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a b s t r a c t

Increasing use of networks and their complexity make the task of security analysis more
and more complicated. Accordingly, automatic verification approaches have received more
attention recently. In this paper, we investigate applying of an actor-based language based
on reactive objects for analyzing a network environment communicating via Transport
Protocol Layer (TCP). The formal foundation of the language and available tools for model
checking provide us with formal verification support. Having the model of a typical net-
work including client and server, we show how an attacker may combine simple attacks
to construct a complex multiphase attack. We use Rebeca language to model the network
of hosts and its model checker to find counter-examples as violations of security of the sys-
tem. Some simple attacks have been modeled in previous works in this area, here we detect
these simple attacks in our model and then verify the model to find more complex attacks
which may include simpler attacks as their steps. We choose Rebeca because of its power-
ful yet simple actor-based paradigm in modeling concurrent and distributed systems. As
the real network environment is asynchronous and event-based, Rebeca can be utilized
to specify and verify the asynchronous systems, including network protocols.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

As computer networks grow in size and complexity, their security analysis becomes more complicated. The evolution of
computer networks on one hand and their distributed nature on the other hand, creates opportunities for insiders and out-
siders to violate the system security. Many services are perfectly secure when offered in isolation, but when combined with
other services, result in an exploitable vulnerability. For example, the file transfer protocol (ftp) and the hypertext transfer
protocol (http) offered simultaneously in the same host, may allow the attacker to write in a web directory using the ftp ser-
vice which causes the web server to execute a program written by the attacker.

Accordingly, security evaluation has become an important requirement in design and management of computer net-
works. When evaluating the security of a network, it is not enough to consider the single vulnerabilities without considering
the other hosts, their relationships, and interactions as well as their network infrastructure. Many of the attacks exploit the
global weaknesses in network introduced by interconnections. Nevertheless, the analysis of network security is a complex
. All rights reserved.
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and error prone task by hand. Thus, the automatic analysis has been considered. Some people have modeled the network in
order to analyze and detect different attacks [1–13]. They could analyze the network model to show some simple attacks.
Because of the lack of expressive and simple modeling languages, the complex and distributed attacks have not been con-
sidered widely.

In this paper, we use a model based approach to show that how an attacker may use simple attacks to construct a com-
plex attack and reach her/his goals, which were not possible using simple attack methods. We use an abstract model of a
network in order to find the complex multiphased attack, named Mitnick attack. To the best of our knowledge, this attack
has not been modeled.

Multiphase attacks usually are performed using interaction of different network agents. Such environment is well fitted in
actor-based computation paradigm. We use Rebeca [14–16] to model a system consisting of a server, a client, an attacker and
their TCP protocol stack layer.

Rebeca (Reactive Objects Language) is an actor-based language with a formal foundation, presented in [14–16]. A model in
Rebeca consists of a set of reactive objects (called rebecs) which are concurrently executing and asynchronously communi-
cating. Rebeca can be considered as a reference model for concurrent computation, based on an operational interpretation of
the actor model [20–22]. It is also a platform for developing object-based concurrent systems in practice. Formal verification
approaches are used to ensure correctness of concurrent and distributed systems. The Rebeca Verifier tool, as a front-end
tool, translates Rebeca code into languages of existing model checkers, allowing verification of their properties[23,24]. There
is also an ongoing project on developing a direct model checker for Rebeca using state space reduction techniques [25–27].

We choose Rebeca because of its powerful yet simple actor-based paradigm in modeling concurrent and distributed sys-
tems, and easy to use Java-like syntax for software engineers in modeling, and also the naturally decomposable model and
independent modules which is exploited in formal verification and model checking as well as in modeling. The network envi-
ronment is asynchronous and thus is well fitted in fully asynchronous model of Rebeca. Moreover, the object-oriented nature
of Rebeca facilitates the modeling in comparison to other languages such as Promela [31].

