A learning automata and clustering-
based routing protocol for named data
networking

Zeinab Shariat, Ali Movaghar & Mehdi
Hoseinzadeh

Telecommunication Systems

Modelling, Analysis, Design and Volume 63 o Humber 1
Management

[| | ’
Telecommunication Sysiems
Telecommun Syst Modeling, Analysis, Design and Management

DOI 10.1007/511235-016-0209-8

) Springer
11235.63(1) 1-110 (2016}
ISSN 1018-4864 (Print)

Editor-in-Chief: Muhammad Khurram Khan

@ Springer

Your article is protected by copyright and all
rights are held exclusively by Springer Science
+Business Media New York. This e-offprint is
for personal use only and shall not be self-
archived in electronic repositories. If you wish
to self-archive your article, please use the
accepted manuscript version for posting on
your own website. You may further deposit
the accepted manuscript version in any
repository, provided it is only made publicly
available 12 months after official publication
or later and provided acknowledgement is
given to the original source of publication

and a link is inserted to the published article
on Springer's website. The link must be
accompanied by the following text: "The final
publication is available at link.springer.com”.

@ Springer

Telecommun Syst
DOI 10.1007/s11235-016-0209-8

@ CrossMark

A learning automata and clustering-based routing protocol

for named data networking

Zeinab Shariat! . Ali Movaghar? - Mehdi Hoseinzadeh!

© Springer Science+Business Media New York 2016

Abstract Named data networking (NDN) is a new infor-
mation-centric networking architecture in which data or
content is identified by a unique name and saved pieces of
the content are used in the cache of routers. Certainly, routing
is one of the major challenges in these networks. In NDN,
to achieve the required data for users, interest messages con-
taining the names of data are sent. Because the source and
destination addresses are not included in this package, routers
forward them using the names that carried in packages. This
forward will continue until the interest package is served. In
this paper, we propose a routing algorithm for NDN. The pur-
pose of this protocol is to choose a path with the minimum
cost in order to enhance the quality of internet services. This
is done using learning automata with multi-level clustering
and the cache is placed in each cluster head. Since the pur-
pose of this paper is to provide a routing protocol and one of
the main rules of routing protocol in NDN is that alternative
paths should be found in each path request, so, we use multi-
cast trees to observe this rule. One way of making multicast
trees is by using algorithms of the Steiner tree construction in
the graph. According to the proposed algorithm, the content
requester and content owners are the Steiner tree root and
terminal nodes, respectively. Dijkstra’s algorithm is one of
the proper algorithms in routing which is used for automata
convergence. The proposed algorithm has been simulated in
NS2 environment and proved by mathematical rules. Exper-
imental results show the excellence of the proposed method
over the one of the most common routing protocols in terms

DX Zeinab Shariat
zshariat@alum.sharif.edu

Department of Computer Engineering, Science and Research
Branch, Islamic Azad University, Tehran, Iran

Department of Computer Engineering, Sharif University of
Technology, Tehran, Iran

Published online: 23 August 2016

of the throughput, control message overhead, packet delivery
ratio and end-to-end delay.

Keywords Named data networking - Content centric
networking - Learning automata - Multi level clustering -
Steiner tree - Routing protocol

1 Introduction

With the growth of digital media and its growing influence
in the internet world, new challenges have emerged in the
field of internet commerce. Customers expect to receive the
content like images and videos which have high traffic on
the network at the least time. With the spread of the internet,
web services often suffer from congestion and bottlenecks,
and intractable levels of traffic flow may increase and a lot
of requests get lost in the process.

Host-to-host internet protocol (IP) model is not enough to
support content distribution, peer-to-peer applications, real-
time media and social networks. Internet use has changed
from a low messaging and information sharing system to
a high content distribution system. Hence, a large number
of users request very large amounts of identical and over-
lapping information. So it seems that the implementation of
a content distribution network on a host-to-host network is
very inefficient. This is because each piece of content tra-
verses a complete distribution chain from the producer to the
consumer [1]. Moreover, some problems are encountered in
addressing and routing IP addresses and are summarized as
follows [1,2]:

(1) Creating heavy traffic and an explosion in duplicate
requests and popular content.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11235-016-0209-8&domain=pdf

Z. Shariat et al.

(2) The need for customers to invest in website infrastruc-
ture and increased operating costs of such infrastructure
management.

(3) Increased traffic density in the web originating from the
data that is far from the user and also scrolling through
all congested and analogous paths.

(4) Reducing the quality, speed and reliability of data deliv-
ery.

(5) Increased load of main servers.

(6) Creating delay or pause while hundreds of users choose
a web page or data simultaneously.

(7) The possibility of non-secure failure, if any data is
available on a server.

(8) Lack of inherent backup copy, archive and better capac-
ity of content storage.

(9) Difficulty of managing the assignment of IP address to
all computing devices and mobile phones.

(10) The difficulty of assigning IP addresses to mobile
nodes.

(11) Need of mapping data for a specific node, resulting in
low quality delivered.

(12) High control overhead for each hop of a routed path to
identify the sender of the next hop.

(13) The possibility of sniffing when data is transmitted in
wireless broadcast channels.

The named data network (NDN) tried to solve this prob-
lem by the routing mechanism using the name instead of
an address. This proposed mechanism enables network to
use saving pieces of content in the cache so as to optimize
content distribution instead of communicating and getting
permission from the routers.

In NDN, data are identified by networks with unique
names and NDN packages including the names of the
requested or carried data. Using these location-independent
characteristics, network equipment and end-hosts know what
they transfer. Also, they can inherently perform content-
based operations. These operations include content routing
(or paths by name), storing data packages in the cache, or
network data processing. On the other hand, the flexibil-
ity of NDN can reduce transmission costs for the internet
service providers (ISP), and therefore improves end-user per-
formance and enhance quality of service on the network. In
fact, supporting content-based functions at the network layer
allows going beyond what is done today with content deliv-
ery. For example, if the network devices are aware of the
content they carry, issues such as network neutrality, secu-
rity and privacy can be created. Network routers must have
additional operations on transition plans and such issues are
raised.

In a network where there is no IP address, routing is cer-
tainly one of the main issues raised. Several algorithms have

@ Springer

been proposed in association with this issue, some of which
are reviewed in Sect. 3.

This paper presents a new routing protocol for NDN using
learning automata and clustering. In this protocol, network
is an undirected graph whose nodes are grouped in clusters.
Cluster heads (CH) are responsible for storing the location of
the named data and routing. Furthermore, they are equipped
with learning automata and can find optimal Steiner trees
using learning in order to have a multicast tree for routing.
Although Dijkstra’s algorithm can obtain the shortest path
between graph nodes, the node address is in information-
centric networking. Also, since nodes cannot identify each
other, hence it cannot be easily used. In the proposed algo-
rithm, paths are converging toward Dijkstra paths using
learning and the shortest paths are found.

The correctness of the proposed algorithm have been
proven by expressions and then implemented on a sample
network using the NS2 simulator. Also, important parame-
ters were evaluated and compared by changing the number
of requests.

The second section of this paper provides the NDN and the
relevant issues. This section is a basis to understand the fol-
lowing sections. The third section presents some conducted
works in NDN routing. The fourth and fifth sections explain
the background of learning automata and clustering algo-
rithms of learning automata and clustering algorithms. More
so the proposed protocol is investigated in the sixth section.
In the seventh section, the proposed protocol is proven by
expressions, the eighth section presents simulation results
under NS2! environment. Finally, the ninth sections explain
the complexity of the algorithm.

2 Basic techniques in NDN

This section explains how Content-centric networking (CCN)
and NDN networks work. The information provided in this
section is mainly a combination of a high level of NDN,
which widely presents the sections provided on software for
implementation in CCN (CCNXx project) protocols [2].

2.1 Naming and routing

At NDN, when a node is interested in a certain content or
information, it can send an interest package containing a
descriptive name of the content. Each node that receives
this package, sends it to the node that is responsible for the
production of the information until the package reaches the
producer or the node which supply the requested content from
the cache.

I Network simulator.

A learning automata and clustering-based routing protocol for named data networking

When an interest package reaches such a node, a package
containing a content object is created and is sent to the data
requester through the reverse path and its interest package is
discarded. Whenever a node finds content in accordance with
the requested information in the cache along through the path
which was maintained in the previous request, the forwarding
interest package is stopped and the object sends its cache
toward the requester. The purpose of cache mechanism is
to reduce the workload on the information generating nodes
that their data are frequently requested. The second request
for the data that has been delivered recently can be supplied
from the first node in the path between the requester and the
producer [3].

Principle of the NDN states that it does not matter who
is delivering the data, but what matters is that they should
be valid, while in IP networks, nodes and links that are
popular or highly requested have high overload. In NDN,
the possibility that a node near us, on the path to con-
tent generator, has a copy of the required content in the
cache, increases the popularity of this method. Through
the mechanism of the cache, content copies are automati-
cally distributed to parts of the network that are requested
(1].

Information and content are located in the caches close to
request locations. It can be said that the load on the network is
reduced by pieces of content, when its requests are repeated
and in this case, the nodes in this path can be used instead of
the content generator server. This is a very useful feature for
anetwork in which several organizations share relative equal
information and requests for the information are too much
[1,2,4].

Since routing and forwarding are done by name, a struc-
tured solution is required for the content naming. CCNx uses
a hierarchical structure in which each name is a combina-
tion of several segments like CCNx:/First name component/
Second name component /Third name component. Each next
segment or component describes a feature of content more
accurately. Description of a name is not only that the nodes
in the network must select forward rules submitted by the
listed prefixes, but is the meaning of a name for the group
requests and relevant information generated. Packages are
sent via interfaces, which can be any type of connection with
other processes, daemon, node or link. Once the prefix of
interest is matched to a name of a content, the content is eli-
gible for request, and can be returned to the requester. To
extract the names of the content, the name should be devel-
oped by additional parts or components in order to show
version and segmentation. For example, central components
of (part number) and (time stamp) are defined to specify the
segment and content version [2]. Since these components are
added after the significant segments of a prefix, the added
components must not disturb routing, but create communi-
cation between the user and application. There are important

guidelines for content naming in the world as shown in the
following [2,5]:

(1) Name of the content must be unique in the world.
(2) Name of the content must have a DNS name as the first
component.

Like all network mechanisms, nodes or routers require
a mechanism for decision-making on how to send packages
across multiple networks. In CCN, all nodes (routers, servers,
users and peers) are equal in performance; this means that
they can send all requests, even service, and store the data in
cache.

