualitative criteria that can influence a decision in determining
CRTQV of each cluster include: (a) average cluster’s assigned tasks score density

(TSD
Cli
RTA

), (b) average cluster’s availability (AVL
Cli
RTA

), (c) average cluster’s compu-

tation power (CP
Cli
RTA

), and (d) average cluster’s request rate (RR
Cli
RTA

). All parameters
mentioned above should be calculated for a specific resource type, which is requested
by task tx .

In the following, the four mentioned qualitative criteria are discussed in detail.

Bi-level fuzzy based advanced reservation of Cloud workflow

i. Average cluster’s assigned tasks’ score density (TSD
Cli
RTA

). In most of previous
works, more computationally powerful resources are selected more frequently
for important tasks as these resources are able to complete the assigned tasks
more quickly. On the other hand, there is a fact that is usually neglected in these
approaches: the failure of a resource which hosts too many important tasks will
cause a significant loss and may lead to massive application failures as reschedul-
ing of these important tasks (and usually huge and computation-intensive) may
not be possible in a timely fashion to prevent application failure. To address this
issue a new parameter is introduced under the name tasks’ score density. The
score density of resource m can be calculated from Eq. (4) and it is simply the
summation of the Overall Critically Values (OCV) of all the tasks which are cur-
rently assigned to the resource m. Note that the OCV of a task, as calculated by
Eq. (22), reflects the importance of that task in its application DAG.

TSDCli
Rm

=
∑

ti∈k

OCV(ti) (4)

where k is the set of tasks which are currently scheduled on the resource m of
cluster Cli and their start time is equal or greater than current time (i.e., sched-

uled for execution in the future). Having this definition, we can compute TSD
Cli
RTA

using Eq. (5)

TSD
Cli
RTA

= 1

n

∑

Rj ∈RTA

TSDCli
Rj

(5)

where RTA is the set of all resources of type A in cluster Cli , and n is the count
of resources in RTA.

It is obvious that a cluster with a higher TSD is a more failure-sensitive cluster
(as it is responsible for more important tasks). The TSD also reflects the current
and midterm workload of the clusters in a more realistic fashion compared with
classic workload concept [39].

ii. Average cluster availability (AVL
Cli
RTA

). Dynamic nature of Grid may lead to poor
scheduling, as the requested resource may be unavailable when the task is ready
to run. Therefore, availability is one of the most effective parameters in efficient
scheduling of Grid workflow applications. Availability represents the probability
that a cluster’s resources can be contacted to be consumed at a given time and is
usually defined by Eq. (6):

AVL
Cli
RTA

= 1

n

(∑

Rj ∈RTA

Rj .Up time

L

)
(6)

where Rj . Uptime is the fraction of time in the period L in which the resource j

has been up and intact. Note that higher availability value for a resource type of
a cluster indicates that the resources of that type are more intact and accessible.

iii. Average cluster computation power (CP
Cli
RTA

). As discussed in [40], when a
choice is to be made between two resources, it is better to highly utilize the fast
resource rather than the slow resource because the fast resource computes many
more operations in the given time than the slow one. According to this logic, the

S. Adabi et al.

cluster with higher average computation power value is more suitable for assign-
ing submitted workflow to it. The average computation power for the resources
of type A in cluster Cli is calculated by Eq. (7)

CP
Cli
RTA

= 1

n

(∑

Rj ∈RTA

Rj .ComputationPower

)
(7)

iv. Average cluster resource type request rate (RR
Cli
RTA

). Grid environment is com-
posed of a number of shared resources which shape a powerful computational
system. In most of the time the fraction of provided resources to resource con-
sumers is less than one. Therefore, a competition will form to achieve resources.
As the request rate of specific resources with specific resource type (for instance,
RTA) in cluster (for instance, Cli) increases, the chance of acceptance of new re-
quests will decrease. A task ti requires a resource type in a specific time [TS,TE],
where TS and TE are the estimated start time (EST(ti)) and estimated finish time
(EFT(ti)) of task ti , respectively. The request rate of resource j with type A in
cluster Cli in time slot [TS,TE] is denoted as RRCli

Rj
(Ts, TE). Therefore, the aver-

age request rate for resource type A in cluster Cli based on estimated execution

time of task ti (that is, RR
Cli
RTA

(EST(ti),EFT(ti)) is calculated by Eq. (8):

RRCli
Rj

(Ts, TE) = Rj .RequestRate(Ts < Time < TE)

RR
Cli
RTA

(Ts, TE) = 1

n

∑

Rj ∈RTA

RRCli
Rj

(Ts, TE)

for task ti : RR
Cli
RTA

(EST(ti),EFT(ti)) = RR
Cli
RTA

(Ts, TE)

(8)

where TS and TE determine the boundaries of the time when the request rate
should be calculated. Note that the advanced reservation on Grid resources pro-
vides us with sufficient information to calculate request rate of each resource in a
given time in the future. This is made possible as each CCU has a request rate ta-
ble which contains entries for each reservation performed on the resources. This
table is updated every time when a new advanced reservation is performed suc-
cessfully on a resource of the cluster. Although this calculation may have some
inaccuracy issues due to further events, those that may happen to the resource in
the future (before the real time reaches the beginning of the desired time), it can
reflect a good approximation of what the request rate will be in the desired time
in the future.

5.1.3 Fuzzification and defuzzification interface

Fuzzy inference is the process of formulating the mapping from a given input set
to an output using fuzzy logic [36]. The basic elements of fuzzy logic are fuzzy
rules, linguistic variables, and fuzzy sets. The values of the linguistic variables are
adjectives like “small,” “medium,” and so on. The membership degree (a number
between 0 and 1) can be obtained by membership function. A curve or linear shape
can be used to express a membership function. In the following we discussed the

Bi-level fuzzy based advanced reservation of Cloud workflow

input and output variables and the membership functions that are used to assign the
degree of membership for these variables of the FQVCS.

All membership functions and their graphical representations are illustrated in Ta-
ble 1 and Fig. 2, respectively. We drew the membership function illustrated in Fig. 2
according to the knowledge of the experts in fuzzy toolbox of Matlab. According to
the graphical presentation of membership functions we extracted their corresponding
equations as given in Eqs. (9)–(13).

• Fuzzy values of input variables:

i. Average cluster’s Tasks Score Density (TSD
Cli
RTA

). Three fuzzy sets are defined
for this input variable: {R (relax), M (moderate), C (critical)}. Membership
functions in Table 1 (Eq. (9)) are used for assigning the membership degree of
each clear value of this variable.

ii. Average cluster’s Availability (AVL
Cli
RTA

). Three fuzzy sets are defined for this
input variable: {A (Attainable), M (Moderate), D (Devastate)}. Membership
functions in Table 1 (Eq. (10)) are used for assigning the membership degree
of each clear value of this variable.

iii. Average cluster’s Computation Power (CP
Cli
RTA

). Three fuzzy sets are defined
for this input variable: {W (Weak), M (Moderate), S (Strong)}. Membership
functions in Table 1 (Eq. (11)) are used for assigning the membership degree
of each clear value of this variable.

iv. Average cluster’s resource type Request Rate (RR
Cli
RTA

). Three fuzzy sets are
defined for this input variable: {S (Sparse), N (Normal), B (Busy)}. Mem-
bership functions in Table 1 (Eq. (12)) are used for assigning the membership
degree of each clear value of this variable.

• Fuzzy values of output variable:

i. CRTQV. Five Fuzzy sets are defined for this output variable: {E (Excellent),
G (Good), M (Moderate), B (Bad), W (Worst)}. Membership functions in Ta-
ble 1 (Eq. (13)) are used for assigning the membership degree of each clear value
of this variable.

The outputs of the FQVCS used for calculating CRTQV are plotted in Figs. 3, 4, 5
and 6, against availability, computation power, resource request rate and tasks score
density in different input parameters conditions. The weighted average method [36]
is used for defuzzification and computing the clear output value of FQVCS_FIS.

5.1.4 Fuzzy rule base (RB)

The available knowledge about the problem is stored in the form of linguistic “if-
then” rules as shown in Table 2. These rules guide the system behavior. A fuzzy
“if-then” rule is able to capture the usual decision making of humans by utilizing lin-
guistic labels and membership functions. On the other hand, each fuzzy “if-then” rule
defines behavioral dynamic of the target system. In the following, the interpretations
of two sample rules of Table 2 are presented:

Rule 5: if (TSD is Moderate) and (Avl is Moderate) and (CP is NOT Weak) and (RR
is NOT Busy) then (CRTQV is Bad)

Rule 20: if (Avl is Devastated) then (CRTQV is Bad)

S. Adabi et al.

Table 1 Equations of the membership functions of the FQVCS_FIS

Input variable Membership function Linguistic value

TSD (Eq. (9)) μ(x) = 1
1+| x−0.06

0.24 |6.8
R Relax

μ(x) = e
−(x−0.047)2

0.02 M Moderate

μ(x) = 1
1+e−26×(x−0.8) C Critical

Avl (Eq. (10)) μ(x) = 1
1+| x−1.1

0.22 |10
A Attainable

μ(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

e

−(x−0.56)2

2×0.0452 x ≤ 0.56

1 0.56 ≤ x ≤ 0.73

e

−(x−0.73)2

2×0.072 x ≥ 0.73

M Moderate

μ(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 0 ≤ x ≤ 0.38

0.54−x
0.16 0.38 < x ≤ 0.54

0 x > 0.54

D Devastate

CP (Eq. (11)) μ(x) = 1
1+| x+0.35

0.5 |10
W Weak

μ(x) = 1
1+| x−0.5

0.16 |3.4
M Moderate

μ(x) = 1
1+| x−1.25

0.48 |13.2
S Strong

RR (Eq. (12))

μ(x) = 1
1+| x+0.14

0.33 |5.6
S Sparse

μ(x) = 1
1+| x−0.52

0.13 |5.8
N Normal

μ(x) = 1
1+| x−1

0.28 |7 B Busy

Output variable Membership function Linguistic value

CRTQV (Eq. (13)) μ(x) = Max(Min(x−0.8
0.95−0.8 ,1),0) E Excellent

μ(x) = Max(Min(x−0.53
0.67−0.53 ,1, 0.87−x

0.87−0.84),0) G Good

μ(x) = Max(Min(x−0.28
0.423−0.28 ,1, 0.7−x

0.7−0.5),0) M Moderate

μ(x) = Max(Min(x−0.14
0.16−0.14 ,1, 0.39−x

0.39−0.22),0) B Bad

μ(x) = Max(Min(1, 0.2−x
0.2−0.05),0) W Worse

5.2 Application management unit (AMU)

The AMU unit generally is responsible for the following duties:

• Calculating the criticality of each task by applying the proposed Overall Criticality
Value (OCV) method

• Extracting critical paths from the main workflow
• Creating sub-workflows from the extracted critical paths

Bi-level fuzzy based advanced reservation of Cloud workflow

Fig. 2 Graphical presentation of the membership functions of the FQVCS_FIS

• Scheduling the sub-workflows (by sending the sub-workflows to target Cluster Co-
ordination Unit)

This unit uses two proposed algorithms, the Critical Path Extraction algorithm
(CPE) and the DAG Partitioning algorithm (DAGP) to accomplish its mission.