The next section surveys the related works that have been done in this field; the third section briefly describes Rebeca.
Section 4 presents the model, and its analysis is shown in Section 5 and finally we conclude in Section 6.
2. Related work

The works published on related topics include a set of works which focus on using model checking to verify and analyze
the security of systems and other approaches to analyze network vulnerabilities. The CSP process algebra and its model
checker FDR have been widely used to verify the security protocols [10]. It belongs to class of formalisms which combine
programming languages and finite state machines. Shahriari and Jalili [1] used CSP to model and analyze the Transmission
Control Protocol vulnerabilities in presence of a malicious attacker. They used model checker FDR to find some attack sce-
narios to TCP in broadcast network. They focused on simple attacks, such as connection reset and connection hijack. In [6]
CSP is used to discover de-synchronization attacks on intrusion detection systems. Such attacks occur when the state of the
intrusion detection system (IDS) becomes desynchronized from that of the system it aims to protect. In [7] the same authors
showed that their analysis is data-independent.

Security analysis has been paid more attention recently in two aspects, the individual host and the network vulnerability
analysis. Several tools are proposed for detecting individual host vulnerabilities. These include Nessus vulnerability scanner
[28], which scans the hosts to detect vulnerabilities. Similar tools such as System Scanner by ISS [29], and CyberCop by Net-
work Associates [30] scan hosts attempting to discover vulnerabilities in the host configuration. However, they do not at-
tempt to investigate how a combination of configurations on the same host or among hosts on the same network can
contribute to the vulnerabilities of a network.

The NetKuang system [11] tries to assess beyond host vulnerability. The system is an extension to its authors’ previous
work on building a rule-based expert system, named Kuang. They extended the Kuang’s rule-set to include certain UNIX net-
work security issues, which are undetectable when searching a single host. NetKuang uses a backtrack search algorithm to
accomplish the identification of vulnerabilities.

Dacier and Deswarte [12] proposed the concept of privilege graphs. Each node in a privilege graph represents a set of priv-
ileges owned by the user, and edges represent vulnerabilities. Privilege graphs are then explored to construct an attack state
graph, which represents different ways in which an intruder may reach a certain goal, such as root access on a host. Ritchey
and Ammann [13] used model checking for vulnerability analysis of networks via the model checker SMV [17]. They could
obtain one attack corresponding to an unsafe state. The experiment was restricted to specific vulnerabilities. However the
model checking approach has been used in some other research to analyze network vulnerabilities by Sheyner et al. in
[18]. The expressiveness of the language of the model checker has limited their model.

Ramakrishnan and Sekar [4] used a model checker to analyze a single host system with respect to combinations of un-
known vulnerabilities. They presented an abstract model of a simple UNIX system. The key issue in their research is checking
of infinite space model using model abstraction. However their approach was limited to the configuration vulnerabilities.

In [19] Bellovin has described some implementation independent flaws in Transmission Control Protocol (TCP). He also
presented a variety of attacks based on these flaws. The flaws are specified informally and also the single step attacks have
been regarded. In this paper we find multiphase attacks on TCP using actor-based model checking.
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3. Rebeca modeling language

Rebeca [15,23] is an actor-based language, with independent reactive objects, communicating by asynchronous message
passing, and using unlimited buffers for messages. The actor model was originally introduced by Hewitt [20] as an agent-
based language. It was later developed by Agha [21,22] into a concurrent object-based model. The actor model is proposed
as a model of concurrent computation in distributed and open systems. Objects are reactive and self-contained and are called
rebec, standing for reactive object. Computation takes place by message passing and execution of the corresponding methods
of messages. Each message specifies a unique method to be invoked when the message is serviced. Each rebec has an un-
bounded buffer, called a queue, for arriving messages.

According to our experiences [1–3,34], Rebeca messaging mechanism and parameter passing is more natural and easier to
use for modeling security protocols than Promela and CSP.

Each rebec is instantiated from a class and has a single thread of execution. We define a model, representing a set of rebecs,
as a closed system. It is composed of rebecs, which are concurrently executed, and are interacting with each other. When a
message is read from the queue, its method is invoked and the message is removed from the queue. Note that reading mes-
sages, thus, drives the computation of a rebec. Rebecs do not provide an explicit control over the message queue. We con-
sider the execution of a method atomic. Sending a message within a method execution is not considered to be a transition,
per se. This leads us to coarse grained transitions. Note that this coarse grained granularity of the interleaving of methods is
compatible with the asynchronous nature of the communication of Rebeca, which does not contain suspending communi-
cation primitives (e.g. a possibly suspending receive state). It also reduces the state space and makes the model simpler.