Each node maintains 3 tables (Fig. 1) and decides on what
action to take for a content object or interest based on their
content. These three tables are as follows [1,4]:

e Content store (CS) It is a temporary cache of content
objects the router has received for a given period of time.It
is used to temporarily store data packets, and the like can
be the buffer memory IP-based routers. So, for reduc-
ing the amount of upstream flow bandwidth demand and
delays in downstream flows, as long as possible, the NDN
remembers the incoming data packet, because each NDN
packet is reusable for several consumers.

e Pending interest table (PIT) It contains a list of incom-
ing faces and interests for which the node has forwarded
but not satisfied yet. Each PIT entry serves as way-
points for a content object together with its incoming
and outgoing interface(s). This table holds interest pack-
ets being sent as upstream to the sources, who are yet
to be answered. The returned data can be sent via the
same route that leads to the requester as downstream.
PIT entries are deleted as soon as the requested data are
found, and if not found at the time specified, finally, the
time expires.

e Forwarding information base (FIB) It contains for-
warding rules for naming prefixes. According to this
table, interest packets can be sent to a list of interfaces,
which shows its difference with IP-FIB. This difference
indicates that the request can be sent to multiple sources
at the same time.

In the following, the function of each of the tables is explained
further.

CCNx program determines the correct activity using the
prefix matching of different components with different names
and tables. Full prefix matching occurs in naming compo-
nents, for example, ccnx:/Eli /photo as ccnx:/Eli tends toward
name matching of ccnx:/Eli, while this name is not a prefix of
it. When the name of a received interest prefix is matched to
the name of a content object in CS, the node can discard inter-

@ Springer

Z. Shariat et al.

est and return a copy of the information stored in the cache.
A requested name may be matched with several names of
prefixes, in this case, at least one of the content which satisfy
the interest is returned [5,6].

If pending interest table (PIT) includes a precise matching,
it means that the node currently has a pending request for the
same information. Origin of the face of interest is added to
the list of pending faces of interests to ensure that when a sat-
isfactory response is returned, this request will be answered
too. After being added to the list, the interest is discarded
because the proper forwarding operation is running.

If interest has not been still answered, forwarding infor-
mation base (FIB) is a good choice for search. If any of the
prefix matching rules is matched with the incoming interest,
interest is sent to the specified face in the rules which have
the longest matching prefix with the name of interest [7].

Since face can be used as a link, a connection, tunnel or
application, it is possible for interest to be sent to a node
with a closer hop towards the generator or host application
or content generator. When a node has the longest matching
prefix with several rules, interest can be repeated and be sent
to several faces. A rule is added in the PIT table which shows
that the interest has been sent and shows the origin of the
face. Chain of the rules in PITs on all nodes will be from
the requester to generator which are used to send a content
object to requesters based on the reverse path. The process
of determining how to process an incoming interest by name
is shown in Fig. 1 by monitoring the content of CS, PIT, and
FIB [8].

When a content object enters a node, for each PIT entry
(prefix) that matches with the content, a copy of the content
object is sent to all requested faces and entries are cleared
from the table. In each subsequent node which receives a
copy of the object content, this process will continue until

Fig. 1 Packet forwarding

the chain achieves the aim of the requester, and finally, the
content object is presented to the requester application [9].

2.2 Strategy layer

One of the new options in NDN is a strategy layer. The phi-
losophy behind the strategy layer, is that a process must be
monitored on all objects in the router, and change forward-
ing decisions based on record events. CCNx now follows
strategies for all node runs. Incoming interests are sent to
all interfaces for finding the longest matching prefix, based
on interest submission. A node will periodically retransmit
interest from the active entries in the PIT. It is recommended
that this should be retransmitted at random times in a differ-
ent interface, or retransmitted using a heuristic scheduling
[1,3,5].

2.3 ISP-based aggregation

One method for long-term routing is ISP-based aggregation,
which can dynamically generate names. The proposed solu-
tion is to differentiate between names chosen by the user and
provider name assigned. These two names are mapped using
service analogous to DNS. Names assigned by providers are
built hierarchically, where long names define an exact loca-
tion on the network [2].

2.4 Cache organization

Content management plays an important role in the perfor-
mance of NDN, and it also depends on the method of caching
on these systems. The cache organization consists of caching
methods and updating the contents, to ensure freshness, accu-
racy and health of the content. Cache organizations could

process at an NDN node [1]

Content Store (CS)
Name Data
/parc.com/videos/WidgetA.mpg/v3/s0 e Index
\ ptl‘ type
Pending Interest Table (PIT), Requesting C
face(s)
Prefix
| Ve -
I /parc.com/videos/WidgetA.mpg/v3/sl 0 < F
‘ C = Content Store _ Face2
Forwarding Informatjon Base (FIB) P=PIT Applicati
ication
Prefix Face list F =FIB Ppiicatio
K /parc.com <

@ Springer

A learning automata and clustering-based routing protocol for named data networking

include integration and linking of caching systems. So this
integration also affects the management of content in these
networks. Improvement of the efficiency of a content distrib-
ution network, which has been set by caching and replication
together, is measured based on the delay of the hit ratio and
byte hit ratio. However, repeated use of caching and replica-
tion together in these systems makes them resistant against
the flash crowd events [7].

2.5 Security

One of the CCNx major concerns, is providing security solu-
tions for high-value and confidential content. Security means
protecting content against unauthorized access and modi-
fication. Without proper security controls, CCN platform
exposes internet fraud, distributed attack, viruses or other
unwanted intrusions, that can cripple the business. The NDN
contrary IP, do not use encryption of transport tunnels from
the requester to the generator. So there is a need to change the
current public key infrastructure, to ensure security control
[4].

The summarization algorithm SHA256, is used now for
the last segment of the name, for each content object, to
ensure that the full name is addressing a unique content.
In CCN, all content authentication of digital signature and
private content are protected with encryption. Embedded
security on the content and not on the host, will reduce the
need to trust in the interface location, and increase wider
participation in the network [1].

3 Related works

As previously explained, in NDN, the user sends inter-
est packages along with the names of data to obtain data.
Since interest messages do not include source and destina-
tion addresses, routers should forward the packages based on
the names they carry. Routing protocol in vast NDN networks
should be based on the name and for this purpose, it requires
calculating and installing the appropriate entries in the table
of NDN forwarding nodes (FIB). Each FIB entry contains a
prefix and one or more next hops, used to forward interest
packages whose names are matched with the prefix; IP is
only used for one and the best next hop or several paths with
equal costs to avoid loop creation. NDN can freely use mul-
tiple paths, because prevention of loop creation is conducted
in its forwarding process. So, NDN network needs routing
protocol which supports name-based multiple routing. Table
1 represents some routing protocols for NDN networks and
some protocols provided for information-centric network-
ings.

4 Automata

The learning process of living creatures is considered as one
of the new research topics. This research is divided into two
general categories. The first category examines the learning
principles of living creatures and its steps, and the second
category seeks to offer a similar methodology for putting
these principles in a machine. Learning is defined as changes
created in the efficiency of a system based on past experi-
ences. An important characteristic of learning systems is the
ability to improve their performance over time. Mathemati-
cally, it can be said that the purpose of a learning system is
to optimize the task that is not fully known. Therefore, one
approach to this problem is to reduce the purposes of learn-
ing system to an optimization problem which is defined on a
set of parameters and aims to find a set of optimal parame-
ters [23]. A learning automata is made up of two main parts
[23,24]:

I. A stochastic automata with a limited number of actions
and arandom environment that the automata is associated
with.

II. Learning algorithm that the automata uses to learn opti-
mal action by using it.

4.1 Random automaton theory

A stochastic automata is defined as a quintuple SA =
{a, B, F, G, ¢} and r is the number of automata actions,
o = {og,a2,...,qa,} is the automata set of actions, B =
{B1, B2, - .., Br}is the automata inputs set, F = ¢ x f — ¢
is the production function of the new state, G = ¢ — « is
the output function which maps the current state to the next
output and ¢ (n) = {P1, ¢2, ..., ¢} is the automata inner
states set at the moment n [23,24].

Learning automata is categorized into two groups: fixed
structure automata and variable structure automata. The
stochastic automata with the fixed structural possibility of
actions are fixed. While the random automaton with vari-
able structure of the possibilities of actions in each iteration
is updated. On learning automaton with variable structure,
change of the possible action is based on alearning algorithm.
However, the internal state of the automaton’s ¢ sets is repre-
sented by the possibilities of actions. In fact, the automaton
as a state-output automata considered that its output is equiv-
alent to its internal state. The internal state of automaton ¢ ()
at instant n, with probability set of actions P (n), is shown as
follows:

P(n) = {pi1(n), p2(n), ..., pr(n)}so that
,
> pi(n) = 1,¥n, pi(n) = Probla(n) = ;]

i=1

@ Springer

Z. Shariat et al.

Table 1 Some protocols
conducted in NDN and CCN

Protocol name

Main features of protocols

NLSR [10,11]

CRoS [12,13]

OSPEN [14]

Two-layer intra-domain
routing scheme [15,16]

Adaptive forwarding [17,18]

SIR [19]

CCNFRR [20]

Cluster based multipath
routing [21]

Probabilistic ant-routing
mechanism [22]

Using two types of LSA adjacent and prefix; full recognition of
topology by each node by declaring LSA; storing tables called
LSDB; synchronization of LSDB periodically and hop-by-hop and
not torrential; carrying signature in each package; hierarchical
naming; using Dijkstra’s algorithm to find the shortest path; multiple
routing; finding several next hops in the process of routing

Dividing the network elements into two roles of router and controller;
Router: forwarding packages to the destination and maintaining the
names of data; Controller: calculating and storing the named data
locations; obtaining topology at Bootstrap phase and calculating
some paths to all routers; Bootstrap phase: finding the registered
controllers by routers; discovering the topology by the controllers;
installing paths to the routers by controllers; Routing: registering the
named data; installing the path; finding the path

Maintaining the information on links in the LSDB by all routers; using
OSPF to find the shortest path; updating LSDB when link state
announcing (LSA) is flooding; saving a copy of LSDB in all routers
of the network and building a network topology in them

TM topology storage layer: topology discovery; management of node
or link error; calculation of the shortest path tree; PM prefix
announcement layer: active propagation and passive service of
prefixes according to scalability; categorizing routers to content
requester and provider; using two functions of announcement
forwarding and FIB making; Maintaining a complete topology of the
network in each node through torrential propagation; Providing
content by active propagation and passive service

Introduction of NACK Interest; a ranking of interfaces in FIB;
coloring schemes of interfaces and forwarding strategies based on
the coloring (green: interface works, yellow: interface might work
and might not work, red: interface does not work); locating a rate
limit on an interface using the link capacity; estimated package size
error parameter; forwarding strategy: from the most prioritized green
interface and if absent, the most prioritized yellow interface

Adding two fields of delay and the number of hops in Interest package.
Distributed function (no need to fully understand the topology by the
nodes). Conducting the main steps in two phases of Interest and
content propagation. Calculating the shortest package based on the
delay field in receiving Interest package

Detection of a node or link failure and informing the adjacent without
torrential propagation. Defining FIB and PIT packages for
announcement of failure to the adjacent and having an alternative
path

Adding Condition Database (CDB) to set the load, saving the number
of data packages in CDB by cluster head, using CDB for restoration
of Interest package, changing the crowded path by Interest package
restoration

Interest: The ants who are looking for food, data packages: the ants
that have food; pheromone: PIT entries; adding a quality field to FIB
in order to show how Interests are conducted, editing FIB entries and
their quality field when data packages and Interest achieve

At the beginning of the automaton, the probability of the

actions is equal to 1/r (where r is the number of actions).