S. Adabi et al.

Fig. 3 Outputs of the FQVCS for availability in different score density, computation power and request
rate values

5.2.1 Critical path extraction algorithm

Identifying critical tasks is an important key in efficient DAG scheduling. In most
literature [6, 23] the critical path is the longest path from entry task to an exit task
(or the longest path from current task to an exit task or to an entry task). Note that
usually the Critical Path (CP) contains the critical tasks. In most previous literature
for identifying the critical tasks only the computation and communication cost of
tasks are considered and the dynamic nature of Grid resources is neglected [6, 7]. On
the other hand, most of the previous literature used static rank strategy to identify the
critical tasks [7, 23]. Static rank strategy calculates the tasks’ values at the beginning
of the scheduling and applies these critical tasks to identify critical paths.

Instead of using a static rank value computed at the beginning of the scheduling
process, the CPE algorithm adopts a dynamic ranking strategy which enables mak-
ing decisions based on most current status of resources regarding both application
graph and Grid resources. The CPE assigns an Overall Criticality Value (OCV) to
each task in a given Cloud application DAG as its rank. This value may be updated
as the scheduling process proceeds to reflect the most recent state of the applica-
tion scheduled nodes and Grid resources status. In the calculation of the OCV value,
some parameters are in conflict with each other, and according to the definition of
the Multi-Criteria Decision Making (MCDM) problems, the OCV calculation is a
member of the family of the MCDM problems. Three approaches are introduced for
solving the MCD problems: (1) Multiple Attribute Utility Theory (MAUT), (2) out-

Bi-level fuzzy based advanced reservation of Cloud workflow

Fig. 4 Outputs of the FQVCS for computation power in different score density, availability and request
rate values

ranking [44], and (3) Analytic Hierarchy Process (AHP) [45]. We utilize the MAUT
approach which combines the utility function of each parameter while considers the
weighting function for each of them. The OCV calculation problem is transformed
to a single objective problem by using the MAUT approach. Single objective prob-
lems are easy to handle as we have to maximize (or minimize) one specific objective
function.

In the following, the parameters used by the CPE algorithm to measure the criti-
cality of the tasks in a Cloud application DAG are mentioned.

• Communication Cost (C(eij)): The communication cost between two tasks, ti and
tj , is the amount of data which should be transferred between them. This value can
be measured by bytes, kilobytes, etc. As the communication cost between parent
and child tasks increases, the tasks become more critical and hence it is desired to
schedule these highly dependent tasks on the same cluster or on the clusters with
high-speed available communication link.

• Average Execution Cost of task ti on all available clusters (AECRTA
ti

): This value
is based on estimated CPU cycles needed for executing the task ti and average
computation power of resources with type A in all clusters. In most researches
estimation for execution cost of a task is calculated as the average of previous run
times of the task, but in this paper CPU cycles are used as the unit of measurement.
Note that calculating execution cost according to CPU cycles instead of execution
time will give us more accuracy to estimate execution time of each task on any

S. Adabi et al.

Fig. 5 Outputs of the FQVCS for request rate in different score density, availability and computation
power values

resources based on resource’s computation power. The AECRTA
ti

is calculated by
Eq. (14),

AECRTA
ti

= ti .Lenght

GACPRTA

(14)

where GACPRTA is the Grid Average Computation Power for resources of type A,
and calculated by Eq. (15),

GACPRTA = 1

k

∑

Rj ∈GridRTA

Rj .ComputationPower (15)

where GridRTA is the set of all resources of type A in the Grid and k is the count
of resources in the set GridRTA . The task becomes more critical as its computation
cost increases.

• Count of task successors (DAG.Succti): A task which has more successors usu-
ally depends on more resources for communication, and the count of immediate
successors indicates the number of tasks which directly waited for completion of
their parent tasks. Therefore, the more successors a task has, the higher importance
priority it must have.

• Time pressure (T ti
p): Let T

ti
p ∈ [0,1] represent task ti ’s time pressure. Let ESTRTA

ti
be the estimated time at task ti that can start regardless of the actual resource
that will process the task (which will be determined during scheduling). When

Bi-level fuzzy based advanced reservation of Cloud workflow

Fig. 6 Outputs of the FQVCS for task score density in different availability, computation power and
request rate values

estimated start time ESTRTA
ti

of task ti is fast (that is, T
ti
p tends to become one), the

Application Management Unit is under more pressure to schedule task ti . The time
pressure is determined by Eq. (16),

T ti
p = 1 − (ESTRTA

ti
− τ)

Max(∪tx∈DAG.Tasks(EST
RTy

tx
− τ))

(16)

where τ is the current time.

As the Grid is a heterogeneous environment and the computation time of tasks
varies from resource to resource, it is not possible to compute the exact ESTRTA

ti
.

Furthermore, the data transmission time also depends on (1) the bandwidth between
selected clusters that can provide the requested resource type, and (2) the amount of
data that should be transferred between tasks. Hence, the execution and data trans-
mission times for each unscheduled task should be approximated. If task tentry is the

entry node of the application’s DAG, the ESTRTA
tentry

is computed by Eq. (17):

ESTRTA
tentry

= τ − ε (17)

where ε is the time which the scheduler needs for schedule task ti , and τ is the current
time.

S. Adabi et al.

Table 2 The fuzzy rule base of the FQVCS_FIS

Rule No TSD Avl CP RR CRTQV Rule No TSD Avl CP RR CRTQV

1 R A W ∼S B 17 R M ∼W ∼B M

2 R M ∼W B B 18 C A ∼W S M

3 R M W N B 19 R M W B W

4 M A S B M 20 − D − − W

5 M A M N M 21 M ∼D W ∼S W

6 ∼R A W ∼S B 22 M M ∼W B W

7 M M ∼W ∼B B 23 C A M B W

8 M M W S B 24 C A W − W

9 C A S ∼N B 25 C M S ∼B W

10 C A M N B 26 C M M ∼S W

11 C M ∼W S B 27 C M W − W

12 R A S S E 28 C A S B W

13 R A S ∼S G 29 R ∼D S ∼B G

14 R A M S G 30 M ∼D S S G

15 R A M ∼ S M 31 C ∼D M S B

16 R ∼D W S M 32 R M ∼W S G

ESTRTA
ti

= Max
tj ∈pred(ti)

⎧
⎨

⎩

Min(DLtj ,EFT
RTy

tj
) + c(eij)

EBW If tj is not scheduled

AFTClx
tj

+ c(eij)

EBW otherwise

⎫
⎬

⎭
(18)

where EBW is calculated by Eq. (19):

EBW = 1

n

∑

(Cli ,Clj)∈CCL∧i �=j

(
MBW(Cli ,Clj)

) − 1

m

∑

k∈IT

(
UBW

(Cli ,Clj)

k

)

where:

⎧
⎪⎪⎨

⎪⎪⎩

n =
∑

(Cli ,Clj)∈CCL∧i �=j

(1)

m =
∑

k∈IT

(1)

⎫
⎪⎪⎬

⎪⎪⎭
(19)

where MBW(Cli ,Clj) is the Maximum Band-Width between clusters Cli and Clj when
there is no communication load between Cli and Clj (i.e., all the bandwidth is un-

used). The UBW
(Cli ,Clj)

k is the Used Band-Width between clusters Cli and Clj during
the time k. The CCL and the IT are candidate cluster list and concerned time slot, re-
spectively.

Let EFTRTA
tj

be the estimated finish time at which tj may finish its computation re-
gardless of the actual resource that will process the task and be calculated by Eq. (20):

EFTRTA
tj

= ESTRTA
tj

+ AECRTA
tj

(20)

After the task is scheduled, the ESTRTA
tj

and EFTRTA
tj

are respectively replaced with

actual start time (ASTClx
tj

) and actual finish time (AFTClx
tj

).

Bi-level fuzzy based advanced reservation of Cloud workflow

• Grid Resource Average Request Rate (GRRRTA): As the resources are shared in
Grid environment, most of the time the fraction of provided resources to resource
consumers is less than one and the Grid resource consumers face with competition
in environment. The pressure of competition is varied in different time slots as the
resources face different workloads. Assume that task ti requires resource type A in
time slot [ESTRTA

ti
,EFTRTA

ti
]. The Grid Resource average Request Rate (GRRRTA)

for requested resource type A is calculated by Eq. (21):

GRRRTA = 1

m

(
m∑

i=1

RR
Cli
RTA

(
EST(ti),EFT(ti)

)
)

(21)

where RR
Cli
RTA

(EST(ti),EFT(ti)) is calculated as in Eq. (8). The Overall Criticality
Value (OCV) of task ti which belongs to the application with workflow graph indi-
cated by DAG can be calculated by Eq. (22):

OCVti
DAG = w1 ×

(∑
tk∈DAG.Succti

(C(eik)
N + OCVtk

DAG)

Max(2 × DAG.Succti .count,1)

)
+ w2 × T ti

p

+ w3 × N

Succti +w4 ×
N

AECRTA
ti

+w5 × GRRRTA (22)

where the wi (i = 1, . . . ,5) is the weight coefficient which determines the impact of
the i-th value dimension on the OCV. In Eq. (22) the normalized values of C(eik),
Succti and AECRTA

ti
are used (i.e., to be between 0 and 1) which are indicated as

N

C(eik),
N

Succti and
N

AECRTA
ti

, respectively and calculated by Eqs. (23)–(25). The sim-

ple formulas used in Eqs. (23)–(25) make the values of
N

C(eik),
N

Succti and
N

AECRTA
ti

between one and zero, and allow the impact domain of these parameters to be limited
by weighting factors w1, w3, and w4 in Eq. (22).

