
MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON CLOUD COMPUTING (TCC) 1

Hierarchical Stochastic Models for Performance,
Availability, and Power Consumption Analysis of

IaaS Clouds
Ehsan Ataie, Reza Entezari-Maleki, Leila Rashidi, Kishor S. Trivedi, Life Fellow, IEEE

Danilo Ardagna, and Ali Movaghar, Senior Member, IEEE

Abstract—Infrastructure as a Service (IaaS) is one of the most significant and fastest growing fields in cloud computing. To efficiently
use the resources of an IaaS cloud, several important factors such as performance, availability, and power consumption need to be
considered and evaluated carefully. Evaluation of these metrics is essential for cost-benefit prediction and quantification of different
strategies which can be applied to cloud management. In this paper, analytical models based on Stochastic Reward Nets (SRNs) are
proposed to model and evaluate an IaaS cloud system at different levels. To achieve this, an SRN is initially presented to model a group
of physical machines which are controlled by a management layer. Afterwards, the SRN models presented for the groups of physical
machines in the first stage are combined to capture a monolithic model representing an entire IaaS cloud. Since the monolithic model
does not scale well for large cloud systems, two approximate SRN models using folding and fixed-point iteration techniques are
proposed to evaluate the performance, availability, and power consumption of the IaaS cloud. The existence of a solution for the
fixed-point approximate model is proved using Brouwer’s fixed-point theorem. A validation of the proposed monolithic and approximate
models against both an ad-hoc discrete-event simulator developed in Java and the CloudSim framework is presented. The
analytic-numeric results obtained from applying the proposed models to sample cloud systems show that the errors introduced by
approximate models are insignificant while an improvement of several orders of magnitude in the state space reduction of the
monolithic model is obtained.

Index Terms—IaaS cloud, performance, availability, power consumption, stochastic reward nets, fixed-point iteration.

F

1 INTRODUCTION

CLOUD computing has become a consolidated comput-
ing paradigm, which allows sharing different kinds

of resources over the network in an automated way [1],
[2]. Infrastructure as a Service (IaaS) providers offer low
level computing resources on which end users can run their
own software, typically in the form of Virtual Machines
(VMs) [3], [4].The use of VMs allows the creation of services
that can ask for more or less resources depending on their
demand variation in a scalable manner. For instance, by
simply adding a new VM to an already existing service,
it can process the requests of a larger number of users of
that service. Another advantage of using VMs is that they
offer the possibility to be transparently migrated from one
physical server to another without stopping their execution
[5].

• E. Ataie, L. Rashidi, and A. Movaghar are with the Department of
Computer Engineering, Sharif University of Technology, Tehran, Iran.
E-mail: {ataie, rashidy}@ce.sharif.edu; movaghar@sharif.edu

• R. Entezari-Maleki is with the School of Computer Science, Institute for
Research in Fundamental Sciences (IPM), Tehran, Iran.
E-mail: entezari@ipm.ir

• K. S. Trivedi is with the Department of Electrical and Computer Engi-
neering, Duke University, Durham, NC, USA.
E-mail: kst@duke.edu

• D. Ardagna is with the Dipartimento di Elettronica, Informazione e
Bioingegneria Politecnico di Milano, Milan, Italy.
E-mail: danilo.ardagna@polimi.it

Providers of IaaS clouds offer Service Level Agreements
(SLAs) to cloud users [6]. SLAs are contracts between cus-
tomers and providers that specify the price for a service,
the Quality of Service (QoS) levels required during the
service provisioning, and the penalties associated with the
SLA violations [7], [8]. SLA violations can cause loss of
revenue and business reputation for an IaaS provider. For
example, Google and Amazon reported significant revenue
loss because of very small additional response delays [9].
In such a context, performance evaluation is one of the
foremost concerns in cloud computing centers, since it al-
lows system managers to evaluate the effects of different
resource management strategies on the data center opera-
tion and to predict the corresponding costs and benefits.
In addition to performance of cloud systems, availability of
cloud resources and services is also considered as one of
the most important factors of user satisfaction and provider
achievement. In cloud data centers, outages occur for many
reasons including software and hardware failures or power
outages. In a survey of 200 data centers done by USA Today,
it has been reported that the downtime cost of each data
center exceeds $50, 000 per hour [10]. In another research
[11], the IT cost due to hardware repair for a big data center
consisting of more than 100, 000 servers has been estimated
to be over one million dollars per year. Hence, the availability
modeling and evaluation in a cloud data center is a key
concern that should be considered.