3.1. Syntax

The detailed syntax for reactive classes (reactive-object templates), rebecs (reactive class instantiations), and models
(parallel composition of rebecs) have been presented in Fig. 1. The syntax of a reactive class definition is similar to Java, ex-
cept for the definition of knownobjects. The rebecs included in the knownobjects part of a reactive class definition, are those
rebecs, which their message servers may be called by instances of this reactive class.

After declaring the known rebecs, a list of reactive class fields are declared in statevars part. Then the methods, which may
themselves contain local variables, are defined as message servers. Variables are typed, and method declarations follow a
Fig. 1. Reactive class, rebec and model definition syntax.
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standard syntax. Unlike Java, methods have no return mechanism and therefore no return type. The core language for state-
ments (statement) allows the remote method invocation requests (mir) which are sending messages, assignments (assign-
ment), if-statements (conditional), object creation (create), and sequential composition.

In mir, after specifying the callee (receiver) id, the method name and actual parameters are included. This can be viewed
as a message consists of the callee id, message id and the parameters passed to the callee. Although not mentioned explicitly
in the message, the caller (sender) passes its rebec identity (self) to the callee (receiver). Caller and callee may be the same
rebec, modeling local calls (sends to self).

Every reactive class definition has a method named initial. In the initial state of the system, each rebec has an initial mes-
sage in its message queue, thus initial is the first method executed by each rebec. After defining the reactive classes, there is a
keyword main followed by the definition of the Rebeca model which is defined as a finite collection of rebecs that are run in
parallel. In declaring a rebec, the bindings to its known rebecs are specified in the list of knownobjects.

3.2. Rebeca verifier

Rebeca verifier [20,23] provides an integrated environment to create Rebeca models, specify properties, and translate
models to the language of backend model checkers like Spin [31] and SMV [17]. Using the tool, a user can create, edit
and debug Rebeca codes, such that the code can be successfully translated to one of the back-end model checker languages.
The required properties can be expressed at Rebeca source code level, using temporal specification patterns. These properties
can then be automatically translated to the specification language of the selected back-end model checker and the output
code can be model checked by it.

We chose Spin as the back-end model checker. In Rebeca Verifier, the Promela code generator is used to produce Promela
codes from Rebeca models. Each class in Rebeca is a proctype in Promela, and each rebec is a process. Each method of a rebec
is mapped to an atomic block in the corresponding process in Promela. The message queues can easily be modeled by chan-
nels, according to the length specified by modeler. Within an infinite loop in a process, the message channel is read for the
next message to be served. After receiving a message, the atomic block associated to that message will be executed. Pro-
cesses (rebecs) are instantiated in the init process of Promela. Fig. 2 shows Rebeca language, theory and verification tool.

The Java-like syntax and object-oriented features of Rebeca facilitate the modeling of more complicated, while other lan-
guages which we have experienced (such as Promela and CSP) are not object-based and suffer from unconventional syntax
and are hard to use. Moreover, the asynchronous nature of computer networks is well fitted in the fully asynchronous
semantics of Rebeca message passing.

Since Rebeca syntax is similar to the conventional object-oriented programming languages, it is easy to learn for software
engineers. Accordingly, understanding, debugging, modifying, and maintenance of model are straightforward.
Language

Rebeca (actor-based)
Formal Semantics

Formal Verification

Model checking, 
Compositional verification

Properties
(based on 

Rebeca models)

Tool

Rebeca models:

Back-end model checkers

NuSMV
(SMV language)

SPIN
(Promela language)

Rebeca 
(Language, Theory, and Tool) 

Decomposition Abstraction

Closed models

Components

Fig. 2. Rebeca: language, theory, and Rebeca verifier tool.
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4. The Mitnick attack

The Mitnick attack is a multiphase attack, which includes SYN-flood attack, TCP sequence number predication, and IP
spoofing. This attack uses SYN-flood to deny the service of host, which has a trust relationship to another host. In Mitnick
attack scenario, host trusts another host, and attacker tries to compromise this trust. Fig. 3 shows the attack steps. In this
figure, Bob (on host B) has trusted to the Alice (on host A) address.