N

C(eik) = C(eik) − Min(∪eij ∈DAG.edges(C(eij)))

Max(∪eij ∈DAG.edges(C(eij))) − Min(∪eij ∈DAG.edges(C(eij)))
(23)

N

Succti = Succti .count

DAG.tasks.count
(24)

N

AECRTA
ti

=
AECRTA

ti
− Min(∪

tx∈DAG
RTA
Tasks

(AECRTA
tx

))

Max(∪
tx∈DAG

RTA
Tasks

(AECRTA
tx

)) − Min(∪
tx∈DAG

RTA
Tasks

(AECRTA
tx

))
(25)

The CPE algorithm extracts critical paths according to OCV value of the tasks. In
this paper, the critical path is defined as follows:

Definition 1 The critical path of an application DAG is a Depth First Search (DFS)
of the DAG from the entry node to exit node with the maximum OCV value of tasks.

The critical path concept is further used by the DAGP algorithm to create sub-
workflows as discussed in Sect. 5.2.2. The pseudo-code for the CPE is given in Al-
gorithm 2.

S. Adabi et al.

Algorithm 2 CPE function

Type Definition{
TypeDef Task as(int task#,int start_time, int finish_time, int deadline, bool isScheduled,

float OCV, float ComputationWeight
ResourceType RT, float MinAccpetableAvailofResource, Predecessors array
of int, Successors array of int);

TypeDef ResourceType as (string ResourceTypeName);
TypeDef Edge as(int task1#, int task2#, float CommunicationWeight);
TypeDef CRTQV_Strcut as(ResourceType ResourceTypes[], float CRTQV);
TypeDef AppDAG as(tasks[0..t] as array of Task, edges as array of Edge);
TypeDef ReservationResult as(int task#, bool Success, int ClusterId, int AFT, int AST);
TypeDef Path as(tasks[0..t] as array of Task, edges as array of Edge, float SumOCV);
TypeDef PairNode as(int task1#, int task2#, int #TargetClusterForFirstNode,

int #TargetClusterForSecondTask, float PartitionRank);
TypeDef Cluster as(int Cluster#, ResourceType AvailableResourceTypes[],

float Average_MIPS_ForEachRT[], CRTQV_Strcut RTQV[]);
TypeDef Schedule as(PN[0..n] as array of PairNode, float ScheduleScore);}

Input:
AppDAG dag // application DAG

Output:
boolean (true or false) // result of advanced reservation for whole application

boolean CPE(AppDAG dag){
1: boolean finished=false;
2: P[] as array of Path;
3: P[] = GenerateAll_DFS_Paths(dag);

/∗ The RR variable defined below is a globally shared variable and if in any step one
of the partial schedulers MCAR (which are running in parallel) fails to schedule a part
of application’s DAG, it will change the value of RR variable to false. Therefore if the
RR==false then one or scheduler(s) failed. ∗/

4: boolean RR=true;
5: Thread Threads_ DAGPCaller[];
6: while(Count(dag.tasks.unscheduled==true) > 0){
7: for(int i = 0; i < dag.tasks.count; i + +){
8: if (!dag.tasks [i].isScheduled)

9: dag.tasks[i].OCV = w1 × (

∑
tk∈succti

(C(eik)
N+Score

tk
DAG(j)

)

max(2×Succti
.count,1)

)

+ w2 × Succ
N
ti

+ w3 × ti .Level + w4 × ECN
ti+ w5 × RRti

} //Eq. (22)
10: for(int i = 0; i < P.count; i + +){
11: P[i].SumOcv = 0;
12: for(int j = 0; j < P [i].count; j + +){
13: P[i].SumOcv= P[i].SumOcv +P[i].tasks[j].OCV;} }
14: P[] =Sort(P, SumOCV, descending);
15: Path CP=P[0]; // Selecting the first element of the P[] array. This element

has the highest sumOCV value.
16: int i = 1;

Bi-level fuzzy based advanced reservation of Cloud workflow

Algorithm 2 (Contnued)

17: while((CP.tasks.unscheduled==true) < η){
18: CP + = P[i];
19: i + +; }

// For each DAGP call, a new thread must be created to allow parallel
execution of the process

20: Threads_ DAGPCaller.Add(new Thread(new ThreadStart(DAGP(CP)));
21: int LastAddedThreadIndex= Threads_ DAGPCaller.count - 1;
22: Threads_ DAGPCaller[LastAddedThreadIndex].Start();}
23: For(int i = 0; i < Threads_ DAGPCaller.count; i + +)

{ Threads_ DAGPCaller[i].Join(); }
24: if (!RR){ RollBackUpdates(); // Canceling all successful reservations

for application’s DAG
25: Return (false); }
26: Return(true)} //End function

When the AMU receives a workflow (DAG), the following steps will be performed
by CPE for all unscheduled tasks of the DAG. The CPE first traverses the DAG
by utilizing a Depth First Search (DFS) algorithm to find all possible paths of the
DAG (line 3). For each unscheduled task the OCV value is calculated according to
Eq. (22) (lines 6–9). After calculating the OCV value, the CPE tries to identify the
critical path in each step. The critical path is extracted from the summation of tasks’
OCV values which belong to a specific path and the CPE selects the path with the
highest OCV summation as the critical path (lines 11–17). We consider the param-
eter η as the threshold of the minimum number of tasks in a critical path. The CPE
adds more tasks to the recently extracted critical path, until the count of tasks in it
reaches η or all unscheduled tasks of the DAG join the critical path (lines 17–19).
Then, the CPE generates a specific thread to call the DAGP algorithm for the recently
extracted critical path in parallel with the main thread (lines 20–22). Note that in
line 23, the main thread, which runs the CPE algorithm, is joined with all of its child
threads (created in line 22), and the main thread will be suspended until all threads
in Threads_DAGPCaller array finish. Therefore, lines 24–26 will execute after all
DAGPs finish their work (in a hierarchical view the DAGP threads bound to their
MCAR schedulers and, therefore, a DAGP thread will end when all of its MCAR
scheduler threads end). In this step if RR has the false value, it can be concluded
that scheduling of at least one path of the DAG failed, thus the application does not
successfully schedule which will require to roll back all effects of scheduling related
to application’s DAG (as mentioned in line 25).

5.2.2 DAG Partitioning algorithm

The DAGP algorithm dynamically creates partitions according to resource status in
each cluster. Creating partitions (sub-workflows) of application DAG usually leads to
higher parallelism in both scheduling process and execution of the application. The
DAGP tries to fulfill the following needs:

S. Adabi et al.

(1) Higher degree of parallelism which leads to better application completion time.
(2) More localized communications between partitions (i.e., decreasing inter-cluster

communication).

In most previous works the static DAG partitioning strategy is used, meaning that
the whole DAG is partitioned into the sub-workflows before DAG scheduling and
the partitions will be unchanged to the end of the scheduling process. As we know,
the Grid environment has dynamic nature and in such environment the status of the
resources continuously changes through time (i.e., the resource which was the best
resource in time t may become a bad resource in time t + x or even it may leave
the environment in time t + x). Performing the scheduling without noting this dy-
namism in Grid environment may affect the execution of tasks and may cause the
task failure or the need to reschedule due to QoS violation (both task failure and
task rescheduling imply extra costs to the system). The actual start time (ASTClx

ti
)

and actual finish time (AFTClx
ti

) of task ti is determined after the task is scheduled
successfully. As the scheduling proceeds the actual start/finish time determined and
new estimations with more accuracy are calculated for remaining unscheduled tasks.
It is also worth to note that if the available resources in each cluster are fewer than
the number of tasks which are ready to be executed in parallel and the current task
requires the same resource in the same cluster, this cluster is eliminated from the can-
didate cluster list of the current task (while there are available clusters which fulfill
this need).

Meeting the predefined deadline and providing some QoS parameters (e.g., reli-
ability, availability, etc.) are the major objectives in this paper. As the parent–child
tasks have data dependencies, they usually share a lot of data and therefore it seems
that to avoid extra data transfer it is reasonable to put these tasks into the same
partitions. But we have to mention that assigning many tasks to the same parti-
tion increased some undesirable results (e.g., task failure). Big partition size also
means that many tasks should be allocated to the same cluster and therefore the clus-
ter will become more critical. To face this challenge the partition rank parameter,

PartitionRank
Clx ,Cly
ti ,tj

, is introduced which indicates the worth of each candidate par-
tition. In each iteration we consider the pair nodes of parent–child tasks in the DAG.
Assume that the pair tasks (ti , tj) are considered at each step and all possible clusters’
combination are studied regarding the requested resource type and clusters’ available
resource types. If cluster x and cluster y are selected for assigning to them tasks

ti and tj , respectively, the partition rank value PartitionRank
Clx ,Cly
ti ,tj

is calculated by
Eq. (26).

PartitionRank
Clx ,Cly
ti ,tj

= CRTQVti
Clx

+ CRTQV
tj
Cly

+ PartitionCriticalityx,y
i,j (26)

The parameters and equations required for calculating partition rank are presented
in Eqs. (27)–(35).