On the other hand, cloud data centers are experiencing
a growth rate of around 9% every year [9], and as a result,

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON CLOUD COMPUTING (TCC) 2

their energy demands are continuing to increase as well. It
has been estimated that data centers which power Internet-
scale applications will consume about 8% of all worldwide
electricity supply by 2020 [12]. Furthermore, the power
consumption in cloud infrastructures is very inefficient due
to several types of energy loss and waste at different com-
ponents of data centers [13], [14]. Consequently, modeling
and quantification of power consumption can help the cloud
provider to improve the energy efficiency of the cloud
infrastructure and reduce its associated cost.

There are various ways to evaluate the performance
of complex and distributed systems, namely measurement,
simulation, and analytic modeling [15]–[19]. On-the-field
measurement requires extensive experimentations with dif-
ferent workloads and system configurations, which may not
be feasible in cloud systems due to the great number of
parameters and the large scale of the problem space that
should be investigated. Though modeling with simulation
is flexible, but since it requires several runs to get an average
result, it might be time consuming to gain dependable
results. Furthermore, separate runs of the simulation model
are needed in order to evaluate the impact of different
input parameters, which makes the running times more
severe. Using analytical modeling in this context, not only
can help providers to attain good insights into the opera-
tion of the system including its power, performance- and
dependability-related measures in different situations, but
it can also be useful in terms of the budget and time limita-
tions. In order to validate a newly proposed approach, based
on each of above-mentioned evaluation methods, it suffices
to compare the results gained from the new approach to the
results obtained from another evaluation method.

Although state-space models are popular analytical
models for distributed systems, the growth of the state space
as more components or details of the system are taken
into account is an important problem which is known as
the largeness problem of Markov models [20]. Stochastic
Reward Nets (SRNs) [21] can be used to model and evaluate
the performability of cloud systems while tolerating the
largeness problem, as they allow the automated generation
of Markov Reward Models (MRMs). The SRN is an exten-
sion of Stochastic Petri Nets (SPNs) which has the advantage
of specifying and evaluating real systems in a compact and
intuitive way. However, solving large models is still too
challenging [8], [16].

In this paper, we consider an IaaS cloud where Physical
Machines (PMs) are organized into different groups. The
PMs of each group are separated into two different pools
based on power consumption and provisioning delays. The
proposed method is presented in three steps: In the first
step, we model a single group of PMs using SRNs and com-
pute the mean response time, mean percentage of available
PMs, and mean power consumption. Then, the SRN models
of the individual groups of PMs are combined to develop a
monolithic model for an entire IaaS cloud in the second step.
Since the numbers of PMs and clusters in real cloud data
centers are rather large, the monolithic model is not scalable
due to the state explosion of the underlying Markov chain.
To resolve this issue, in the third step, two approximate
SRN models are proposed. The first approximate model uses
folding technique [22], [23] to model an IaaS cloud while

the second one uses decomposition approach and fixed-
point iteration technique [21], [24] to solve the interacting
sub-models. The application of these two techniques shows
that the approximate SRN models considerably decrease
the number of states in the underlying Markov chain of
the SRNs without any significant loss of accuracy. When
compared with the state-of-the-art, the proposed fixed-point
approximate model provides higher scalability, making it
appropriate for modeling large cloud systems. In the fixed-
point approximate model, the existence of a fixed-point
is proved by using Brouwer’s fixed-point theorem. The
validation of the proposed models is performed against the
discrete-event simulation [25], [26] and the CloudSim frame-
work [27]. Moreover, the sensitivity of output measures to
the variation of input parameters is analyzed.