4.2 Environment

Every environment is demonstrated by the triple E
., oy} set of environmental

{a, B, c}, where ¢ = {aq, oz, ..

@ Springer

inputs, 8 = {B1, B2, ..., Br} set of environmental outputs,
and ¢ = {cy1, c2, ..., ¢} is the set of the probability of penal-
ties [23].

Input of environment is one of the r selected action. Output
(response) of environment to any action i, will be determined
by B;. If B; is a binary response, the environment is called
P-model. In such an environment, 8;(n) = las an unfa-

A learning automata and clustering-based routing protocol for named data networking

vorable response or failure and B;(n) = 0 as a favorable
response or success are considered. In the environment of Q-
model, B; (n)contains a limited number of values in the [1, 0].
Whereas in the S-model, values of g; (n)are a random variety
of [1,0] (B;(n) € [0, 1]). The set ¢, defines the penalty pos-
sibilities (failure) of environmental response and is defined
as follows:

¢i =Prob{(n) = lla(n) =«o;}, i ={1,2,...,r}

This shows that the probability of «; action gets unfavorable
response from the environment. The ¢; values are unknown
and it is assumed that they have a unique minimum value.
Similarly, the environment can be shown by the {d;} set of
probability reward (success), that in this case, d; indicates the
possibility of receiving favorable response to the «; action.
In stationary environments, values of penalty probability are
fixed. Whereas, in non-stationary environments, values of
penalty probability will change over time [24].

Figure 2 describes the working principle of the learning
automata. The collection, along with the learning algorithm,
is called Stochastic Learning Automata. Stochastic learning
automata can be shown in quaternary LA = {o, 8, p, T}
where r is the number of actions, &« = {«1, a2, ..., o} is the
set of actions, 8 = {81, B2, ..., B} is the set of inputs, p =
{p1, P2, ..., pr} is the vector of the probability of actions
and T = p(n + 1) = T[a(n), B(n), p(n)] is the learning
algorithm.

In the environment of Model S, the environment is defined
as follows:

E = {«, B, s} that

s(m) = {s1,82,...,8:};8 = E{Bi(n)|e;}; Vi

S; is the amount of B; responses mean for the action «;,
and in fact, s; is considered as the severity of penalties. It is
presumed that in the n-th hop, «; action is selected, and B; (n)
is the response of the environment. In that case, the possibility
of automata actions of S — L gyis updated as follows.

pin+1) = pin) +a(l — Bi(n)(1 — p;(n))

pjin+1) = p;jn) —a(l = Bi(n)p;n) Vi.j#Fi

ey

a is the learning parameter, and 0 < a < 1.

%I Random Environment |—

a(n) pn)
| |

Fig. 2 Learning automata

Learning Automaton

In the environment of Model P, the environment is defined
by the possibility of penalties. For every action such as «;,
the environment responds to the automata with a random
value of [B;(n)|a;] which forms the input of automata. In
Model P, B; (n) response to the possibility of ¢; and 1 —¢; are
considered equal to 1 (poor responses) and zero (favorable
response), respectively [23]. In S environments, environmen-
tal response to learning automata actions is a random variable
on the interval of [0, 1].

5 Clustering

Classification of network nodes in a number of virtual groups,
to reduce the routing overhead such as applications in the
network, is performed by conventional methods known as
network protocols. Hence, this method is called clustering
[25]. In clustering algorithms, the network is divided into
a number of virtual groups such that each of these groups
are called clusters. Nodes in each cluster are geographically
adjacent to each other. In each cluster, a node is selected as
the cluster head (CH). Other nodes are members of a cluster.
The maximum distance from any node to its cluster head, is
called the cluster radius. Cluster radius is one of the impor-
tant parameters in designing algorithms for clustering and
is expressed by the number of hops. Most algorithms are
provided by 1 hop, that is, cluster members are located at a
distance of one node to the cluster-head. Some algorithms
are also multi-hop. The proposed algorithms have different
methods for selecting cluster heads. Due to the limitations
capacity of nodes in the network, in usage such as routing
and distribution of information, use of hierarchical structure
to optimize network capacity, is necessary. In fact, clustering
is a way of achieving such hierarchical structure [48,49].

5.1 A review of clustering algorithms

Before introducing the algorithm used to perform cluster-
ing in the proposed protocol, an overview of the clustering
algorithms was given [48]. The most clustering algorithms
are the lowest-ID and max Degree, that are the basis of most
other algorithms. In the lowest-ID from each node, ID is used
to identify the cluster head. Since clustering is implemented
at the network layer, the ID of each node and the node IP
address, which is a 32 bit number are considered. Lowest-ID
is a 1-hop algorithm. Consequently, the radius of cluster-
ing is considered as a node. In this algorithm, each node
has the lowest ID among its neighbors, and the cluster head.
In the max-Degree, the number of neighboring nodes is the
main decision-making parameter. Thus, the node is selected
as a cluster head that have more than the required number
of neighbors. A neighboring node number, is a measure of
connectivity. On the other hand, for clustering algorithms,

@ Springer

Z. Shariat et al.

the ideal dominating set (DS) is used. As defined, in graph
G, aset of nodes called S are a DS, such that each node of the
graph G is a member of S or one of the members of S neigh-
bors. In fact, this definition explains the 1-hopDS and also
extends to explain the d-hopDS. One clustering algorithm
called max-min is provided based on the d-hopDS.

There are other algorithms, but the basic ones are the
lowest-ID and max-degree. By doing simulation on both
models, lowest-ID and max-degree, and evaluating the
results, it has been shown that the lowest-ID algorithm is
more stable than max-degree. In other words, the number of
changes in the cluster heads in the lowest-ID is less than the
number of changes in the cluster heads in the max-degree.
As aresult, the lowest-ID algorithm is used in the proposed
protocol for selecting cluster heads.

5.2 Advantages of clustering

In clustering, cluster heads of each group will be responsible
for routing within the group. The gateway nodes exchange
data between two adjacent clusters. Therefore, cluster heads
and gateways constitute the virtual backbone. This brings the
following benefits:

e Number of control packets in the network decreases and
there is limited use of network capacity. This will reduce
power consumption in mobile nodes. In addition, all
mobile nodes are not required to keep routing tables.
Thus, there is reduced usage of network resources.

e Mobility nodes will have less effect on performance rout-
ing. Each node’s routing information are only stored in
the cluster heads of their cluster. By moving a node from
one cluster to another cluster, it was observed that only
cluster heads change.

6 Proposed protocol

In this section, the proposed algorithm is examined to provide
a new routing protocol using learning automata and cluster-
ing in NDN.

6.1 Naming

Perhaps the most important part in the design of a protocol
for NDN is providing a proper naming scheme for each ele-
ment in the routing system [1]. Based on the current network
structure and operating practices, it seems that a hierarchi-
cal naming scheme is appropriate to show the relationship
between different components of the system, so identifica-
tion of routers belonging to the same network and messages
produced by the routing process is easy. In the design pre-

@ Springer

sented, all nodes, including end nodes, routers and cluster
heads are named according to the network in which they
reside, and the sites, and also nodes’ own names [28]. In
the suggested naming, fixed prefixes are used to display the
type of node to make routing easier. Routers and clusters
are specified by /Router/ and /Cluster head/ prefixes. Some
prefixes are intended to facilitate routing, for example, data
and interest packages should be distinguished from routers
and cluster heads recognizing packages as well as the pack-
ages that determine the cluster heads. It should be noted that
intermediate components of network, all elements except end
nodes, have a unique ID which can be identified by that, and
this name or ID has nothing to do with their NDN [32].

6.2 Topology recognition

After running the algorithm of cluster head selection, cluster
heads forward interest packages to their own cluster members
to introduce themselves to them and also obtain information
from the nodes [1,2]. Cluster heads collect the information
of their cluster nodes and store the information in the table
of members and form the clusters [30]. Each node also main-
tains a cluster membership table that contains the cluster of
the node in the network, which indicates that a node can be
a member of more than one cluster [33]. The most impor-
tant information that the cluster heads of the first level obtain
include the location of named data, so that each end, or gen-
erator node, should register its named data in the relevant
cluster head. Of course, registering of the named data is not
only done at this stage; whenever a producer has an unreg-
istered named data, it should inform the cluster heads and
register the data on them [31].

Each router that receives an interest package forwarded
by a cluster head, answers with a package of data, including
ID, sequence number, the links and its adjacent. When the
cluster head receives a data package, it registers an entry to
identify the router in FIB and update a table of its members.
Whenever a node observes changes in the link state, it must
announce the differentiation to the cluster head so that the
cluster head would have accurate and precise information
about its members [34].

Routers must know each other to be able to route packages
toward their cluster heads, for this purpose, routers periodi-
cally forward interest packages in all interfaces. Each router
that receives the package, responds with a data package con-
taining ID and ordinal number, so each router has an updated
list of its adjacent [34].

In addition to recognizing cluster members, cluster heads
must also recognize adjacent cluster heads. For this rea-
son, each node saves a table of adjacent cluster heads and
addresses and puts the addresses in forwarding interest pack-
ages. Thus, the cluster head receives interest messages from
its adjacent nodes, and gets informed from adjacent clusters.

A learning automata and clustering-based routing protocol for named data networking

At the time of route request of the source node, the cluster
head is responsible for distribution of interest packages to
adjacent cluster heads. In the interest packages while pass-
ing through the nodes, the name of the elements of the route
should be included in the package and only the name of the
cluster heads which the request package passed through is
recorded.

As mentioned in the next section, in our proposed archi-
tecture, clustering is done hierarchically; at any high level
of clustering, a summary of information about lower clus-
ter heads must be available. Cluster heads are members of
a higher level cluster and they exchange the information of
their links according to the summarized information on the
lower level. A node at any level, forwards the information
obtained at that level after the implementation of the algo-
rithm to its lower level. The lower level also has hierarchical
topology information. Each node has a unique hierarchical
name; there is a way to correspond with the hierarchical name
of the cluster number, starting from the root.