• ParitionCriticality: This value indicates how the selected partitions fit the expecta-
tions of the pair tasks. The PartitionCriticalityx,y

i,j is calculated by Eq. (27):

Bi-level fuzzy based advanced reservation of Cloud workflow

Fig. 7 An example of LST
value

PartitionCriticalityx,y
i,j

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{+β + σL
x,y
i,j IF (L

x,y
i,j ≥ 0)

−β + σL
x,y
i,j IF (L

x,y
i,j < 0)

}

if (x == y)

⎧
⎪⎨

⎪⎩

+β − σCCx,y
i,j + σL

x,y
i,j IF (L

x,y
i,j ≥ 0 and L

x,y
i,j ≥ CCx,y

i,j)

−σCCx,y
i,j + σL

x,y
i,j IF (L

x,y
i,j ≥ 0 and L

x,y
i,j < CCx,y

i,j)

−β − σCCx,y
i,j + σL

x,y
i,j IF (L

x,y
i,j < 0)

⎫
⎪⎬

⎪⎭

if(x <> y)

(27)

• CCx,y
i,j : Communication Cost between clusters x and y for tasks i and j is calcu-

lated by Eq. (28).

CCx,y

i,j = C(eij)

BWxy

(28)

• L
x,y
i,j : As mentioned in Eq. (29), it is the amount of time between estimated finish

time of the task tj and latest possible start time of task ti , if the task ti is scheduled
on the cluster x and the task tj is scheduled on the cluster y. Figure 7 illustrates a
sample for the concept of the LST value

L
x,y
i,j = LST

Cly
tj

− EFTClx
ti

(29)

• β: This coefficient is used to make the influence of the PartitionCriticality value
close to the CRTQV values in the PartitionRank formula (Eq. (26)). The β is the
maximum of two CRTQV values of two target partitions in the PartitionRank for-
mula (as mentioned in Eq. (30)), and it helps make the PartitionCriticality value a
number in the range of the biggest CRTQV value in Eq. (26).

β = Max
(
CRTQVti

Clx
,CRTQV

tj
Cly

)
(30)

• BW: A matrix which represents the maximum bandwidth between clusters in the
Grid and is obtained by Eq. (31):

BW =

⎡

⎢⎢
⎣

0 bw0,1 bw0,2 bw0,m

0 0 bw1,2 . . .

0 0 . . . bwm−1,m

0 0 . . . 0

⎤

⎥⎥
⎦ (31)

S. Adabi et al.

• bw: An element of the BW matrix.

bwij =

⎧
⎪⎪⎨

⎪⎪⎩

0 If i ≥ j

Maximum bandwidth between cli and clj If i < j

null if there is no direct link between cli and clj

⎫
⎪⎪⎬

⎪⎪⎭
(32)

• LST
Cly
tj

: The latest time that task ti can start its execution if it scheduled on cluster
Cly and calculated by Eq. (33):

LST
Cly
tj

= DLtj − AEC
Cly
tj

(33)

• σL
x,y
i,j : The normalized value of the L

x,y
i,j and it can be calculated by Eq. (34).

σL
x,y
i,j = L

x,y
i,j − Min(∪(clm∧c ln∈clusters)(L

m,n
i,j))

Max(∪(clm∧c ln∈clusters)(L
m,n
i,j)) − Min(∪(clm∧c ln∈clusters)(L

m,n
i,j))

(34)

• σCCx,y
i,j : The normalized value of CCx,y

i,j and can be calculated by Eq. (35).

σCCx,y
i,j = CCx,y

i,j − Min(∪(clm∧c ln∈clusters)(CCm,n
i,j))

Max(∪(clm∧c ln∈clusters)(CCm,n
i,j)) − Min(∪(clm∧c ln∈clusters)(CCm,n

i,j))

(35)

In the following, some notes are mentioned regarding Eqs. (26)–(35):
• If the candidate clusters for both of the tasks are the same, then the communication

cost (CCx,y
i,j) is considered equal to zero. In this case, the Lx,y

i,j value determines
how much critical is the partition.

• If the difference between LST
Cly
tj

and EFTClx
ti

is greater than zero it means that task
tj has sufficient time to start its execution in cluster Cly if task ti is scheduled in
cluster Clx .

• If the following Boolean expression is true, ti and tj can execute in parallel
(by neglecting the communication time between ti and tj): {(ESTtj ≤ ESTti ≤
EFTtj) ∨ (ESTtj ≤ EFTti ≤ EFTtj) ∨ (ESTti ≤ ESTtj ≤ EFTti) ∨ (ESTti ≤
EFTtj ≤ EFTti)}RTA

The pseudo-code of the DAGP algorithm is mentioned in Algorithm 3. The DAGP
starts with receiving a critical path. It generates the pair nodes of the received critical
path (line 2). In lines 5–7, for each task in the critical path, the DAGP selects N

clusters from the available clusters (which can provide the resource type requested
by the task). In lines 11–16, the LST values are calculated regarding the candidate
clusters, according to Eq. (33). Lines 17–27 involve calculating the PartitionRank,
which requires the calculation of CRTQV and PartitionCriticality (see Eq. (26)). The
DAGP requests the CRTQV of each candidate cluster from its Cluster Observation
Unit and stores it in the AvailableClusters array (lines 17–24). In lines 24–27 the
PartitionCriticality is calculated for each candidate cluster according to Eq. (27).

In lines 28–30, all possible schedules are generated for the pair nodes and the
schedule with the highest score is selected as the best schedule. In lines 31–43, a
specific execution thread is created for scheduling each task of each pair node in the

Bi-level fuzzy based advanced reservation of Cloud workflow

Algorithm 3 DAGP function

Input: CP as Path
Output: – (affects globally shared variables) // result of advanced reservations
void DAGP(Task CP[0..n], Edge E[0..m]){
1: Cluster AvailableClusters[] =Grid.GetAvailableClusters();
2: PairNode PN[] = GeneratrPairNodes(CP);
3: Cluster TargetClusters[0..CP.tasks.count-1];
4: For (int i = 0; i < CP.count; i++){
5: For (int j = 0; j < AvailableClusters.count; j++){
6: If (CP[i].RT in AvailableClusters[j].AvailableResourceTypes){
7: TargetClusters[i].Add(AvailableClusters[j]);
8: }
9: }
10: }
11: float LST_Table[0..CP.count][0.. AvailableClusters.count];
12: For (int i = 0; i < CP.count; i++){
13: For (int j = 0; j < TargetClusters[i].count; j++){
14: LST_Table[i][j]=CP[i].deadline-(CP[i]. ComputationWeight

/ TargetClusters[j].Average_MIPS_ForEachRT); // Eq. (33)
15: }
16: }
17: For(int j = 0; j < CP.count; j++){
18: On Each Cluster with index i from AvailableClusters do Parallel{
19: For (int j = 0; j < AvailableClusters[i].CRTQV.count; j++){
20: AvailableClusters[i].CRTQV[j].CRTQV=, AvailableClusters[i].Cluster_

observationUnit.FQVCS_FIS(CP[j]);
// defined in Sect. 5.1

21: }
22: }
23: }
24: For (int i = 0; i < PN.count; i++){
25: float PartitionCriticality=Calculate_PartitionCriticality(PN[i],

PN[i].task1.TargetClusterForFirstNode,PN[i].task2.
TargetClusterForSecondNode); //using Eq. (27)

26: PN[i].PartitionRank=PN[i].task1.TargetClusterForFirstNode.CRTQV +
PN[i].task2.TargetClusterForSecondNode+ PartitionCriticality;
//using Eq. (26)

27: }
28: Schedule S[] =Generate_Schedules(PN); //described in Sect. 5.2.2
29: int i = getmax(S[],ScheduleScore);
30: Schedule BestSchedule=S[i];
31: ReservationResult ResRes[S.count∗2];
32: int ri = −1;
33: Thread Threads_ MCARCaller[];
34: For (int i = 0; i < S.PN.count; i++){
35: ri++;
36: Threads_MCARCaller.Add(new Thread(new ThreadStart(

TargetClusterForFirstNode.Cluster_cordinationUnit.MCAR(S.PN[i].
task1, S.PN[i].TargetClusterForFirstNode, ResRes[ri]);

S. Adabi et al.

Algorithm 3 (Contnued)

37: Int LastAddedThreadIndex= Threads_ MCARCaller.count − 1;
38: Threads_ MCARCaller[LastAddedThreadIndex].Start();
39: ri++;
40: Threads_ MCARCaller.Add(new Thread(new ThreadStart(

TargetClusterForSecondNode.Cluster_cordinationUnit.MCAR(
S.PN[i].task2, S.PN[i].TargetClusterForSecondNode,ResRes[ri]);

41: int LastAddedThreadIndex= Threads_ MCARCaller.count − 1;
42: Threads_ MCARCaller[LastAddedThreadIndex].Start();
43: }
44: For(int i = 0; i < Threads_MCARCaller.count; i ++){
45: Threads_ MCARCaller [i].Join();
46: }
47: For(int i = 0; i < ResRev.count; i++){
48: If (ResRev[i].Success==false) {
49: RR= false;
50: Return;
51: }
52: Update(dag, ResRev[i].task#, ResRev[i].ClusterId, ResRev[i].AFT, ResRev[i].

AST_);
53: }
} //End Function

selected schedule. Each of these partial scheduler threads calls the MCAR function,
which is “responsible for scheduling a certain task in a certain Grid cluster.” The main
thread of the algorithm joins with all newly generated worker threads (lines 44–46)
which means the main thread will wait until all these threads finish their works and
successfully end. Thus, lines 47–53 will not execute until all the MCAR functions,
which are called by main thread, will finish successfully. In lines 47–53 the results of
the calling of the MCAR function for each task are examined. If there is a task which
failed to be scheduled, the function sets the reservation result of the whole schedule
to false and exits from the DAGP function. Otherwise, the DAG table is updated with
Actual Start Time (AST_) and Actual Finish Time (AFT).

5.3 Cluster Coordination Unit (CCU)

Each cluster has a Cluster Coordination Unit (CCU) which is responsible for schedul-
ing tasks on cluster’s resources. The CCU receives a task and uses the proposed
Multi-Criteria Advanced Reservation algorithm (MCAR) which schedules a given
task on the resources of a Grid cluster while meets the reliability and the QoS expec-
tations simultaneously.