The following scenario describes the attack [32]:

1. Eve (the attacker) starts SYN-flood attack to prevent Alice from responding Bob.
2. Eve sends multiple TCP packets to the target Bob, in order to be able to predict the values of TCP sequence numbers gen-

erated by Bob.
3. Eve then pretends to be Alice, by spoofing Alice’s IP address, and sends a SYN packet to Bob in order to establish a TCP

session between Alice and Bob.
4. Bob responds with a SYN-ACK to Alice. Eve does not see this packet. Since Alice’s input queue is full due to number of half

open connections caused by the SYN-flood attack, she cannot send a RST (Reset) packet to Bob in response to the spurious
SYN message.

5. Using the calculated TCP sequence number of Bob (recall that Eve did not see the SYN-ACK message sent from Bob to
Alice) the attacker sends an ACK with the predicted TCP sequence number packet in response to the SYN-ACK packet sent
to Alice.

Bob is now in a state where it believes that a TCP session has been established with a trusted Alice. Eve now has a one-way
session with the target, Bob, and can issue commands to the target.

5. The model

In this section, the Mitnick attack environment is described and then a Rebeca model to describe and analyze it is
presented.

5.1. Network model

The environment in which the problem is investigated is the same as our previous work [1] except that here we use a
more general network and the environment is not limited to a LAN. Hosts and attacker may be placed in any location in
the Internet. Therefore, attacker has not direct access to the network of hosts and cannot sniff packets. In this model, the
environment includes set of some hosts communicating via TCP/IP protocol stack, but not restricted to a broadcast environ-
ment. Moreover, in this paper, we want to find attacks that are more complex by composing simple attacks. As Fig. 4 shows,
hosts may be some clients who get service from servers in presence of a malicious attacker who tries to attack server and get
service. The server trusts the client IP addresses and there are no other authentication mechanisms. For example in some
services such as Berkley Remote Shell and rexec, authentication is based on client IP address [33].

In our model, we have some other assumptions without losing generality. In this network, all hosts are connected
together via reliable network. In addition, we focus on connection establishment of TCP, and it has been assumed that
Host A
(Alice)

Host B
(Bob)

{Trusts Alice}

Attacker
(Eve)

1. Initiate Syn/Flood to prevent Alice from

Responding Bob

2. Probe Bob to determine TCP sequence

numbering

3. Pretending to be Alice. initiate a TCP

session with Bob.

5. Using Alice's address and the calculated TCP

seqence number of Bob, the attacker responds to

the SYN/ACK sent by Bob in step 4.

4.  Bob 
sends SYN-
ACK to 
Alice, in 
response to 
step 3.
Alice's input 
queue is full 
and does 
not receive 
the message

Fig. 3. Illustration of Mitnick attack [32].
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the messages are sent in a single bulk packet. Thus, we have not modeled the error detection and flow control mechanisms
such as acknowledgments.

5.2. Attacker point of view

Attacker has enough information to send packets to clients and server, i.e., he/she knows the client and server addresses.
Since the attacker is outside of client/server local area network, he/she can not sniff their communications. In addition, we
assumed that attacker is able to send spoofed packets, pretending to be client or server, i.e. the routers in middle of path from
attacker to client/server are not able to detect IP spoofing. In our model, the attacker sends arbitrary packets to either client
or host. We are interested to find special sequences of packets which yield a successful attack.

5.3. Modeling TCP

As stated, the TCP state machine is simplified and some aspects of TCP, which have no effect on the attack, have been
abstracted. The TCP state machine is modeled as a rebec (reactive object) which demonstrates the TCP protocol state ma-
chine. It receives some messages either from other TCP agents or from its upper layer agent. The upper layer agents invoke
some commands such as connection establishment or closing the connection and get the result. This component is used in
any host. Thus, it is better to describe it as an independent module with predefined interface and reuse it in any other host. In
our model, the attacker does not need the TCP agent, because he/she sends arbitrary packets to other hosts.