The aim of our modeling approach is to evaluate the
performance and power consumption of an IaaS cloud
while availability of the resources is taken into account.
The innovative contributions of this paper are presenting
a series of SRN models for computing the performance,
availability, and power consumption of cloud data centers,
and providing two approximate models that are scalable
enough to assess the metrics of interest in cloud systems.
The main advantage of the fixed-point approximate model
proposed in this paper is its capability in modeling large
clouds without showing any state space explosion.

The remainder of this paper is organized as follows.
A literature review in the field of cloud performance and
dependability evaluation with a glance on power consump-
tion is given in Section 2. In Section 3, the system descrip-
tion and main assumptions about the reference architecture
considered in this paper are introduced. Section 4 describes
the proposed model for combined performance, availability,
and power consumption analysis of a single cluster. After-
wards, the monolithic and approximate models for entire
IaaS cloud are presented in Section 4. In Section 5, some
metrics which can be computed by analyzing the proposed
models are described, and then numerical results are pro-
vided in Section 6. The sensitivity analysis is presented in
Section 7, and finally, Section 8 concludes the paper and
outlines our future research directions.

2 RELATED WORK

The evaluation of performance, availability, and power con-
sumption through analytical modeling is an emerging topic
in the field of cloud computing. In the following, some of
the efforts in this area are introduced.

Bruneo et al. [28] have presented a modeling approach
based on SRNs to investigate the strategies for managing
a federation of clouds aiming to reduce the overall energy
consumption. In [28], user requests that cannot be fulfilled
locally are redirected to external clouds if a federation policy
is active. On the other hand, if a VM consolidation policy
is set, a consolidation action can be triggered to migrate
executing VMs on the local data center to an available
external cloud with the aim of powering off the local center.
Different measures including the mean waiting time, mean
downtime, mean migration probability, and mean probabil-
ity that a center is off were evaluated in [28]. The authors do

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON CLOUD COMPUTING (TCC) 3

not address the scalability issue which is the main focus of
our work.

Ghosh et al. [6] have proposed multi-level interacting
stochastic sub-models to evaluate the performance of re-
quest provisioning in large-scale IaaS clouds that offer tiered
services by configuring physical machines into three differ-
ent pools with different provisioning delays: hot (running),
warm (turned on, but not ready), and cold (turned off). De-
pendencies among sub-models were resolved by fixed-point
iteration method to cope with the state space explosion
problem. Then, the impact of workload and system char-
acteristics on job rejection probability and mean response
delay were evaluated. However, the availability and power
consumption of servers were not considered.

Ghosh et al. [29] have presented an analytical approach
for end-to-end performability analysis of an IaaS cloud ser-
vice. Authors used interacting stochastic models approach
to design performance, availability, and performability sub-
models. In pure performance analysis, performance mea-
sures are computed under the assumption that there is
no failure in resources. For this purpose, three models
based on Continuous Timed Markov Chain (CTMC) were
created: resource provisioning decision model, VM provi-
sioning model, and run-time model. In pure availability
analysis, failures of PMs in different pools have been taken
into consideration. Assigning pure performance measures
as reward rates to the states of the pure availability model
leads to performability analysis. To address scalability issue,
the cyclic dependency among sub-models was resolved
via fixed-point iteration. Finally, authors evaluated service
availability and provisioning response delays as two key
QoS metrics in cloud environments. In contrast, for cloud
performability analysis, we choose SRN-based models to
facilitate automated generation of Markov chains. Further-
more, although joint analysis of performance and avail-
ability is addressed in this work, the authors do not deal
with power consumption of physical machines. Bruneo [8]
has proposed an analytic model based on SRNs to provide
a platform for applying and evaluating cloud strategies
and policies. VM multiplexing was modeled considering
degradation of multiplexed VMs. Moreover, availability
and quality metrics were considered in a federated cloud
scenario. Afterwards, several metrics including utilization,
availability, waiting time, service time, and responsiveness
were defined on the proposed model and evaluated. Though
the model presented in [8] captures a high-level view of IaaS
clouds, it does not encompass details of such cloud systems
including VM provisioning and failure/repair behavior of
servers. Moreover, power consumption was not considered.