Most of the previous workflow management systems are using scheduling meth-
ods with focus on the minimizing the execution time of the workflows [6, 7, 46].
Although these approaches seem promising, they suffer from common issues. First,
some approaches [7, 46] may fall into local minimum as they use the execution time
parameter in a greedy fashion. Second, many of these approaches try to schedule
the tasks on the fastest resources, and it is not wise to schedule a group of related

Bi-level fuzzy based advanced reservation of Cloud workflow

(i.e., parent–child) tasks to the same resource. If the resource fails by any reason, we
have to reschedule all tasks which are assigned to it and this is too costly. Also, as
the resource has the highest speed among the others, it may be frequently selected
to execute the important tasks (tasks with higher OCV value). Although selecting
the fastest resource reduces the execution time, it significantly increases the cost of
failure.

In addition to the execution time, there are other potential QoS attributes like relia-
bility, availability and failure tolerance which may be desired by applications’ owners
in a Cloud environment. Therefore, instead of using the earliest execution time strat-
egy, the MCAR algorithm is introduced as a new QoS-based heuristic to avoid biased
schedules.

The MCAR algorithm uses a new parameter called Quality of Resource (QoR)
which determines the appropriateness of each resource. We reapply the Multiple At-
tribute Utility Theory (MAUT) for finding the QoR. In this approach, for a task ti ∈ V ,
a QoR value should be calculated for each resource r in the set of resources of the
cluster Clx .resources, assuming the ti is scheduled on resource r . The QoR value of
resource r is defined based on following parameters:

• AVLCli
r (Resource’s Availability): The probability that the resource r can be con-

tacted to be consumed at a given time.
• UtilCli

r (Resource’s Utilization): This parameter is the percentage that resource is
used. Let L denote the amount of time that the scheduler can look “into the future.”
On the other word, a task may requested to schedule at most L units of time in the
future. Utilization is calculated by Eq. (36).

UtilCli
r =

∑

tj ∈k

min(EFTr
tj
,C + L) − max(ESTr

tj
,C)

L
(36)

where C is the current time.
• TSDCli

r (Resource’s Task Score Density): This parameter is described in Eq. (4)
(in Sect. 5.1.2).

• STGCli
r (Resource’s Sum of Task Gaps): The MCAR algorithm computes re-

source’s sum of task’s gaps (STGCli
r) value for each resource as a sum of imposed

left-gap and right-gap if the task scheduled on that resource. In most of the task
scheduling algorithms, the earliest available time of a processor P for a task ex-
ecution is the time when P completes the execution of its last assigned task [3].
However, the MCAR’s advanced reservation phase uses the insertion-based pol-
icy [28] which considers the possible insertion of a task in an earliest idle time slot
between two already scheduled tasks on a resource. The insertion-based policy is
discussed as follows:

• Insertion-based policy: Let [Idi , Idj], Idi , Idj ∈ [0,∞], be an idle time interval
(i.e., an interval in which no task is executed) on resource R. A task t can be
scheduled on resource R within timeslot [Idi , Idj] only if R.ResourceType =
t.ResourceType with type A and the condition mentioned in Eq. (37) is true.

Max(Idi , t.StartTime) + t.Weight ≤ Idj (37)

S. Adabi et al.

This condition allows task t to be scheduled between already scheduled tasks
(insertion–based policy) [38]. Searching for the suitable idle time slot continues
until finding the idle time slots that are capable of accomplishing the task t .

• MCCP(ti): Maximum Communication Cost with Predecessors for task ti can be
defined by Eq. (38):

MCCP(ti) = Maxtj ∈ti .predecessors(cij) (38)

Note that if a task and all of its predecessors are assigned to the same resource,
then the communication cost between the task and its predecessors will be elimi-
nated. It is preferred allocating related tasks to the resources with the faster inter-
links (which decreases the general finish time).

• FailCli
r : This parameter indicates the ratio of failed tasks to all assigned tasks on

resource r and it is calculated by Eq. (39):

FailCli
r = Ur

n
(39)

where n is the number of all assigned tasks on resource r , and Ur is the unit penalty
function which calculated by Eq. (40).

Ur =
n∑

j=1

Uj (40)

where Uj = 1 if the task tj has failed and otherwise Uj = 0. The lower this ratio
is, the better QoR the resource will have.

In order to evaluate the QoR of each resource, the linear approach is given by
Eq. (41).

QoRr
ti

= a × AVLCli
r + b × UtilCli

r − c × TSDCli
r − d × STGCli

r − e × MCCP(ti)

− f × FailCli
r (41)

where a, b, c, d , e and f are weighing factors which indicate the impact of each
parameter in Eq. (41).

Algorithms 4, 5, 6 illustrate the main functions of the MCAR method. The de-
scription of each algorithm is mentioned in the following.

The Main Routine function (Algorithm 4) is the main function which receives an
application’s DAG as an array of tasks and controls the reservation. In line 6 the
MCAR_Preprocess function is called to set up W[][] and ST[][] arrays. In line 7
a sorted version of Task[] array stores in STL[] array. Lines 8–17 form a loop in
which, by using MCAR_DoReservation function, all tasks will be scheduled. In each
iteration of the loop an unscheduled task which has the highest OCV is selected. If
DoReservation, returns a true result (which means that the current task is success-
fully scheduled on a resource), the function proceeds with next task in STL[] array.
If DoReservation fails to schedule a given task in each step, the whole process fails
and the function returns a Boolean false result (line 11), and if all tasks in the Tasks
array scheduled successfully, the function returns a Boolean true result (line 18) in-
dicating that the whole sub-workflow is successfully scheduled. In line 13 and after
each successful reservation the deviation of request rate is compared with predefined

Bi-level fuzzy based advanced reservation of Cloud workflow

Algorithm 4 The MCAR algorithm—MainRoutine function

MCAR_MainRoutine function
Type definition:
1: TypeDef Task as (int task#,int start_time, int finish_time, int deadline, bool isScheduled,

int score);
2: TypeDef AdvResScore as (int resource#, float QoR)
3: TypeDef Resourceinfo as (int resource#, float availability, float utilization, int Hss,

Array of Task assignedtasks);
Input:
1. CW[0..t][0..t] array of float // communication weight between tasks
2. Tasks[0..t] array of Task // application tasks
3. Resource[0..n] array of Resourceinfo // Cluster Resources
4. B[0..n][0..n] array of float // bandwidth between all resources

note: B[i][i] = ∞
Output:
bool (true or false) // result of advanced reservation for whole application (bag of tasks)
1: PUBLIC DECLARATIONS{
2: var W as array[0..t][0..n] of float; //computation weights of tasks on resources
3: var ST as array[0..t][0..n] of float; //start times of tasks on resources

}
4: bool MCAR_MainRoutine (CW[0..t][0..t] array of float, tasks[0..t] array of Task,

Resource[0..n] array of Resource, B[0..n][0..n] array of
float){

5: var STL[0..t] array of Task;
6: MCAR_preprocess();
7: STL[] =Sort(Tasks[], Score, descending); // Sorting the Task list array based on

Score field in descending order
8: for(int i = 0; i < t ; i++){
9: if (STL[i].isSheduled==false){
10: bool result= DoReservation(W[i][∗], ST[i][∗], STL[i]);
11: if (result ==false) return false; // if advanced reservation of a single task fails,

the scheduling of the whole application fails
12: STL[i].isScheduled=true;
13: If (�Re questRate >= δ){
14: for(int i = 0; i <Tasks.count; i++){
15: if (!dag.tasks [i].isScheduled)

STL[i].OCV = w1 ×
(∑

tk∈DAG.Succti
(C(eik)

N + OCVtk
DAG)

Max(2 × DAG.Succti .count,1)

)
+ w2 × T

ti
p

+ w3 × N
Succti +w4 ×

N

AECRTA
ti

+w5 × GRRRTA
}

16: STL[] =Sort(Tasks[], Score,descending); // Sorting the Task list array based on
Score field in descending order

17: i = 0; // restarting loop, because now the tasks’
scores are changed and so the

STL array.
// Note that the scheduled nodes will not be processed again (the

if-condition in line 10 prevents this.)
}

}
}

18: return (true);
}

S. Adabi et al.

Algorithm 5 The MCAR algorithm—the MCAR_Preprocess function

MCAR_Preprocess() function
Input:
The following arrays will be accessed in this function: CW[][], Task[], Resource[] and B[][]
Note that these arrays are input parameters of MCAR_MainRoutine function
Affected Variables:
1. W[0..t][0..t] array of float //computation weight of tasks on resources
2. ST[0..t][0..t] array of float //start times of tasks on resources
Output: No regular outputs, all changes reflected on following public arrays: W[][] and ST[][]
1: MCAR_Preprocess(){
2: for (int i = 0; i < t ; i++){

i. for (j = 0; j < n; j++){

w[i][j] = T [i].Lenght

H [j].cyclepersecond
; } }

3: for (int j = 0; j < n; j++) {ST[0][j]=CurrentTime; }
4: for (int i = 0; i < t ; i++){

i. var CC as array[0..Task[i].Predecessors.count][0..n] of float;
ii. for (int p = 0; p < tasks[i].Predecessors.count;p++) {

a. for(int j = 0; j < n; j++){
i. CC[p][j]= CW[tasks[p]][tasks[i]] /

B[tasks[p].Reservedresource][j]; }}
iii. for(int j = 0; j < n; j++){
iv. ST[i][j] = Maxx∈task[i].predecessors((Task[x].FinishTime) + CC[Task[x]][j]);

}
5: return (); // Noting that W[][] and ST[][] are declared publicly in main routine, thus this

function does not need to pass these arrays for further uses.
}

threshold, δ, and if it exceeds the δ then the scores of unscheduled tasks are recalcu-
lated.