After topology phase recognition, all routers recognize
cluster heads. Cluster heads have topology and are able to find
routes between routers, and most importantly, cluster heads
know the location of named data and provide this informa-
tion hierarchically to the cluster heads of higher levels. As a
result, there is a complete knowledge of the network topology
which allows routing of customers’ requests toward content
providers.

6.3 Learning automata in the proposed protocol

The proposed protocol is an intelligent protocol whose main
idea is based on machine learning algorithms especially
learning automata. Since the IP address is not available on
NDN networks and the nodes must somehow know each
other, our proposed protocol, which will be called LCRN
(Learning automata and Clustering based Routing algorithm
for NDN) from now on, uses learning for this recognition.
For this purpose, reinforcement learning of S — L g; was used
in the proposed algorithm, which was described in Sect. 4.2.
Since LCRN has been suggested for a dynamic network
like NDN, P_model automata cannot be used, because they
have weak convergence in dynamic environments. Rein-
forcement learning of S — Lg; is used among the various
options available on the S model. The reason for this choice
is the lack of direct penalty for the automata that have not been
selected in this scheme [40,41]. Since the network is dynamic
and conditions are changing, if some paths are penalized, the
possibility of their selection in the future is zero. However,
we know that for the change in queues and buffers, the path
which is not a good path now, may later turn into a proper
path. Consequently, the chances of their choice should not
be eliminated by permanent penalization in the future [42].

6.4 Clustering in the proposed protocol

In the proposed protocol, the network is considered as an
undirected graph where the nodes are grouped in clusters.
Cluster heads (CH) are responsible for storing the location
of named data and routing. The cluster heads first obtain the
network topology and they also know the other cluster heads
and keep their information. In the proposed architecture, the
network elements have two roles: router and cluster head. The
router is the main element of the network that is responsible
for leading the packages to the destination and recognizes
the other cluster heads; and cluster heads are responsible
for calculating the route and storing the location of named
data. In the stage of topology recognition, cluster heads must
be determined first and then routers and cluster heads must
recognize each other. These procedures will be explained in
the following sections [25,48].

As will be explained in the next section, the architecture
used for naming is hierarchical, and it also helps hierarchi-
cal clustering. The proposed protocol uses the name of the
site and network for naming, so these divisions make up the
first and second levels of clustering, that is, the site, is the
first level of clustering and the network is the next level of
clustering [26]. Using hierarchical routing, network nodes
are divided into some groups. The roles played by nodes are
not the same in routing. In each group, one node is respon-
sible for keeping routing information [27,29]. As a result,
routing is done with nodes through a network. Considering
the hierarchical routing, a virtual network can be assumed,
whose backbone members are responsible for routing. Thus,
hierarchical routing algorithms reduce control of exchange
traffic and thus increase network capacity (view of clustering
in LCRN algorithm is presented in Fig. 3) .

As mentioned, clustering in LCRN is based on the nam-
ing of the data. Any data that is generated, is named based
on the two levels of its location, that is, a mean site and net-
work. According to the local level, clusters are created. As a
result, if the data is distributed and repeated in other places,
there is no need to rename or change the configuration of
the clusters. The main purpose of creating clusters in the
LCRN, is to prevent the spread of routing overhead among
all nodes. Each cluster heads have the task of searching the
data in cluster members [48]. Since in the topology recog-
nition phase, cluster heads within the neighborhood know
each other, a large amount of routing overhead is reduced.
On the other hand, in LCRN all nodes are not required to keep
the network topology information, and it saves the network
resources. In the proposed protocol, the third level of cluster-
ing is also considered. The objective from the third level, is
to aggregate and manage multiple network with each other,
and reduce the workload routing. In terms of prefix match-
ing, in LCRN, clustering has no interference to do prefix
matching, and matching is done based on the named data of

@ Springer

Z. Shariat et al.

Level =3

Level=2 <

Network 1

Level=1—

Fig. 3 View of the clustering in LCRN algorithm

every cluster, and also the data that is stored in the cache
of cluster heads. So clustering performed in LCRN, such as
in accordance with the naming data, is inconsistent with the
decentralization of information on the NDN [49,50].

6.5 Routing tables

In LCRN, all routing tables are only located in cluster heads
and the end nodes lack these tables. According to NDN rules,
each node keeps 3 tables as follows, that some changes have
been created in some of them:

e (CS) and (PIT) These tables are used in LCRN protocol
with their standard format in CCNXx.

e (FIB) Table 2 represents the structure of this table in
LCRN.

e Dijkstra’s table (DT) Itis another table which is added in
order to evaluate the performance of learning automata.
This table is stored in cluster head nodes and the records
in each of them represent the smallest cost of this cluster
head to each of the other categories, and the fields of

@ Springer

Intercluster communication

Intracluster communication (level 1)
Intracluster communication (level 2) O
Intracluster communication (level 3)

Network 2

Site 8

O Cluster head

Internal node

Table 2 FIB table structure

Field title Field description

Prefix Name prefix

Face An interface where the package of
this matching prefix comes from

q The possibility of achieving the

name prefix via this interface

Boolean field which indicates that
the corresponding record is
recorded through learning
algorithm or Dijkstra’s algorithm

Dijksrtra_record

the table are route, route length and route expenses using
Dijkstra’s algorithm.

6.6 Dijkstra’s algorithm

Dijkstra’s algorithm is a greedy approach for finding the
shortest path from a fixed destination (single source) to other
weighted graph nodes. Naturally, this algorithm is applied

A learning automata and clustering-based routing protocol for named data networking

to find the shortest path between two nodes. The only con-
dition to use this algorithm is non-negative weight of graph
edges. In topology recognition phase, LCRN algorithm finds
the shortest path between each cluster head to other cluster
heads and records them in a table called Dijkstra’s table (this
table will be updated periodically). As will be explained in
the next section, the purpose of this table is to review learning
automata performance.

We know that Dijkstra’s algorithm gives the shortest path
between two nodes, but in NDN network, since nodes do not
have IP addresses and are not identifiable for other nodes,
we cannot use this algorithm. In this regards, after running
LCRN algorithm and finding nodes having content, the short-
est path can be achieved based on Dijkstra’s algorithm and
consider it as a proper response of the operating environment
to automata [35].

6.7 Routing

When each node asks for a named data, it forwards an interest
package to the network and specifies the name of the data in
the package: Interest (“/Wanted Prefix”)

The first router that receives this package adds an entry to
its own PIT; if there is no law in its FIB, the route should be
discovered. Then the router creates a route request interest
package with a significant name and forwards it to the first
cluster head:

Interest (“/Cluster/ Cluster Head ID/ Route From/ Source
Router ID/ Wanted Prefix”)

Where it includes “/Route From/ Source Router ID” the
source router that has sent the interest and “/Wanted Prefix”
a recorded named data that the cluster head knows as the
destination. Then the cluster head must find the best route
from source to destination and receive a route response data
package, that the proposed algorithm is used for this purpose.

6.7.1 Routing algorithm

The purpose of this protocol is to choose a path with the
lowest cost in order to enhance the quality of Internet ser-
vices. This is done using learning automata with multi-level
clustering. In general, LCRN acts so that each node head at
any time selects the route with the lowest cost using its own
learning automata among the different routes (we remember
that alternative routes should be found, according to existing
rules in NDN). If the chosen path is the right path, it will
be rewarded, otherwise it will be punished. The purpose of
punishing and rewarding is low and high probability of their
choice.

We know that according to NDN rules, alternative routes
should be found for a route request and since caches in routers
play an essential role in NDN and there is no need to provide
the requested data from a specific point and only the named

data is important; we use multicast trees to implement the
transmission. One of the most common ways of constructing
multicast trees is to use Steiner tree construction algorithms
in graphs.

Steiner tree in the graph is defined as follows: consider
G (V, E) graph where V is the set of nodes and E is the set
of graph edges [38]. A cost of c(i, j) is assigned to each
edge of (7, j) in the graph. A subset of nodes called T is
also defined as a set of terminals. The purpose of the Steiner
tree is finding a tree in the graph that includes a set of ter-
minals with a minimal cost. This tree is called a minimum
Steiner tree. If the tree obtained includes only terminals, it
is called the minimum spanning tree and there are multiple
polynomial algorithms like Prim’s algorithm used as a solu-
tion; however, in general, non-terminal nodes (the nodes that
are called Steiner points) are used to reduce the cost of the
tree [36,37].

In LCRN, the purpose is to find the least expensive routes
from content requester node to content owners, where we
map this problem to find the shortest multicast tree where
the tree roots are content requester, and the tree leaves have
content. The multicast tree is also mapped to find the Steiner
tree roots where the terminals have content and the root is
content requester. Of course RTT time constraint should also
be considered. It means that the purpose is to find the min-
imum Steiner tree at RTT time, that is, every terminal node
that is covered is acceptable. The presented algorithm is an
iterative algorithm [39]. In each iteration, a Steiner tree is
made with the mentioned conditions. Each iteration starts
when a route is requested by a content requester.

In LCRN protocol, each node has a learning automata
with operations equal to adjacent nodes, which is used by
protocols to choose the right path for route cost reduction.
When the route request interest package reaches the first
cluster head, it selects a route to forward the package, after
recording information in interest package fields and accord-
ing to the learning automata. Higher-level and intermediate
cluster heads, which receive the interest package, forward
the package to the requested name prefix according to the
learning automata category, and cluster members table and
also the information of the named data. Each cluster head
that has a prefix matching with requester name, announces
this matching and forwards it to the data requester using the
inverse path mentioned in the interest package. To select the
best route, rewards and penalties by automata, standards or
criteria should be adopted. Delay, delay variation, queuing,
bandwidth and package loss probability are the network para-
meters that are used more in routing [43]. Delay is a critical
parameter in quality of service (QoS) for most applications,
especially in interactive and multimedia programs, because
these programs need the least delay to communicate with
users.