In this phase, time is not considered, and we have not modeled time aspects of TCP/IP such as timeouts. Therefore, the TCP
state machine is simplified to involve main states including CLOSED, LISTEN, SYN-SENT, SYN-RECEIVED, and ESTABLISHED.
Fig. 5 shows the simplified state machine. Because of the important role of TCP sequence number in many attacks, we have
modeled the TCP sequence numbering, as well.
CLOSE
D

listen

close

LISTEN

SYN-
RCVD

SYN-
SENT

Syn/syn_ack
Reset

syn/syn_ack

ESTABL
ISHED

Ack/-

Close/Fin

Connect/Syn

Reset

syn_ack / Ack

Fig. 5. Simplified TCP state machine.
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5.4. Hosts description

As Fig. 4 shows, each host consists of two major parts: TCP/IP stack protocol and an application layer program. TCP/IP stack
protocol abstracts the network layers as one component and hides the details of network layers form upper layer. It accepts
upper layer command such as connect to other host, close the connection by handling the TCP handshaking and returns the
result to application layer. The application layer program uses TCP layer to connect to other hosts and get/give service.

5.5. Rebeca model

The model consists of four rebecs: Server, Client, TCPAgent and Attacker. Each host uses a TCPAgent to handle TCP state ma-
chine except that Attacker may not obey TCP rules. Server and Client use their high-level interface with TCPAgent and do not
involve TCP details. TCPAgents interacts with each other via takePacket messages, which model packet delivery in a real
network.

The task of Client (Alice) is to connect to Server (Bob), send a high-level command to it, and then close the connection.
Clients repeat this task iteratively. In the other side, Server is a passive host that serves the trusted clients by running their
commands. It is important to note that client only sends safe commands to Server, but Attacker (Eve) do not. Attacker sends
arbitrary packets to each host in network iteratively. The selfLoop message models this iterative task. Table 1 shows the Reb-
eca model in which some of the details of code have been removed.

6. Analysis of the model

To analyze the model, we use Rebeca Verifier to convert it to Promela and model check it using Spin [31]. To verify the
model, we should specify some security goals. Generally these goals are extracted from security policy of an organization. As
a result of verification some counter-examples may be achieved. Each counter-example determines a situation in which the
specified properties are violated. First we check for simple security goals and try to obtain simple attack scenarios to violate
them. As in our model the message passing between rebecs corresponds to the actions of network components, the attack
scenarios can be directly derived from counter-examples.

We use the temporal logic to mention these goals as properties of the model. The first property to be checked is about
service availability. Server always should be available and client should be able to get service. The following temporal for-
mula specifies this property:
SrvAvailability1 ¼ � ðclientError ¼ falseÞ
This means that client always connects to the server without any error (in our model, client periodically tries to connect to
server) (where h represents always). By checking the model, we can find some scenarios to violate the property. The sum-
marized scenario in Rebeca is depicted as following:

6.1. Attack scenario 1:

ClientTCPAgent.connect (Server_IP)
ServerTCPAgent.takepacket (SYN)
Eve.Initial//predicts the correct sequence number and sends RST packets in the slefloop
Eve.selfloop
ClientTCPAgent.takepacket (RST)
Alice.ConnectionError

In this scenario attacker sends a Reset packet (RST) to Alice while she is handshaking with Bob, and causes the connection
to be closed. The scenario can be rewritten in more conventional style:

Alice ? Bob: alice.bob.SYN
Eve ? Alice: bob.alice.RST

Attacker could also send the Reset packet to the server, Bob. This scenario is similar to the above scenario and is not pre-
sented here.

The second property to be checked is SrvAvailability2:
SrvAvailability2 ¼�ð
ðs state01 TcpAgent½1� ¼ SYN SENTÞ
)
}ðs state01 TcpAgent½0� ¼ ESTABLISHEDÞÞ



Table 1
Summarized Rebeca model of the client, host, TCP state machine and the attacker

Reactiveclass TcpAgent(4){ Reactiveclass Client(3){
knownobjects{ knownobjects{
Server Bob; TcpAgent myAgent;
Client Alice; }
Attacker Eve; statevars{boolean clientError;}
TcpAgent anotherAgent; msgsrv initial(){. . .}
} msgsrv connected(byte ip){
statevars{ //to inform Clinet that a new connection was established

byte lastSeqNoSent01; }
byte lastSeqNoSent2; msgsrv closed(byte ip){
byte lastSeqNoRcvd01; //to inform Client that an existing connection was closed
byte lastSeqNoRcvd2; }
byte state01; msgsrv takeDataPacket(byte sIP,boolean command){
byte state2; //new data packets are delivered to Client
byte myIP; }