The MCAR_Preprocess function (Algorithm 5) prepares the values of two arrays,
W[][] and ST[][], which store computational weights and start times, respectively.
The W[][] and ST[][] arrays are declared as public and general arrays which make
them accessible in all functions. In line 2.i, the W [][] array is filled with computation
cost (run-time duration) of each task on each resource by using nested loops. The
computation cost is estimated according to resource’s processing power (cycle per
second) and estimated task length (CPU cycles). In line 3 the start time of first task is
set to current time for all resources. The communication cost between two tasks can
be calculated according to communication weight (the amount of data that should be
transferred) between them and the available bandwidth among the resources in which
the tasks are located (e.g., CC = CW/B). According to this fact in line 4.ii.a.i and in
a nested loop the communication cost between each task with its related neighbors is
calculated.

In line 4.iv the communication costs (CC) are used to estimate the Start Time (ST)
of the task on each resource. As can be seen in line 4.iv, the start time of each task can
be calculated regarding the finish times and communication costs of its predecessor
tasks. It can be said that the start time of a task is the time when all of its predecessors
finished and completed their communication with the task. In other words, the task

Bi-level fuzzy based advanced reservation of Cloud workflow

Algorithm 6 The MCAR algorithm—MCAR_DoReservation function

MCAR_DoReservation function
Input:
1. TxW array of float //running weight of Taskx on each cluster resource
2. TxST array of float //start time of Taskx on each cluster resource
3. Tx Task // the task for which the algorithm must schedule
Output: true or false //according to the result of advanced reservation for the given task (Tx)
1: bool MCAR_DoReservation(TxW array of float, TxST array of float, Tx Task){
2: var hil as array of Resourceinfo
3: var Reservation_QoR_List as array of float;
4: Fill((hil, “select ∗ from ResourceinfoRepository”);
5: for each Resourceinfo r in hil

{
i. var does_request_fit as Boolean= True;
ii. ESTr

tx
= TxST(r);

iii. EFTr
tx

= ESTr
tx

+ TxW(r);
iv. for each Task ti In this_resource.assignedtasks

{ if!((ESTr
tx

> EFTr
ti
)||(EFTr

tx
< ESTr

ti
)){

if (((ESTr
tx

≥ ESTr
ti
)&&(EFTr

tx
≤ EFTr

ti
))||((ESTr

tx
< EFTr

ti
)&&(EFTr

tx≥ EFTr
ti
))||((ESTr

tx
≤ ESTr

ti
)&&(EFTr

tx
> ESTr

ti
))) {does_request_fit =

false; Exit Loop; } }
}

v. if (does_request_fit) {
a) var STG = [(ESTr

tx
− EFTr

tj
) + (ESTr

tj
− EFTr

tx
)];

b) STG= STG MOD Job_Mean_size;
c) var CC as array of float;
d) for each Task pt In Tx .Predecessors { CC[pt] = CW[pt][Tx]/

B[pt.resource][r]; }

e) var A = Min(TSDCli
r);var B = Max(TSDCli

r);

A. For each Resourceinfo h in hil{ TSDCli
h

_Norm = 1 + (TSDCli
h

− A)

×(10 − 1)(B − A); }

f) var QoRr
ti

= a × AVLCli
r + b × UtilCli

r − c × TSDCli
r − d × STGCli

r − e

×MCCP(ti) − f × FailCli
r ;

g) AddItem(Reservation_QoR_List, c_resource.resource#, QoRr
ti

); } }
6: var best_target_resource_id as int;
7: var advanced_reservation_result as Boolean=false;
8: while (advanced_reservation_result ==false)

{
i. target_resource_id = FindMax(Reservation_QoR_List.QoR);
ii. advanced_reservation_result = PerfromAdvancedReservation(target_resource_id,

tx);
iii. if (advanced_reservation_result==true) exit loop;

else RemoveItem(Reservation_QoR_List, target_resource_id);
}

9: return (advanced_reservation_result); }

S. Adabi et al.

cannot start until all of its predecessors finished and sent required data to it; thus, the
MAX operator is used in line 4.iv.

The MCAR_DoReservation function (Algorithm 6) receives a task Tx and calcu-
lates QoR of each resource for Tx . As soon as the MCAR_DoReservation function
calculates the QoR, it tries to perform the advanced reservation on the resource with
the highest QoR value. If the best resource could not accept the requested reservation,
then the next best resource will be chosen and the MCAR_DoReservation function
will try to perform the advanced reservation on it. This process will continue until
the task Tx is successfully scheduled on a resource (the function returns a true value)
or all candidate resources refuse the reservation request (the function returns a false
value). In line 4 of MCAR_DoReservation function, most current information about
resources is retrieved from Resource_info_Repository database and stored in a tem-
porary variable named hil. According to insertion based policy the DoReservation
finds candidate resources in which the task can be scheduled on them (lines 5.i–5.iv).
In lines 5.v.a–5.v–f the DoReservation calculates each resource’s QoR according to
Eq. (41). After all candidate resources are found and their QoR for task tx are calcu-
lated, DoReservation chooses the resource with the highest QoR (line 8.i) and tries
to schedule the task on the target resource (line 8.ii); if the reservation is performed
successfully the result will be passed to MCAR_MainRoutine (the caller algorithm),
otherwise the next best candidate resource (the next resource with maximum QoR)
will be selected and line 8.ii is repeated for it. If all candidate resources tried and
none of them allows the reservation, DoReservation informs MCAR_MainRoutine
passing a Boolean False to it.

6 Performance evaluation

Software simulation is used extensively for modeling and evaluation of real world
systems. Consequently, modeling-and-simulation has emerged as an important dis-
cipline around which many standard and application-specific tools and technologies
have been built. To evaluate the performance of the proposed system we used soft-
ware simulation and compared it with the DLS [5], the HEFT [7], the QRS [42] and
the AWS [16] which are well-known methods for DAG scheduling (these algorithms
are described in Sect. 2).

We assume that requests arrive as a Poisson process with rate λ. The tasks are
generated with random size by a Pareto distribution. The minimum and maximum
task sizes are set to 1 and 50 unit(s) of time, respectively. Let L denote the amount
of time that a task may request to be scheduled. Deadline is the latest time by which
the task processing should be completed. Tasks have the hard deadline by which they
should be processed or they fail. If Dj is the deadline of task tj then it is uniformly
distributed as is given in Eq. (42):

tj .StartTime + tj .ExecutionTime ≤ tj .Deadline ≤ tj .StartTime + tj .ExecutionTime

+ q × (tj .ExecutionTime) (42)

where q is a parameter to control the tightness of task deadline and it is between 0
and 1. In our simulation, q and L are set to 0.1 and 200 seconds, respectively. The

Bi-level fuzzy based advanced reservation of Cloud workflow

system workload [39] ρ is calculated using the expression from queuing theory as in
Eq. (43):

ρ = λ.x

n
(43)

where ρ is the arrival rate of the requests, x is mean task size and n is the number of
count resources which are available to respond to the requests.

6.1 Random graph generator

We used random graph generation with the count of nodes in each workflow graph
set between 25 and 100 nodes. Each graph has a single entry and a single exit node;
all other nodes are divided into levels. Each level is created progressively and has a
random number of nodes, which varies from two to half the number of the remaining
(to be generated) nodes. We used the random graph generator discussed in [7]. This
random graph generator requires following input parameters:

• v: The number of nodes in the DAG
• Out degree: The ratio of maximum out edges of a node to total nodes of the DAG
• Communication to Computation Ratio (CCR). Note that the higher CCR value

indicates the more computation-intensive applications [16]
• β: The computational heterogeneity factor of resources. Assume that CompCost is

the average computation cost of all tasks in a DAG and ti .CompCost is the aver-
age computation cost of task ti and randomly selected by the uniform distribution
within the range [0.2 × CompCost]. The computation cost of task ti on resource r ,
CompCost(ti , r), is a random number from the range: ti .CompCost × (1 − β

2) ≤
CompCost(ti , r) ≤ ti .CompCost × (1 + β

2)

• α: The depth parameter of the DAG. This parameter indicates the depth of a DAG

by using the uniform distribution with the mean value equal to
√

v
α

. If α � 1.0 then
short graphs with high parallelism are generated, and if α � 1.0 then long graphs
with low parallelism degree are generated. The values for the input parameters are
shown in Table 3.

6.2 Comparison metrics

The following four metrics are used to evaluate the performance of the proposed
system:

Table 3 Parameter values of
random generated DAGs [3] Parameter Value

v 20, 40, 60, 80, 100

out degree 0.1, 0.2, 0.3, 0.4, 1.0

CCR 0.1, 0.5, 1.0, 5.0, 10.0

β 0.1, 0.25, 0.5, 0.75, 1.0

α 0.5, 1.0, 2.0

S. Adabi et al.

• Request Rejection Ratio (RRR): This metric is the fraction of requests that are
rejected due to inability to provide their required resources, and it is calculated
thus:

RRR = Rejected Request Count

Total Request Count
× 100 (44)

• Application Failure Ratio (AFR): This metric is the percentage of applications
which failed to complete due to failure of one or more of its jobs. An application
consists of a number of jobs and therefore a job failure may cause an application
failure. The AFR value is calculated thus:

AFR = Count of Failed Apps

Count of Apps
× 100 (45)

• System Utilization (SU): This metric is the fraction of time the resources are busy
serving the requests and it is calculated thus:

SU = Busy Time

Total UpTime
× 100 (46)

• The running time of the algorithms: This metric is the execution time of an al-
gorithm for obtaining the output schedule of a given task graph. This value gives
the average cost of each algorithm. The simulation configuration is defined with
following characteristics:
– Simulation period: 24 hours (86,400 seconds)
– Count of Grid hosts: 50
– Total count of Cloud application owner users: 110
– Total count of submitted applications: 180
– Total count of submitted tasks: 15,000