@ Springer

Z. Shariat et al.

Table 3 Selecting a link due to a combination of fuzzy parameters,
delay and queue length

Queue Length Delay High Medium Low

Low Medium High Very high
Medium Low Medium High
High Very low Low Medium

Considering these conditions, delay is an important para-
meter that should be considered. We know that low delay in
a path does not necessarily mean a better path, and does not
reflect a higher bandwidth or better link productivity. Delay
on a link at a moment depends on the traffic passing through
the link, and a link with high delay may be at its traffic peak,
and become a link with low delay in another moment [44]. So
it is better to use other criteria along with the delay criterion
for the selection of the route with the least cost. It seems that
after the delay, average queue length in routers is one of the
most important parameters that directly affects the time delay
created. Loss of packages occurs when the queue related to
the router is crowded and overflowed. As a result, if a link has
a smaller queue length and delay, it has a higher priority in
routing. Table 3 indicates the selection probability of a link
according to a fuzzy combination of two parameters of delay
and queue length which is called DQ. In LCRN algorithm,
solving Steiner tree with random weights obtained from DQ
is considered and there is no basic knowledge of the parame-
ters. Pseudo code of LCRN algorithm is presented in Fig. 4,
and the proposed algorithm described can be summarized in
Fig. 5.

6.7.2 Calculation of dynamic threshold

If ST} is a weighted Steiner tree obtained in the k-th stage for
a name prefix, the shortest path from the root to the leaves is
calculated and located in & . Then the shortest path between
the requester node and content providers (the terminal nodes
in the tree weighted Steiner (S7%)) is extracted from Dijk-
stra’s table and placed in 7. The lowest amount of & and
is the threshold of k-th stage which is denoted by 7. Now
the desired prefix must be placed in the FIB table, and if this
code already exists in the table, showing a probability field
of (q), the records are updated. These records lead to learn-
ing automata in LCRN algorithm and makes it converged
after application of several stages of automata to the routes
obtained from Dijkstra [45].

6.7.3 Editing of activities probability vector
If the cost of a route obtained from LCRN algorithm was

lower than Dijkstra cost, activities selected by the automata
of the route obtained from LCRN algorithm will be rewarded,

@ Springer

and the responses that the relevant automata receive from
the environment will be the route cost of &, otherwise the
activities selected by Dijkstra route automata are rewarded in
which the response received from the environment is the cost
of route 1y, [45,46]. Distributed automata is used in this algo-
rithm, and each automata edits its action probability vector
by S — Lg; learning plan. Active activities are deactivated
again and probability vector will be edited as it was explained
in Sects. 4.1.

7 Proving the proposed algorithm accuracy, using
expressions

In this section, we show that the LCRN algorithm is con-
verged to optimal Steiner tree with the minimum weight
expected. These results show that the optimal solution can
be reached by choosing an appropriate learning rate for the
algorithm. Before proving we need some basic definitions
that are mentioned below.

pi (k) : Automata action probability vector

K (k) : Total probabilities calculated as K (k) = Zaie Ak
pi(k).

Tx: Steiner tree created in stage k

&r: Weight of the shortest path from the root to the leaves of
the tree 7; calculated as & = Min(zve(mak W (e, (k))).
Wi Weight of the shortest path from the root to the leaves
of the tree t; according to Steiner table

7 Dynamic threshold calculated as my = Min(uk, &).
W (e(s,r)) is a positive random value with unknown proba-
bility distribution and W (e(s,)(k)) represents the weight at
stage k.

A, jy - Connected path from node v; to node v;

pj. : Selection probability of the edge e, j

q; : Selection probability of the routeA; ;)

ae(i,j)(k) : The general rate of constant learning which is
based on learning parameter and random weight variance
and is obtained as

a
w0 p®
e,j
ke(i, j _ —172
B i) [xe(i, jy (k) — Xeqi. j) (k)]
o (ke@i,jy — 1)

where k,(;, j) represents the number of times that the edge
e(;, j) is observed and x,; j) and X,(;, j) show the edge weight
of e(;, j) at stage k and average weight, respectively. It should
be noted that at the beginning, this variance must have a value
in the range of (0, 1) for every edge [35].

Theorem 1 If g; (k) is the probability of making t; tree at
stage k, if q (k) is edited according to the proposed algorithm,

A learning automata and clustering-based routing protocol for named data networking

Algorithm LCRN

1: Input: Stochastic Graph G<V,E>, Customer Node with name "s", Interest (""/Wanted Prefix"), RTT time for Interest Packet
2: Output: Minimum Steiner Tree to Named Data with Wanted Prefix (Producer and Cache Memory)
3: Assumption

4 Let k be the iteration number and initially set to zero

5 Let ST, be the Steiner Tree selected at iteration k and initially set to []

6: Let & denotes the minimum path _from root to leaf in be the Steiner Tree selected at iteration k
7 Let Dj;denotes the Dijkstra table in the cluster heads at iteration

8: Let py denotes the Min path from root to leafs in STy from Dy

9: Let m; denotes the dynamic threshold of iteration k

10: Begin Algorithm

11: Assign an Automaton to each Cluster Head and initially set it to passive state

12: T = 0

13: k=1

14: s calls procedure LR(CH;,k)

15: & = Min path from root to leafs in ST},

16: MU = Min path from root to leafs in STy from Dij

17: = Min (&,)

18: If &) <| 7 | then

19: Reward the selected actions of activated automata in ST with B = |&|
20: Penalize the selected actions of activated automata in x;

21: Else

22: Reward the selected actions of activated automata in x; with p = | 7y
23: Penalize the selected actions of activated automata in S7},

24: k=k+1 for Wanted Prefix

25: 7 = Min 7 and &

26: s starts to receive Data packets along
27: End Algorithm

Procedure LR(CH,,k)

1: Input: LR message
2: Assumption

3: Let CHS; be the Cluster Head Set of cluster head CH; at iteration k and initially set to []
4: Let LA denotes the set of activated automata which is initially set to []

5: Let o, denote the set of actions that can be taken by learning automata A;

6: Time=0

7: Begin Algorithm

8: repeat

9: If Prefix Matching with members in CH; Then

10: ST, = ST} + CH;

11: Trace back and Send Data Packet to s with name Reply

12: If | o;| #Then

13: For all Next Level Cluster Head that not in S7), Do

14: Send Interest to Next Level Cluster Head To find Prefix Matching (say CH;)
15: CH; with minimum cost and better Prefix Matching in its cluster heads select one (say CH;)

16: Until (time <RTT)
17: End Algorithm

Fig. 4 Pseudocode of LCRN algorithm

then there is a learning rate of a*(g) € (0, 1) forevery e > 0,
and for a € (0, a*), we have (theorem 1 in [35]):

sibility of tree penalty will converge to a fixed amount of final
penalty probabilities. This feature is shown in Lemma 1. Then
this indicates that the probability of selection of a tree with
the lowest weight expected, is a process of sub-Martingale

prob[lim g;j(k) =1]>1—¢
koo for large values of k and therefore the changes in construction

Proof The proof of this theorem is carried out in various
stages. At first, we prove that if k is sufficiently large, the pos-

possibility of a minimum tree is always non-negative. Lem-
mas 2 and 3 shows this result. As a result, the convergence

@ Springer

Z. Shariat et al.

Forwarding the interest package containing named data by
requester

v

Reviewing in three levels of clustering to find the requested data

Forwarding data to
the requester

Is interest Yes

time finished?

Forwarding interest package using cluster head automata to other
cluster heads in order to find alternative paths and make optimal
Steiner tree

v

Reviewing in three levels of clustering to find the requested data

No v Forwarding
s dat es response to the
s data
found? Pt requester

—

Calculate the shortest route found in the Steiner tree

Reward activities in the Dijkstra route nodes based on
the S-Lg; automaton

v

Is the shortest route in the
Steiner tree, shorter than
Dijkstra's algorithm?

Reward activities in the tree route nodes based on
the S-Lg; automaton

v

| To update dynamic threshold |

Fig. 5 The flowchart of the proposed algorithm

of the proposed algorithm to the tree with the lowest weight
expected is proved by the convergence theorems of Martin-
gale. Hence, to prove Theorem 1, the following lemmas must
be proven first (proof Theorem 1 in [35]). m]

@ Springer

Lemma 1 If the tree of t; at stage k is punished with the
possibility of ci(k) and ci(k) = prob[Wt; > Ti] and
limy o ¢i (k) = ¢, then for every e € (0, 1) and k > K ()
we have prob[|c;‘ —cij(k)| = 0] < g(lemma I in [35]).

A learning automata and clustering-based routing protocol for named data networking

Proof since the automata used in the proposed algorithm and
[35] is the same, we can use the proof of Lemma 1 in [35],
and conclude that if ¢; represents the final amount of ¢; (k)
probability, where k is large enough, using the rule of Weak
law of large numbers, we conclude that limy_. o; prob[|c} —
ci(k)| = €] — 0. Since for every ¢ € (0, 1), there is a
a*(e) € (0,1)and K(¢) < oo, foralla < a* and k > K (¢)
we have prob[|c’ — c;(k)| > 0] < &, will be completed by
proving Lemma 1. O

Lemma 2 Assume that c;(k) = prob[Wt;(k + 1) = Ti]
and dj(k) = 1 — cj(k) are the possibility of penalties and
rewards of tree T; (for all values of j = 1,2, ...,r) at stage
k. If q(k) is deduced using the proposed algorithm, then the
conditional expectation of q; (k) is defined as follows (lemma
2in [35]):

Elgi(k + Dlg (k)] = Zq/'(k)[cj'(k)qz' (k)

j=1

+d; [e)

e(m,n)er;
Where r represents all the trees made and

57 (k) = py (k+1) = ppl(k)+a(l — B (k) (1—p,'(k)); emn) € Tj
" p(k+1) = piitk) —a(l — B () py (k): emn) ¢ Tj

Proof Using Lemma 2 in [35] and since the reinforcement
scheme used in the proposed algorithm is S-Lg_;, at any
stage of k, the selection probability of tree i, when the selected
tree j is punished by the random environment, remains
unchanged with the probability of c;(k) (for all values of
j = 1,2,...,r). In other words, when the selected tree j
is rewarded, the probability of the edges of the selected tree
i that are in tree j are increased by a learning rate and the
probability of other edges will be reduced. To show more
details on the proof of this lemma, we show it for the Steiner
tree graph in Fig. 6. In graph G, the purpose is to find an
optimal tree between node 1 and node 5 (Assuming that the
data having the requested name by Node 1 is only present at
node 5). In this case, the trees available to reach from node
1 to node 5 are as follows [46]. O

We assume that 77 is the tree with the lowest weight
expected and, g; (k) is the selection probability of tree z; at
stage k, so we have:

q1(k) = p3(k)p3 (k) pi k)
q2(k) = py (k) p3 (k)

q3(k) = py (k) p3 (k) p3 (k)
qa(k) = p3 (k) p3 (k) p3 (k) ps (k)
gs(k) = pi(k)