} msgsrv connectionError(byte ip){
msgsrv initial(byte s_ip){//get initial state //Client is informed about connection errors,

myIP=s_ip; //This Message server sets clientError variable
state01=2; }
state2=2; }

} Reactiveclass Attacker(5){
msgsrv connect(byte ip){ knownobjects{

//Connect to its ip TcpAgent bobAgent;
} TcpAgent aliceAgent;

msgsrv takePacket(byte sIP, byte pType, byte senderSeqNo, byte ack, boolean
command){

}

//TCP State Machine implemented by a conditional structure statevars{
} boolean newDestination;
msgsrv close(byte ip){ byte newSource;

//Close the connection byte newPType;
} byte newSenderSeqNo;
msgsrv sendDataPacket(byte ip,boolean command){ byte newAck;

//Send data packets boolean newCommand;
} }

} msgsrv initial(){
Reactiveclass Server(3){ self.selfLoop();

knownobjects { }
TcpAgent myAgent; msgsrv takePacket(byte sIP, byte pType, byte senderSeqNo,

} byte ack,boolean command)
statevars{ {

boolean safeCommand; //Packets are delivered to attacker through this message server
boolean userConnected; }
boolean initialized; msgsrv selfLoop(){

} //Sending non-deterministically generated packets to other
hosts

msgsrv initial(){} self.selfLoop();
msgsrv connected(byte ip){ }
/ inform Server that a new connection was established }
} //Main body creates reactive objects
msgsrv takeDataPacket(byte sIP,boolean command){ main{
//server new data packets are delivered to Server TcpAgent

serverTcpAgent(Bob,Alice,Eve,clientTcpAgent):(0);
} TcpAgent

clientTcpAgent(Bob,Alice,Eve,serverTcpAgent):(1);
msgsrv closed (byte sIP){ Server Bob(serverTcpAgent):();
//to inform Server that an existing connection was closed Client Alice(clientTcpAgent):();
} Attacker Eve(serverTcpAgent,clientTcpAgent):();
msgsrv connectionError(byte ip){ }
//Server is informed about connection errors
}

}
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This means that if the client requests for a connection without receiving any error, the connection should be established
finally, i.e. its TCP state should be ESTABLISHED (where } represents finally). By checking the model for SrvAvailability2 prop-
erty, another counter-example was found. This counter-example is the scenario of SYN-flood attack. In this attack, attacker
floods the victim by many SYN packets. Each SYN packet means a new connection request and causes a half open connection
data to be stored in the victim. Thus, these data can consume the system resources and cause the new connection requests to
be rejected. The following shows the scenario in Rebeca:
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6.2. Attack scenario 2:

Eve.initial//Eve sends a SYN packet to Bob in each selfLoop
Eve.selfLoop
Eve.selfLoop
. . .

Eve.selfLoop
Alice.initial
SerevrTcpAgent.initial
ClientTcpAgent.initial
Bob.initial//Sends a SYN to Alice, but Alice’s queue is full and the SYN is dropped.
TcpAgent.connect
ServerTcpAgent.takePacket
ServerTcpAgent.takePacket
ServerTcpAgent.takePacket
ServerTcpAgent.takePacket
Eve.selfLoop
. . .

As it is shown in the Scenario 2, the client waits for SYN_ACK, but he does not receive anything. It means that the server
has been flooded and cannot reply to the client because it sends many SYN packets without following handshaking steps.

The last property to be checked is that safe commands are always executed on the server, i.e. attacker should not be able
to execute his unsafe command on the server. The famous Mitnick attack goal is to violate this property and force the server
to execute his dangerous command. The goal is described as follows:
Safety ¼ � ðsafeCommand ¼ trueÞ
It means that always the safe commands should be executed on the server. In our model, trusted user sets safeCommand
to True during each connection, but attacker executes its dangerous command. By checking the model to find counter-exam-
ples, we can find the following scenario to violate the Safety property:

6.3. Attack scenario 3 (Mitnick attack):

ServerTcpAgent.initial
ClientTcpAgent.initial
Bob.initial
Eve.initial
Alice.initial
//Eve sends many SYN packets to Alice’s TcpAgent
Eve.selfLoop
. . .