Figures 8(a)–(c) plots the request rejection rate for the four scheduling strategies
against the average job size in workloads ρ = 0.2, ρ = 1.2, ρ = 2 and ρ = 4. The
request rejection rate increases as requests’ sizes increase for all four scheduling al-
gorithms in different system workloads. The DLS does not consider the resource
status and idle periods; thus, it gives worse results. The HEFT algorithm gives lower
request rejection rate compared with the DLS, but performs slightly worse than the
QRS and the AWS. The main cause which leads to this result is that in the HEFT
algorithm tasks are scheduled on the resource which provides the minimum finish
time which will create small idle (and usually unusable) gaps. These small gaps are
usually smaller to be used for incoming tasks; hence, they increase the request re-
jection rate in the system. The AWS performs better than the HEFT and the QRS as
it utilizes look-forward technique. The proposed system considers the CRTQV fac-
tor in partitioning phase, and it significantly decreases the request rejection rate as
the CRTQV is the combination of multiple factors including computation power (the
cluster with more powerful resources is generally capable of responding to more re-
quests compared with a similar cluster with lower computation power) and request
rate of resources (the cluster with higher request rate is busier, and selecting it as
candidate cluster for scheduling a task increases the probability of request rejection).
The proposed system also considers the QoR parameter in local-scheduling which
includes two major factors: Rh

TSD which determines the density of assigned tasks in

Bi-level fuzzy based advanced reservation of Cloud workflow

Fig. 8 Request rejection rate against average job size in: (a) ρ = 0.2, (b) ρ = 1.2, (c) ρ = 2, (d) ρ = 4

each resource and Rh
STG which determines the summation of idle gaps (which are gen-

erated by each task). The proposed system considers Rh
TSD and Rh

STG which causes
assigning higher priorities to the resources with lower task density and lower imposed
trailing gaps.

In Figs. 9(a)–(d) comparison results of the resource utilization versus the average
job size are plotted in constant workloads ρ = 0.2, ρ = 1.2, ρ = 2 and ρ = 4. Ini-
tially, utilization increases with the system load. The DLS shows the lowest utilization
as a result of the high request rejection rates (as can be seen in Figs. 8(a)–(d)). The
proposed system surpasses the others followed by the AWS, the QRS and the HEFT.
This result confirms that the consideration of the request rate factor by the proposed
system decreases the probability of dropping high priority jobs. Moreover, the con-
sideration of the request rate factor significantly decreases the probability of selecting
resources with higher request rate which will result in more balanced distribution of
tasks on the resources. The MCAR also considers the idle gaps imposed by assigning
a task to a resource, and hence, the creation of trailing idle gaps is one of the most
important criteria used to evaluate the “goodness” of an assignment (i.e., a schedule).
Using the MCAR algorithm leads to more utilized resources and, as a consequence,
fewer request rejections (which happens due to lack of sufficient free resources). This

S. Adabi et al.

Fig. 9 Resource utilization against average job size in: (a) ρ = 0.2, (b) ρ = 1.2, (c) ρ = 2, (d) ρ = 4

result proves affirmatively the effect of considering system fragmentation on improv-
ing utilization. Note that the difference in utilization between the HEFT and the other
algorithms (the LSWF, the AWS and the QRS) can be explained by the fact that the
HEFT tends to drop larger jobs as it is more difficult to find feasible idle time slots.

Figure 10 plots the algorithm run time against task count, and the run time of
the algorithms increases with the tasks’ count for all five scheduling algorithms. In
Fig. 10, as the count of tasks increases, the proposed system outperforms the other
algorithms as its hierarchical distributed scheme benefits from the parallel execution,
thus the algorithm run time decreases.

In Figs. 11(a)–(d), test results for application failure rate versus mean time be-
tween failures are illustrated and the proposed system surpasses the other four al-
gorithms. The consideration of the resource idle time slots, resource utilization, re-
source’s density, and resource availability in resource selection decreases the prob-
ability of job failures in the proposed system. Distributing the workloads according
to the priority of the tasks and density of tasks on the resources also significantly
decreases the probability of job failures by the proposed system. Considering the
LST value by the proposed system in partitioning phase offers more time space for

Bi-level fuzzy based advanced reservation of Cloud workflow

Fig. 10 Run time of the
algorithms against application’s
task count

Fig. 11 Application failure rate vs. resources MTBF in (a) ρ = 0.2, (b) ρ = 1.2, (c) ρ = 2, (d) ρ = 4

S. Adabi et al.

the scheduler to reschedule or for the system administrator to recover the failed re-
source, thus increase the chance of completing the failed task before a failure causes
cascading task failure in the successor tasks and eventually the failure of the whole
application. The more time space available for rescheduling gives the higher prob-
ability of successful reschedule of failed task before its deadline and consequently
increases the probability of avoiding application failure.

7 Conclusion and future work

The main contribution of this paper is addressing the problem of scheduling workflow
Cloud applications on multi-cluster Grid environments regarding the QoS constraints
declared by application’s owner. To obtain this objective, we introduced a bi-level
scheduling strategy that consists of Global-level scheduling and Local-level schedul-
ing. The heterogeneity and a variety of the available resource types (service types) in
each Grid cluster are an issue which dramatically affects the complexity of schedul-
ing workflows. On the other hand, a Cloud application workflow consists of different
tasks with the need for different resource types (service types) to complete, which we
called heterogeneity in workflow. The main idea of all proposed algorithms and tech-
niques introduced in this paper is to make a good match between the heterogeneity
in Cloud application’s workflow and the heterogeneity in Grid clusters regarding the
requested QoS expectation. The proposed algorithms mainly focused on the using of
the idea of matching heterogeneity between clusters and dynamically extracted sub-
workflows to maximize the possibility of local scheduling of sub-workflows (i.e.,
increasing the chance of scheduling each sub-workflow in a specific Grid cluster
with aim to minimize inter-cluster communications while following the disciplines
of workload distribution). A notable fuzzy-based assessment method is also proposed
to evaluate the appropriateness of a Grid cluster for a computational job.

The proposed system consists of three units: (1) the Cluster Observation Unit
(COU) which uses a novel Fuzzy FQVCS for evaluating the Grid environment by
taking into account some important QoS measures (e.g. availability, workload and
so forth); (2) the Application Management Unit (AMU) which is responsible for
performing Global-level scheduling by partitioning the large-scale Cloud workflows
into sub-workflows; and (3) the Cluster Coordination Unit (CCU) which performs
Local-level scheduling by using a new advance reservation mechanism which uses a
resource quality determination technique to prioritize candidate resources according
to a multi-criteria decision-making problem space which requires balancing differ-
ent QoS related parameters. The software simulation has been used to evaluate the
performance of the proposed system. The results were compared with the DLS, the
HEFT, the QRS and the AWS algorithms as some of the most common methods for
DAG scheduling. The simulation results confirmed the performance supremacy of
the proposed system in different areas of concern. The future directions for further
researches related to the area of this paper are mentioned in the following:

• The using of multi-agent framework to overcome the complexity of managing
QoS constrained applications. As the agents can independently work in the het-
erogeneous environments with the ability to re-act, pro-act, migrate, evolve, and
cooperate, they are a perfect match for the mentioned problem.

Bi-level fuzzy based advanced reservation of Cloud workflow

• Using the prediction mechanisms to foresee the critically of the environment before
the crisis happens. Extending this ability will widely improve the reliability.

• Extending rescheduling techniques based on predicted status which will generally
result in lower application failure and QoS violations and increase the satisfaction
level of Cloud application owners.

Acknowledgements This research is supported by Iran Telecommunication Research Center (ITRC).
Our thanks go to Dr. Ali Rezaee who has contributed in this research.

Appendix

For the benefit of readers, the authors summarize in Table 4 the key symbols and their
definitions used in this paper.

S. Adabi et al.

Table 4 Notation and basic terms used in the paper

Parameter Description

TSD
Cli
RTA

Average cluster’s tasks score density

AVL
Cli
RTA

Average cluster’s availability

CP
Cli
RTA

Average cluster’s computation power

RR
Cli
RTA

Average cluster’s resource type request rate

CRTQV Cluster resource type quality value

C(eij) Communication cost between two tasks, ti and tj

AEC
RTA
ti

Average execution cost of task ti on all available clusters

GACPRTA Grid average computation power for resources of type A

DAG.Succti Count of task successors

T
ti
p Time pressure of task ti

EST
RTA
ti

Estimated start time of task ti

MBW(Cli ,Clj) Maximum bandwidth between clusters Cli and Clj when there is no
communication load between them

UBW
(Cli ,Clj)

k
Used bandwidth between clusters Cli and Clj during the time k

CCL Candidate cluster list

EFT
RTA
tj

Estimated finish time of task tj

ASTClx
tj

Actual start time of task tj in cluster Clx

AFTClx
tj

Actual finish time of task tj in cluster Clx

GRRRTA Grid resource average request rate

OCV
ti
DAG Overall criticality value of task ti

N
C(eik) Normalized value of C(eij)

N
Succti Normalized value of Succti

N

AEC
RTA
ti

Normalized value of AEC
RTA
ti

PartitionRank
Clx ,Cly
ti ,tj

Partition rank value for tasks ti and tj , if cluster x and cluster y are selected for
assigning task ti and task tj to them, respectively

PartitionCriticalityx,y
i,j

Partition criticality value, if cluster x and cluster y are selected for assigning
task ti and task tj to them, respectively

CCx,y
i,j

Communication cost between cluster x and cluster y for task ti and task tj

L
x,y
i,j

The amount of time between estimated finish time of task tj and latest possible
start time of task ti , if task ti is scheduled on cluster x and task tj is scheduled
on cluster y

β The maximum of two CRTQV values

LST
Cly
tj

Latest time that task ti can start its execution if it is scheduled on cluster Cly

σL
x,y
i,j

Normalized value of L
x,y
i,j

σCCx,y
i,j

Normalized value of CCx,y
i,j

Util
Cli
r Resource’s utilization

STG
Cli
r Resource’s sum of task gap

MCCP(ti) Maximum communication cost with predecessors for task ti

Fail
Cli
r Ratio of failed tasks to all assigned tasks on resource r

Bi-level fuzzy based advanced reservation of Cloud workflow

References

1. Castillo C, Rouskas GN, Harfoush K (2007) On the design of online scheduling algorithms for ad-
vance reservations and QoS in grids. In: IEEE international parallel and distributed processing sym-
posium, IPDPS