Fig. 6 Graph example to prove the validity of the proposed algorithm

qo(k) = pi(k)pd(k)
qr(k) = py(k)p3 (k)
qs(k) = pi(k)p3 k) pa(k),

Elqi(k + Dlg(b)] = q1(K)[c1g1 (k) + dy (k) {p} (k)
+a(l = (k) (1 — py(kNHpik) +a
(1= Bi(k) (1 — p(kNHPEK) + a(l — Bi(k)(1 — pa(k)}] +
g2(0)[e2g1 (k) + do (k) {py (k) + a(1 = B2 (k) (1 — py (k) Hpz k) —a
(1 = Bo(k)) p3 (k) }{p3 (k)
+a(l = ()1 = 2 + g3(k)caqi (k) + d3 (k) {p} (k)
+a(l = Bs()(1 — py(N}H P k) —a
(1 = B3(k)) p3 ()} pik) — a(l — B3 (k) p3 ()} +
qa(0)[cagi (k) + da(k){py (k) + a(l — P4(k))(1 — py (k) Hpik) —a
(1 = Ba(k)) p3 ()} P2 (k) — a(l — Ba(k)) pa(k)}] +
qs(K)[esqi (k) + ds (k) {py (k) — a(l — Bs (k) p3 ()} pi (k) — a
(1 — Bs(k) p3 ()} pak) —a(l — Bs(k)) pa ()} +
q6(K)[ceq1 (k) + do (k) {py (k) — a(1 — Bs (k) p3 ()} pi (k) —a
(1 — Bs (k) p3 ()} pa(k) — a(l — s (k) pa(k)}] +
q1(0)[e7q1 (k) + d7 (k) {py (k) — a(1 — B7(k) p3 ()} pi (k) —a
(1 = B1() p3 ()} pLk) — a(l — B7(k)) ps ()} +
gs(®)[csqi (k) + ds(k){p3(k) — a(l — s (k) py () Hpi (k) — a
(1 — Bs (k) p3 ()} pi(k) — a(l — Bs(k)) pa ()} +

After simplifying all the right-side expressions of the above
equation and some algebraic manipulations in Lemma 2 from
[35] and Theorem 1 from [46], we achieve the equation pre-
sented in Lemma 1, so the proof of the lemma is completed.

Lemma 3 If q(k) is edited by the proposed algorithm,
conditional expectation q;(k) is always non-negative, i.e.
Agi(k) > 0.

Proof According to the definition, we have Ag;(k) =
Elgi(k+1)|g(k)] — q; (k) and based on Lemma 2, and since
the probability of tree creation, based on the edge selec-
tion probability for making trees is rewarded or punished,
replacing the values of g; (k) in Eq. (2) and algebraic sim-
plifications, we have Ag; (k) > He(m,n)er,- Ap)' (k) and the
proof of lemma is completed using Lemma 1. O

@ Springer

Z. Shariat et al.

Proof of Theorem 1 Lemma 3 implicitly indicated that
{g(k)} is a Sub-Martingale [35] and [46]. Using the the-
ory of Martingale and the fact that {g(k)} is a uniform limit
function, we conclude that the amount of limy_, ; g; (k) con-
verges to g™ with probability of 1. We define the function of
¥ as Ylw, q] = % for w > 0. It can be easily shown
that this function is sub-regularand its value is less than 1
and greater than 1 — ¢. Given that g; (k)is the probability of
the construction of minimum Steiner tree 7;at stage k, and
1 — ¢ is the probability that the proposed algorithm tends to
the minimum Steiner tree t;, if ¢ (k) is edited by the proposed
algorithm, then for every error_parameter of ¢ € (0, 1), there
is a learning rate of a € (0, ¢) and 7% = maxj#i((;—{) SO
that ¢; = [g; (k)|k = 0] (it can be easily concluded from the
definition of function v¥/.) So we deduce that for every error
parameter of ¢ € (0, 1) there is a learning rate of a € (0, q),
so that the probability of the proposed algorithm tending to
converge to the Steiner tree with the least expected weight is
greater than 1 — ¢, therefore the proof of the theorem is done
[35].

8 Experimental results

In order to study the performance of the proposed rout-
ing algorithm, several simulations have been performed in
the NS2 environment. In all these experiments, the simu-
lated environment has 1,000 nodes with unique names created
using the rules described in the naming section. Each node
has 100 named data, as a result, there are 100,000 named data
in the entire network and all nodes play both roles of content
requester and generator. There are 20 nodes at each site and
10 sites on each network. Sites are the first level of clustering,
so 50 clusters were created in the first level. All 10 clusters
of the first level were placed in the second level of clustering
and the cluster head has information of sub-clusters. A third
level is considered for clustering, so that every four clusters
in the second level create a higher cluster and the summarized
information of the named data are kept in the cluster head.
For the cache in the simulation, it is assumed that the cache is
only available in cluster head nodes and nodes of each cluster
lack cache. One of the main issues discussed at NDN is field
matching. In simulations conducted, full matching has been
considered and the route is answered if there is a complete
matching [8].

Nodes are connected by links with a maximum transmis-
sion rate of 2 Mbps. Propagation delays in each link are
random value lower than 20 which are obtained by the normal
distribution function. A S — L gy learning automata is placed
on the first level cluster heads whose number of application
is equal to the number of adjacent cluster heads. According
to the results of various simulations, learning rate adjustment

@ Springer

of 0.02 in the automata gives the best answer and it is 0.2 in
the diagrams.

It was observed that 1,000 to 10,000 random requests are
presented for the named content among all data available in
the network. Simulation time was 250 s and all simulations
were repeated 15 times; however, simulation results were
measured in 1, 2, 3 and 4 Mbps using CBR current. The
paths between the requesters and providers of data are found
by LCRN algorithm. After matching field in the content hold-
ers, they replied by 2 KB data package and the reverse path
was inserted in this package. Specifications of the requested
data are added in the cache of intermediate cluster heads. So
after a while, the data were not only available in the begin-
ning nodes, but some middle cluster heads also have the data.
Action probability vector of automata is updated using the
shortest path obtained at each stage and the shortest path
cost. According to Dijkstra’salgorithm, and as shown in sim-
ulations, the sum of each vector has been always one and
the selection probability of the path with the lowest cost is
converged to one.

The main unit of measurement for the evaluation of
LCRN algorithms in our tests is the average throughput.
By definition, it includes the average number of packages
that successfully reached the destination per unit of time.
Throughput is depicted in Fig. 5 with four different traffics
from 1 to 4 Mbps under 1,000-10,000 requests for the named
data.

As Fig. 7 shows, when the number of requests for
named content increases, the proposed algorithm shows bet-
ter throughput. The reason for this efficiency and productivity
increase is the nature of NDN networks and generally, the
content centric networks. Since data is distributed in the net-
work after a while and it is not only in the primary servers, it
is easier to be found. On the other hand, algorithm efficiency
is increased due to the usage of the learning machine. Figure
8 shows the package delivery rate as a function of the number
of requests. This implies that as the throughput increases, the
package delivery rate also increases.

In Figs. 9 and 10, successful interest packages rate and the
average number of interest packages sent is shown. These
figures also reflect the fact that a lot of efforts and errors are
initially needed due to the presence of data only in certain
servers and also lack of automata knowledge about the envi-
ronment, but as it is shown in the figures, after the automata
obtains estimations about the location of named data, suc-
cessful interest packages rate gets close to 1 and the number
of forwarded packages remains at a minimum.

Figure 11 shows an end-to-end delay in different requests
and under different traffics. By increasing the amount of traf-
fic, end-to-end delay increases somehow. When forwarding
traffic reaches 4 Mbps, end-to-end delay is not signifi-
cantly increased. In higher requests, delay had no significant
increase because of proper automata learning.

A learning automata and clustering-based routing protocol for named data networking

4.5 CBR
:”‘\ 4 stream
=35 (Mbit/s)
o)

S 3
\%’2.5 m]
£ 2 2
%‘31.5 m3
= 1 n4
=
=0.5
0
1000 3000 5000 7000 9000
Number of data requests
Fig. 7 Average throughput
1
2 0.98 CER
£ 0.96 stream
Mbit/
5 0.94 (MbiE9)

.2 1

5 092 "

e)

% 0.9

m3
atj 0.88
0.86 -
\QBQ q,Q@ %@Q @QQ ‘9@ @QQ «\@Q %QQQ O’@Q QQQQ
Number of data requests
Fig. 8 Packet delivery ratio
= - CBR
E stream

% (Mbit/s)

=

2 —p—]

2

£ 2

Ei 3

k= e 4

@ 1 20 40 60 80 100 120 140 160 180 200 220 240

Time (ms)

Fig. 9 Satisfied interest package ratio
2 20 CBR
g stream
E 15 (Mbit/s)
B
=]
5
g8 10 ——1
3 Qo
S 2 2
& 5 s 3
o
= —— 4
o 0 . .)
E 0 100 200 300

Time (ms)

Fig. 10 Average number of interest packages

Figures 12 and 13 show the path creation delay as well
as the transmission delay. Simulated conditions are as pre-
viously described. By increasing the traffic rate, the amount
of both delays increases. However, due to equality in traffics

10.99
10.98
10.97
10.96
10.95
10.94
10.93
10.92
10.91

10.9 T T T T T T T T T d

CBR
stream
(Mbit/s)

e]

End-to-end delay (ms)

O O 8 O O 8 O O & O

T F T PP PF F OSSO

S S SR e R S S N
Number of data requests

Fig. 11 End to end delay

10.99

10.98 CBR

stream
1097 (Mbit/s)
10.96 - ol

10.95 -
10.94 - -
10.93 -
10.92 +
10.91 - a
10.9

Route creation delay (ms)

P S S &S S &
$ S LSS
IS S S S S S
Number of data requests

Fig. 12 Route creation delay

9.23
9.21

9.19 CBR
tream

9.17 - strez
(Mbit/s)

9.15 -+ 1

9.13 - 2

9.11 —/ 3

9.09 4
¥

9.07
O ® ® ® O O O O
SFECLCLPLSLLELS S
SO S SR R S S SRS

Transmission delay (ms)

Number of data requests

Fig. 13 Transmission delay

and increased number of named data requests, no significant
amount has been added to delays.

An important factor in measuring the performance of the
network is the package loss rate. In the proposed protocol,
package loss rate is the ratio of the forwarded interest pack-
ages to the data packages received. This rate is shown in Fig.
14. For all tested traffics (from 1 to 4 Mbps), the amounts
of this rate are almost identical. But from observation, when
the data request increases, due to data replication in caches
of cluster head nodes and greater speed in finding suitable
routes, we have reduction in package loss rate and it gets
almost close to zero.