Eve.selfLoop
//Bob sends syn_ack to client, it will be dropped because client’s queue is full:
ServerTcpAgent.takePacket
//Eve predicts sequence number and send ACK to serverTcpAgent, this prediction modeled using a nondeterministic choice.
Eve.selfLoop
//ServerTcpAgent receives ACK and send connected message to Server
ServerTcpAgent.takePacket
Bob.connected
//Eve sends a dataPacket that includes a malicious command to serverTcpAgent:
Eve.selfLoop
ServerTcpAgent.takePacket //the malicious command is delivered to Bob(Server)!
Bob.takeDataPacket //the server in now hacked by executing malicious command!

The scenario can be rewritten in a more conventional style:

1. Attacker performs syn-flood attack:

Attacker sends many SYN packets:

Eve ? Alice: bob.alice.RST
2. Server sends SYN_ACK to the client, it will be dropped because client’s queue is full:
Bob ? Alice: bob.alice.SYN_ACK
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3. Attacker connects to the server by predicting correct sequence number. This prediction is modeled as a nondeterministic
assignment in Rebeca model:
Eve ? Bob: Eve.bob.ACK
4. Attacker sends a malicious command to the server to be executed:
Eve ? Bob: Eve.bob.dangerousCommand
This is a multiphase Mitnick attack, which gains some simple attacks to reach its goal. First, the attacker floods the client

by SYN packet to prevent it to respond to the server. Then by spoofing client address, and predicting server TCP sequence
number connects to the server and invokes its dangerous command.

As we do not have any attack dependent assumption, this approach can be generalized to find other attacks, either new or
known. It is worthy to note that this independency is not perfect, because any model has some abstractions and assumptions
that they confine model usage and may loss some useful information.

7. Conclusions and future works

In this paper, we presented a model of communicating hosts. In this model, some hosts get service from the server accord-
ing to the server trust. An attacker tries to exploit this trust to get service from the server. We modeled the environment
using an actor-based language Rebeca, and verified it to find attack scenarios. Rebeca helped us to have a detailed model
of hosts and verify it to find complex attack scenarios. First, we found simple attacks to violate simple security properties.
In the first attack, which is named connection reset, the attacker prevents client from connecting to the server by sending
Reset packets to the client or server. In the second one, attacker exhausts the host resources by establishing many half-
opened connections to it. It sends many SYN packets without following handshaking steps.

After that, the model has been checked to detect more complex attack scenario in which simple attacks are chained to
construct a multiphase attack. This attack was the famous Mitnick attack. The attack chains some simple attacks such as
SYN-flood, IP spoofing and TCP sequence number prediction.

We showed how an attacker may chain some simple attacks to launch a complex attack. In comparison to the earlier
works [7,11–13,34], the Mitnick attack has been modeled and analyzed in previous works. Moreover, we have gained the
formal language Rebeca, which is an actor-based language and actors interact via message passing. As the network environ-
ment is asynchronous, it is well fitted in fully asynchronous model of Rebeca. Additionally, the object-oriented nature of Reb-
eca facilitates the modeling in comparison to other languages such as Promela [31].

The main drawback of our approach is the simplicity of our model, as we have omitted the time in our model and also
deleted some related states from TCP state machine. We continue working on it and try to overcome them. The other one
may be the scalability of the approach to make the approach more applicable in real applications. As one of important fea-
tures of Rebeca is compositional verification, we will try to gain this feature and verify larger models by composing the ver-
ified components.

Several issues can be considered for future works. In the first step the model can be checked against more security prop-
erties which have been extracted form the security policy. Thus, precise and applicable specification of security policy will be
required. Another important extension to our model is considering time and modeling other states of TCP state machine.
Consequently, we will be able to analyze more Denial of Service (DoS) attacks and their solutions. Moreover, our approach
can be used for other protocols to find attack scenarios.
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