2. Wieczorek M, Prodan R, Fahringer T (2005) Scheduling of scientific workflows in the ASKALON
grid environment. ACM SIGMOD Rec 34(3):56–62

3. Ramakrishnan A, Singh G, Zhao H, Deelman E, Sakellariou R, Vahi K, Blackburn K, Meyers D,
Samidi M (2007) Scheduling data intensive workflows onto storage-constrained distributed resources.
In: Proceedings of the 7th IEEE symposium on cluster computing and the grid (CCGrid’07)

4. Yu J, Buyya R (2005) A taxonomy of scientific workflow systems for grid computing. SIGMOD Rec
34(3)

5. Sih GC, Lee EA (1993) A compile-time scheduling heuristic for interconnection-constrained hetero-
geneous processor architectures. IEEE Trans Parallel Distrib Syst 4(2):75–87

6. Kwok W et al (1996) Dynamic critical-path scheduling: an effective technique for allocating task
graphs to multiprocessors. IEEE Trans Parallel Distrib Syst 7(5):506–521

7. Topcuoglu H et al (2002) Performance-effective and low-complexity task scheduling for heteroge-
neous computing. IEEE Trans Parallel Distrib Syst 13(3):260–274

8. Cheng J, Zeng G (2011) A two-phase approach to process partitioning for execution optimization
migrating workflow. J Comput Interdiscip Sci 7:3478–3490

9. Tan W, Fan YS (2007) Dynamic workflow model fragmentation for distributed execution. Comput
Ind 58(5):381–391

10. Maurino A, Modafferi S (2005) Partitioning rules for orchestrating mobile information systems. Pers
Ubiquitous Comput 9(5):291–300

11. Baresi L, Maurino A, Modafferi S (2005) Workflow partitioning in mobile information systems. Int
Fed Inf Process 158:93–106

12. Liu B, Wang Y, Jia Y, Wu QY (2005) A role-based approach for decentralized dynamic service com-
position. China J Softw 16(11):1859–1867

13. Daoud MI et al (2011) A hybrid heuristic–genetic algorithm for task scheduling in heterogeneous
processor networks. J Parallel Distrib Comput 71(11):1518–1531

14. Omara FA et al (2010) Genetic algorithms for task scheduling problem. J Parallel Distrib Comput
70(1):13–22

15. Sinnen O et al (2011) Contention-aware scheduling with task duplication. J Parallel Distrib Comput,
77–86

16. Dong F (2009) Workflow scheduling algorithm in grid. PhD thesis
17. El-Rewini H, Lewis T, Ali H (1994) Task scheduling in parallel and distributed systems. PTR Prentice

Hall, New York. ISBN:0130992356
18. Wong K, Ahmad I (1999) Static scheduling algorithms for allocating directed task graphs to multi-

processors. ACM Comput Surv 31(4):406–471
19. Casanova H et al (2010) On cluster resource allocation for multiple parallel task graphs. J Parallel

Distrib Comput 70(12):1193–1203
20. Deelman E, Mehta G, Singh G, Su M-H, Vahi K (2007) Pegasus: mapping large-scale workflows to

distributed resources. In: Taylor I, Deelman E, Gannon DB, Shields M (eds) Workflows for e-science:
scientific workflows for grids. Springer, Berlin

21. Deelman E, Singh G, Su M-H, Blythe J, Gil Y, Kesselman C, Mehta G, Vahi K, Berriman GB, Good J,
Laity A, Jacob JC, Katz DS (2005) Pegasus: a framework for mapping complex scientific workflows
onto distributed systems. Sci Program 13:219–237

22. Pegasus. http://pegasus.isi.edu
23. Dong F, Akl SG (2007) Distributed double-level workflow scheduling algorithms for grid computing.

J Inf Technol Appl 1(4):261–273
24. Prodan R, Wieczorek M (2010) Bi-criteria scheduling of scientific grid workflows. IEEE Trans Autom

Sci Eng 7(2):364–376
25. Duan R, Prodan R, Fahringer T (2007) Performance and cost optimization for multiple large-scale

grid workflow applications. In: Proc of the 2007 ACM/IEEE conference on supercomputing, pp 1–12
26. Yu J, Buyya R (2006) Scheduling scientific workflow applications with deadline and budget con-

straints using genetic algorithms. Sci Program 14(3, 4):217–230
27. Chen WN, Zhang J (2009) An ant colony optimization approach to grid workflow scheduling problem

with various QoS requirements. IEEE Trans Syst Man Cybern 39(1):29–43

http://pegasus.isi.edu

S. Adabi et al.

28. Tao Q, Chang H, Yi Y, Gu C, Yu Y (2009) QoS constrained grid workflow scheduling optimization
based on a novel PSO algorithm. In: Eighth international conference on grid and cooperative comput-
ing, pp 153–159

29. Salehi MA, Buyya R (2010) Adapting market-oriented scheduling policies for cloud computing.
In: Proceedings of the 10th int’l conference on algorithms and architectures for parallel processing,
ICA3PP 2010, pp 351–362

30. Pandey S, Wu L, Guru S, Buyya R (2010) A particle swarm optimization-based heuristic for schedul-
ing workflow applications in cloud computing environments. In: 24th IEEE international conference
on advanced information networking and applications, AINA, pp 400–407

31. Xu M, Cui L, Wang H, Bi Y (2009) A multiple QoS constrained scheduling strategy of multiple work-
flows for cloud computing. In: IEEE international symposium on parallel and distributed processing
with applications, pp 629–634

32. Ostermann S, Prodan R, Fahringer T (2010) Dynamic cloud provisioning for scientific grid workflows.
In: 11th IEEE/ACM international conference on grid computing, GRID, October 2010, pp 97–104

33. Byun E-K, Kee Y-S, Kim J-S, Deelman E, Maeng S (2011) BTS: resource capacity estimate for time-
targeted science workflows. J Parallel Distrib Comput 71(6):848–862

34. Byun E-K, Kee Y-S, Kim J-S, Maeng S (2011) Cost optimized provisioning of elastic re-
sources for application workflows. Future Gener Comput Syst 27(8):1011–1026. [Online]. Available
http://www.sciencedirect.com/science/article/pii/S0167739X11000744

35. Chen WN et al (2009) An ant colony optimization approach to grid workflow scheduling problem
with various QoS requirements. IEEE Trans Syst Man Cybern 39(1):29–43

36. Klir GJ (1995) Fuzzy set and fuzzy logic: theory and application. Prentice-Hall, Englewood Cliffs
37. Ross TJ (1995) Fuzzy logic with engineering applications. McGraw-Hill, New York
38. Kruatrachue B (1987) Static Task Scheduling and Grain Packing in Parallel Processing Systems. PhD

thesis, Oregon State University
39. Castillo C et al (2011) Online algorithms for advance resource reservations. J Parallel Distrib Comput,

963–973
40. Tang X et al (2010) List scheduling with duplication for heterogeneous computing systems. J Parallel

Distrib Comput 70(4):323–329
41. Zhao L, Ren Y, Li M, Sakurai K (2012) Flexible service selection with user-specific QoS support in

service-oriented architecture. J Netw Comput Appl 35(3):962–973
42. Chunlin L, Xiu ZJ, Layuan L (2009) Resource scheduling with conflicting objectives in grid environ-

ments: model and evaluation. J Netw Comput Appl 32(3):760–769
43. Abawajy JH (2009) Adaptive hierarchical scheduling policy for enterprise grid computing systems.

J Netw Comput Appl 32(3):770–779
44. Kangas J, Kangas A, Leskinen P, Pykalainen J (2001) MCDM methods in strategic planning of

forestry on state-owned lands in Finland: applications and experiences. J Multi-Criteria Decision
Anal, 257–271

45. Saaty TL (1994) Fundamentals of decision making and priority theory with the analytic hierarch
process. The analytic hierarch process series, vol VI. RWS, Pittsburgh

46. Daoud MI et al (2008) A high performance algorithm for static task scheduling in heterogeneous
distributed computing systems. J Parallel Distrib Comput 68(4):399–409

47. Taylor I, Deelman E, Gannon D, Shields M (2006) Workflows in e-science. Springer, Berlin
48. Afgan E, Bangalore P, Skala T (2012) Scheduling and planning job execution of loosely coupled

applications. J Supercomput 59(3):1431–1454
49. Li C, Li LY (2012) Optimal resource provisioning for cloud computing environment. J Supercomput

62(2):989–1022
50. Falzon G, Li M (2012) Enhancing genetic algorithms for dependent job scheduling in grid computing

environments. J Supercomput 62(1):290–314
51. Luo J, Wu Z, Cao J, Tian T (2012) Dynamic multi-resource advance reservation in grid environment.

J Supercomput 60(3):420–436
52. Bradley A, Curran K, Parr G (2006) Discovering resources in computational grid environments. J Su-

percomput 35(1):27–49
53. Cao J, Spooner DP, Jarvis SA, Nudd GR (2005) Grid load balancing using intelligent agents. Fu-

ture Gener Comput Syst 21(1):135–149. Special issue on intelligent grid environment: principles and
applications

http://www.sciencedirect.com/science/article/pii/S0167739X11000744

	Bi-level fuzzy based advanced reservation of Cloud workﬂow applications on distributed Grid resources
	Abstract
	Introduction
	Related work
	The large-scale workﬂow scheduling system model
	Assumptions
	The proposed system
	Cluster Observation Unit (COU)
	Fuzzy Qualitative Value Calculation System (FQVCS)
	Input and output variables of the FQVCS
	Output
	Input set

	Fuzziﬁcation and defuzziﬁcation interface
	Fuzzy rule base (RB)

	Application management unit (AMU)
	Critical path extraction algorithm
	DAG Partitioning algorithm

	Cluster Coordination Unit (CCU)

	Performance evaluation
	Random graph generator
	Comparison metrics

	Conclusion and future work
	Acknowledgements
	Appendix
	References