@ Springer

Z. Shariat et al.

0.18 CBR

0.16 stream

0.14 (Mbit/s)
% 0.12
S 01 7 m1
g 0.08 2
— 0.06 -

0.04 =3

0.02 m4

0
P P P P P S PSS
FLFLELFSLSLSSLSSLSSS
AR RS PP
Number of data requests
Fig. 14 Packet loss rate of interest

0.016
3 0015
K CBR
g 0.014 - - stream
g (Mbit/s)
£ 0013 -
o
>
3 0.012 5 1
[}
=) v
g 0.011 2
g
E oo —
£ PFLFSLFSLSLSESLSLSSL S S ?
é S SR R R S S SR i

Number of data requests

Fig. 15 Control messages overhead to find route

Control messages overhead criterion is defined as the
number of messages required to find the optimum route for-
warded per second. As shown in Fig. 15, this criterion is
increased slightly by increase of the number of requests and
also increase of network traffic.

In simulation procedure, in order to examine the relative
performance of the proposed protocol, some parameters are
compared with the routing protocol to open shortest path
first (OSPF) [47]. OSPF is a link state routing protocol that
can manage the traffics of IP protocols. The reason for this
selection is to compare the similarity available in OSPF and
LCRN work base.

OSPF routing protocol uses Shortest path first or OSPF
algorithm designed by Dijkstra to prevent the routing loop
in network topology and creates a loop free network. OSPF
has a fast convergence process and also provides incremen-
tal update using Link state advertisement (LSA). OSPF is a
classless protocol that allows the easy use of Variable length
subnet masking (VLSM) and Route summarization for cre-
ation of a hierarchical network structure. It should be noted
that OSPF is the new basis of OSPFN which is the protocol
in progress in NDN [47].

For conducting the above-said comparison, simulation
environment is considered as the same with a CBR (Constant
bit rate) traffic rate of 4 Mbit/s. Simulations are conducted in
250 s and each simulation is repeated 15 times after which the
average parameters are obtained. The average throughput of
LCRN and OSPF protocols have been compared in Fig. 16.

@ Springer

4.1

39 - T

3.7

3.5
g OSPF
3.3
LCRN

3.1

Throughput (Mbit /s)

29

27 +—T—T—TT 77T T T T T T T T

Fig. 16 Throughput LCRN and OSPF

0.25

02 — o—t—t—"_
o Tt
0.15
o
5 e OSPF
S0l
2 LCRN
—
0.05
o —_
S O O O O O O O O o o o o O
— AN < O 0 O N T O 0O AN T Wnm
—_— = = = N A

=
Time

—~

sec

~

Fig. 17 Loss rate in LCRN and OSPF

As shown in the early stages of implementation, LCRN has
lower efficiency than OSPF because head clusters automata
lack knowledge about the operational environment, but after a
short time that this knowledge is gained, productivity grows.

Figure 17 shows the package loss percentage for LCRN
and OSPF protocols. As can be seen, in LCRN, with the
passage of time, this value reaches zero, but in OSPF this
parameter is ascending. The main reason for this difference is
path learning by automata and also data replication in NDN.
Since in [P-based networks, routing is always done to get to
the destination and no repetition happens, with the passage
of time and buffer prolongation, queue overflow and package
loss increased too.

Figure 18 shows end-to-end delay for LCRN and OSPFE.
As expected, this parameter has ascending value of OSPF
protocol and it is reversed for LCRN. The reason for this
difference in behavior is the same issue that was described
for Fig. 17

9 Complexity

Various algorithms may be designed to solve a problem. The
best algorithm should be chosen as a measure to compare the
efficiency of the algorithm. One of the best measurements is
run time complexity. This section describes the computation

A learning automata and clustering-based routing protocol for named data networking

[
w

Juy
N

o~ ”.00000000
g
zH = OSPF
T
=] LCRN
=
Q9
e
Es
, | ="
O O O O O O O O O O o O o O
AN O 0O N VW0 O NS N
™ = = - - AN NN
Time (sec)

Fig. 18 End to end delay in LCRN and OSPF

complexity of the proposed algorithm, after which a compar-
ison of LCRN with OSPF is done on the basis of complexity.
Some of the parameters used in the computation complexity
of the algorithm is as follows:

G = (V, E) : Network graph, the V nodes and E edges.
n :n = |V| Number of nodes in the graph

m : m = |E| Number of edges in the graph

k: Number of cluster heads the first level

Lemma 4 The complexity of LCRN algorithm to calculate
the shortest path of NDN, is equal to O (k?).

Proof LCRN algorithm in graph G, helps to find the opti-
mal route calls to LR procedure. In Fig. 3, repeat-until-loop
in the LR procedure, lines 8 to 16, is the main part of the
algorithm. The repeat-until-loop is executed for each content
request. Worst case in the procedure, when checked once all
cluster heads. When these conditions occur that are not con-
verging existing automata. As a result, the time complexity
of the LR procedure will get O (k). After finding a Steiner
tree by the LR procedure, LCRN algorithm acts to reward or
penalize automata; for this purpose, it was used from Dijk-
stra’s algorithm (Lines 15 to 25 from LCRN algorithm in Fig.
2) [51,52]. In graph G, if used from Fibonacci heap, Dijk-
stra’s algorithm time complexity is equal to O (m + nlogn).
But the algorithm LCRN, due to the use of clustering, is not
required to review all network nodes, and only their clus-
ter heads examined. The worst case for this algorithm is
m = k(k —1)/2, that is happening when all cluster heads are
connected together. Thus, the complexity of finding the path
by Dijkstra in LCRN is equal to O (k> + k logk). The time
complexity of the LCRN algorithmis O ((k)+ (k2 +k logk)),
after simplification changes the O(k?) and the proof of
Lemma 4 ends. O

9.1 Comparison of the complexity of LCRN and OSPF

Since the basis of routing in OSPF is the Dijkstra’s algorithm,
thus its complexity in the graph G = (V, E) in the worst case

is O (n?), that happens in the full graph [51,52]. Since the k >
0 is defined as n > k, consequently it has 0k?) < 0(n?).
From this discussion, we conclude that the time complexity
of the proposed algorithm is less than that of OPSE.

10 Conclusion

In this paper, a new routing protocol has been provided
based on a multi-layer clustering and learning automata in
NDNs called LCRN. A routing protocol in NDN was mapped
to solve the problem of Steiner tree, so that the content
requester and content providers are tree root and terminal
nodes, respectively. For the convergence of automata to an
appropriate and acceptable answer, Dijkstra’s algorithm is
used to respond to the environment. If the algorithm finds a
path with costs higher than Dijkstra’s algorithm, the selected
activities are punished and otherwise rewarded.

The proposed idea is simulated using the NS2 simulator.
In each simulation, traffic rate of 1-4 Mbps is considered,
and also one of the most important NDN network standards
which is the request for named data is examined in the range
of 1,000—10,000 requests. According to the results and math-
ematical proof obtained, the algorithm is converging to the
optimal Steiner tree. As expected, optimal results cannot be
obtained in the beginning of the simulation, but after a while
in the simulation, and set learning automata, the algorithm
works well and shows good performance. LCRN protocol
was compared to the final version of OSPF protocol which
is available in NS2, and using graphs, it was shown that the
proposed protocol works better.

References

. Named data networking. http://www.named-data.net/.

. Project CCNX. http://www.ccnx.org.

3. Drira, W., & Filali, F. (2014). A Pub/Sub extension to NDN for effi-
cient data collection and dissemination in V2X networks. A World
of Wireless, Mobile and Multimedia Networks (WoWMoM). In
IEEE 15th International Symposium, pp. 1-7.

4. Amadeo, M., Campolo, C., & Molinaro, A. (2015). Forwarding
strategies in named data wireless ad hoc networks: Design and
evaluation. Journal of Network and Computer Applications, 50,
148-158.

5. Mauri, G., Verticale, G. (2013). Distributing Key Revocation Status
in Named data networking. Advances in Communication Network-
ing, Springer, pp. 310-313.

6. Conti, M., Gasti, P., & Teoli, M. (2013). A lightweight mechanism
for detection of cache pollution attacks in named data networking.
Computer Networks, 57,3178-3191.

7. Wihlisch, M., Schmidt, T. C., & Vahlenkamp, M. (2013). Backscat-
ter from the data plane-threats to stability and security in
information-centric network infrastructure. Computer Networks,
57,3192-3206.

8. NDN Project. NDN Platform. (2013). http://named-data.net/

codebase/platform/.

Do -

@ Springer

http://www.named-data.net/
http://www.ccnx.org
http://named-data.net/codebase/platform/
http://named-data.net/codebase/platform/

Z. Shariat et al.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

. Arianfar, S., Sarolahti, P., Ott, J. (2013). Deadline-based resource

management for information-centric networks. In Proceedings of
the 3rd ACM SIGCOMM Workshop on Information-Centric Net-
working, pp. 49-54.

. Hoque, A., Amin, S. O., Alyyan, A., Zhang, B., Zhang, L., Wang,

L. (2013). Nisr: named-data link state routing protocol. In Proceed-
ings of the 3rd ACM SIGCOMM Workshop on Information-Centric
Networking, pp. 15-20.

. Carzaniga, A., Rutherford, M. J., Wolf, A. L. (2004). A rout-

ing scheme for content-based networking. INFOCOM 2004. In
Twenty-third AnnualJoint Conference of the IEEE Computer and
Communications Societies, pp. 918-928.

. Bari, M., Chowdhury, S., Ahmed, R., Boutaba, R., & Mathieu,

B. (2012). A survey of naming and routing in information-centric
networks. IEEE Communications Magazine, 50, 44-53.

Torres, J., Ferraz, L., & Duarte, O. (2012). Controller-based routing
scheme for Named Data Network. Electrical Engineering Program,
COPPE/UFRJ, Tech: Rep.

Wang, L., Hoque, A., Yi, C., Alyyan, A., & Zhang, B. (2012).
OSPEN: An OSPF based routing protocol for named data network-
ing. University of Memphis and University of Arizona, Tech Rep.
Dai, H., Lu, J., Wang, Y., Liu, B. (2012). A two-layer intra-domain
routing scheme for Named data networking. IEEE Global Commu-
nications Conference (GLOBECOM), 2012, pp. 2815-2820.
Carzaniga, A., Rutherford, M. J., Wolf, A. L. (2004). A routing
scheme for content-based networking. In Proc. of IEEE INFO-
COM.

DiBenedetto, S., Gasti, P., Tsudik, G., Uzun, E. (2011). ANDaNA:
Anonymous named data networking application. arXiv:1112.2205.
Yi, C., Afanasyev, A., Wang, L., Zhang, B., & Zhang, L. (2012).
Adaptive forwarding in Named data networking. ACM SIGCOMM
Computer Communication Review, 42, 62—67.

Nguyen, A. D., Sénac, P., Ramiro, V., Diaz, M. (2011). Pervasive
intelligent routing in content centric delay tolerant networks. In
IEEE Ninth International Conference on Dependable, Autonomic
and Secure Computing (DASC), pp. 178-185.

Kim, Y., An, J., Lee, Y. -H. (2012). CCNFRR: Fast one-hop
Re-Route in CCN. In IEEE International Conference on Commu-
nications (ICC), 2012, pp. 5799-5803.

Kim, J.-J., Ryu, M.- W,, Cha, S.- H., Cho, K. -H. (2013). A clus-
ter based multi-path routing protocol for support load-balancing in
content-centric network. In International Conference on Informa-
tion Science and Applications (ICISA), 2013, 1-2.

Eymann, J., Timm-Giel, A. (2013). Multipath transmission in
content centric networking using a probabilistic ant-routing mecha-
nism. Mobile Networks and Management, ed: Springer, pp. 45-56.
Benoit, A., Brenner, L., Fernandes, P., & Plateau, B. (2004).
Aggregation of stochastic automata networks with replicas. Lin-
ear Algebra and its Applications, 386, 111-136.

Galata, A., Johnson, N., & Hogg, D. (2001). Learning variable-
length Markov models of behavior. Computer Vision and Image
Understanding, 81, 398—413.

Halkidi, M., Batistakis, Y., & Vazirgiannis, M. (2001). On clus-
tering validation techniques. Journal of Intelligent Information
Systems, 17, 107-145.

Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering:
A review. ACM Computing Surveys, 31, 264-323.

Anderson, E., Patterson, D. A. (1997). Extensible, scalable moni-
toring for clusters of computers. LISA, pp. 9-16.

Li, C, Liu, W., Wang, L., Li, M., & Okamura, K. (2015).
Energy-efficient quality of service aware forwarding scheme for
Content-Centric Networking. Journal of Network and Computer
Applications, 58, 241-254.

Tin-Yu, W., Lee, W.-T., Duan, C.-Y., & Yu-Wei, W. (2014). Data
lifetime enhancement for improving QoS in NDN. Procedia Com-
puter Science, 32, 69-76.

@ Springer

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Bradai, A., Ahmed, T., Boutaba, R., & Ahmed, R. (2014). Efficient
content delivery scheme for layered video streaming in large-scale
networks. Journal of Network and Computer Applications, 45, 1—
14.

Yuemei, X.,Li, Y., Lin, T., Wang, Z., Niu, W., Tang, H., et al. (2014).
A novel cache size optimization scheme based on manifold learning
in content centric networking. Journal of Network and Computer
Applications, 37, 273-281.

Eum, S., Nakauchi, K., Murata, M., Shoji, Y., & Nishinaga, N.
(2013). Potential based routing as a secondary best-effort routing
for Information-centric networkinging (ICN). Computer Networks,
57(16), 3154-3164.

Akbari Torkestani, J., & Meybodi, M. R. (2010). Mobility-based
multicast routing algorithm for wireless mobile ad-hoc networks:
A learning automata approach. Computer Communications, 33,
721-735.

Torkestani, J. A., & Meybodi, M. R. (2012). A learning automata-
based heuristic algorithm for solving the minimum spanning tree
problem in stochastic graphs. The Journal of Supercomputing, 59,
1035-1054.

Akbari Torkestani, J., & Meybodi, M. R. (2011). Learning
automata-based algorithms for solving stochastic minimum span-
ning tree problem. Applied Soft Computing, 11, 4064—4077.
Akbari Torkestani, J., & Meybodi, M. R. (2010). Learning
automata-based algorithms for finding minimum weakly con-
nected dominating set in stochastic graphs. International Journal
of Uncertainty Fuzziness and Knowledge-based Systems, 18, 721—
758.

Rodolakis, G., Laouiti, A., Jacquet, P., & Meraihi Naimi, A. (2008).
Multicast overlay spanning trees in ad hoc networks: Capacity
bounds, protocol design and performance evaluation. Computer
Communications, 31, 1400-1412.

Akbari Torkestani, J., & Meybodi, M. R. (2011). A link stability-
based multicast routing protocol for wireless mobile ad hoc
networks. Journal of Network and Computer Applications, 34,
1429-1440.

Akbari Torkestani, J., & Meybodi, M. R. (2011). A cellular learning
automata-based algorithm for solving the vertex coloring problem.
Expert Systems with Applications, 38, 9237-9247.

Hutson, K. R., & Shier, D. R. (2006). Minimum spanning trees
in networks with varying edge weights. Annals of Operations
Research, 146, 3—18.

Rezaei, Z., & Torkestani, J. A. (2012). An energy-efficient MCDS-
based routing algorithm for wireless sensor networks: Learning
automata approach. Przeglad Elektrotechniczny, 11, 147-151.
Misra, S., Krishna, P. V., Saritha, V., Agarwal, H., & Ahuja, A.
(2014). Learning automata-based multi-constrained fault-tolerance
approach for effective energy management in smart grid commu-
nication network. Journal of Network and Computer Applications,
44,212-219.

Rezvanian, A., Rahmati, M., & Meybodi, M. R. (2014). Sampling
from complex networks using distributed learning automata. Phys-
ica A, 396, 224-234.

Kumar, N., Chilamkurti, N., & Rodrigues, J. J. (2014). Learn-
ing automata-based opportunistic data aggregation and forwarding
scheme for alert generation in vehicular ad hoc networks. Computer
Communications, 39, 22-32.

Kumar, N., Tyagi, S., & Deng, D. J. (2014). LA-EEHSC: Learning
automata based energy efficient heterogeneous selective clustering
for wireless sensor networks. Journal of Network and Computer
Applications, 46, 264-279.

Beigy, H., & Meybodi, M. R. (2006). Utilizing distributed learning
automata to solve stochastic shortest path problems. International
Journal of Uncertainty Fuzziness and Knowledge-Based Systems,
14, 591-615.

http://arxiv.org/abs/1112.2205

A learning automata and clustering-based routing protocol for named data networking

47. Lai, W. K., Tsai, C.-D., & Shieh, C.-S. (2008). Dynamic appoint-
ment of ABR for the OSPF routing protocol. Computer Communi-
cations, 31(14), 3098-3102.

48. Lian, J., Agnew, G. B., Naik, S. (2003). A variable degree based
clustering algorithm for networks. In Proceedings of the 12th Inter-
national Conference on Computer Communications and Networks,
ICCCN 2003, pp. 465-470.

49. Zhang, H., Liu, H., Jiang, C., & Chu, X. (2015). A practical
semi-dynamic clustering scheme using affinity propagation in
cooperative picocells. IEEE Transactions on Vehicular Technol-
0gy, 64(9), 4372-4377.

50. Sourlas, V., Psaras, 1., Saino, L., & Pavlou, G. (2016). Efficient
hash-routing and domain clustering techniques for information-
centric networks. Computer Networks, 103, 67-83.

51. Fortz, B., Thorup, M. (2000). Internet traffic engineering by opti-
mizing OSPF weights. In IEEE INFOCOM, pp. 519-528.

52. Giroire, F., Perennes, S., & Tahiri, I. (2013). On the hardness of
equal shortest path routing. Electronic Notes in Discrete Mathe-
matics, 41, 439-446.

Zeinab Shariat is a Ph.D. stu-
dent in the Department of Com-
puter Engineering at Science
and Research Branch at Islamic
Azad University in Tehran, Iran
and has been on the Roude-
hen Branch at Islamic Azad
University faculty since 2011.
She received his B.S. degree in
Computer Engineering from the
Qazvin Branch at Islamic Azad
University in 2001, and M.S.
degree in Computer Engineer-
ing from the Sharif University in
2004 and Ph.D. degrees in Com-
puter Engineering from the Science and Research Branch at Islamic
Azad University in 2016. His research interests include wireless net-
works, roueing and caching in networks, network security, distributed
systems and content centric networking.

Ali Movaghar is a Professor
in the Department of Computer
Engineering at Sharif University
of Technology in Tehran, Iran
and has been on the Sharif faculty
since 1993. He received his B.S.
degree in Electrical Engineering
from the University of Tehran
in 1977, and M.S. and Ph.D.
degrees in Computer, Informa-
tion, and Control Engineering
from the University of Michi-
gan, Ann Arbor, in 1979 and
1985, respectively. He visited the
Institut National de Recherche en
Informatique et en Automatique in Paris, France and the Department
of Electrical Engineering and Computer Science at the University of
California, Irvine in 1984 and 2011, respectively, worked at AT&T
Information Systems in Naperville, IL in 1985-1986, and taught at the
University of Michigan, Ann Arbor in 1987-1989. His research interests
include performance/dependability modeling and formal verification
of wireless networks, distributed real-time systems and cyber-physical
systems. He is a senior member of the IEEE and the ACM.

Mehdi Hoseinzadeh is a Assis-
tant Professor in the Depart-
ment of Computer Engineering
at Science and Research Branch
at Islamic Azad University in
Tehran, Iran. He received his B.S.
degree in Computer Hardware
Engineering from the Islamic
Azad University, Dezful Branch,
Dezful, Iran in 2003, and M.S.
degree in Computer Engineering
from the Department of Electri-
cal and Computer Engineering,
Islamic Azad University, Science
and Research Branch, Tehran,
Iran in 2005 and Ph.D. degrees in Computer Engineering from the
Department of Electrical and Computer Engineering, Islamic Azad
University, Science and Research Branch, Tehran, Iran in 2008.
His research interests include Social network (design, management,
security, analysis), E-marketing & electronic management of mar-
ket, E-Commerce, E-employment, Network security, Bioinformatics,
Radio-frequency identification.

@ Springer

	A learning automata and clustering-based routing protocol for named data networking
	Abstract
	1 Introduction
	2 Basic techniques in NDN
	2.1 Naming and routing
	2.2 Strategy layer
	2.3 ISP-based aggregation
	2.4 Cache organization
	2.5 Security

	3 Related works
	4 Automata
	4.1 Random automaton theory
	4.2 Environment

	5 Clustering
	5.1 A review of clustering algorithms
	5.2 Advantages of clustering

	6 Proposed protocol
	6.1 Naming
	6.2 Topology recognition
	6.3 Learning automata in the proposed protocol
	6.4 Clustering in the proposed protocol
	6.5 Routing tables
	6.6 Dijkstra's algorithm
	6.7 Routing
	6.7.1 Routing algorithm
	6.7.2 Calculation of dynamic threshold
	6.7.3 Editing of activities probability vector

	7 Proving the proposed algorithm accuracy, using expressions
	8 Experimental results
	9 Complexity
	9.1 Comparison of the complexity of LCRN and OSPF

	10 Conclusion
	References