Khazaei et al. [30] studied the steps of servicing an IaaS
request and the corresponding delays. Physical machines
have been assumed to be categorized into three pools. Like
Ghosh et al. [29], the authors exploited CTMCs to model dif-
ferent modules of the system, including resource assignment
and virtual machine provisioning modules (one for each
pool). Interdependency among sub-models was resolved
via fixed-point iteration to decrease the number of states
in the resulted state space. They used the term supertask

to refer to a set of requests simultaneously submitted by
one user each of which requesting a single VM. Effects of
various parameters such as arrival rate of supertasks, task

service time, and virtualization degree on the supertask
rejection probability and response time were studied in [30].
Availability and power consumption were not analyzed.
However, the concept of supertask presented in this work
can be used to complement our work. In [31], a stochastic
model-driven approach have been presented to quantify the
availability of an IaaS cloud, where failures were mitigated
through migration of PMs among three pools. Since the
monolithic model presented in [31] is not scalable for large
clouds, the authors proposed an interacting Markov chain-
based approach to reduce the complexity of analysis and
the solution time. Dependencies among interacting sub-
models were resolved using fixed-point iteration technique
for which existence of a solution was proved. Furthermore,
the results obtained from the numerical analysis of the
monolithic and proposed approximate models were com-
pared with each other in terms of the number of states
and non-zero entries of the underlying Markov chains,
solution time, downtime, and the number of PMs in each
pool. Unlike our approach proposed, the requests arrival
and servicing process were not dealt with in [31], and the
authors only focused on the cloud availability. Ghosh et al.
[32] have provided cost analysis by proposing stochastic
models for availability and performance of an IaaS cloud
system. Physical machines are grouped into three different
pools. The failure, repair, and migrations of PMs from one
pool to another were considered in the proposed models.
The authors studied two cost minimization problems to
address the capacity planning in such cloud system. Several
cost components were considered such as repair, downtime,
and rejection costs. The cost-capacity trade-offs were then
translated into mathematical optimization problems. Then,
the optimization problems were solved using a stochastic
search algorithm, named simulated annealing. In contrast,
optimization of output measures is not a concern in our
work.

Khazaei et al. [33] have complemented their own previ-
ous work [30] by modeling the pool management module
which is responsible for moving PMs among pools. Further-
more, they considered the normalized power consumption
as one of the evaluation metrics. Availability of resources
was not considered in this work, too. In [17] and [34],
layered analytical frameworks, based on SRNs, have been
proposed to model a green IaaS cloud. The frameworks
consist of virtual and physical layers. A sub-model for
representing the behavior of each layer was proposed, and
the interactions between the sub-models were specified.
As a use case, scattering and saturation allocation policies
were modeled and compared in terms of several metrics
including utilization, power consumption, block probability,
and performance degradation. A validation of the proposed
model against the CloudSim framework was also presented
in [17]. In contrast to our approach, failure/repair behavior
of cloud servers was not considered in [17] and [34]. More-
over, the scalability issue was not handled in these studies.

Castiglione et al. [35] have proposed a stochastic model-
ing approach based on Markovian Agents and Mean Field
Analysis to allow the effective description of different con-
current Big Data applications on a same multi-site cloud
infrastructure. The information obtained from the proposed
stochastic approach can be used to manage and plan the

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON CLOUD COMPUTING (TCC) 4

power distribution within the cloud by exploiting load
fluctuations for adapting the energy consumption to the
current load. Although all the techniques presented in [35]
are approximation techniques, they can provide acceptable
solution with orders of magnitude faster computation as the
population increases. Details of the system under study in
[35] differs from the system we study in this paper. More-
over, the availability of the system is not a concern in [35].
Barbierato et al. [36] have proposed a modeling approach
to evaluate the combined effects of cloud elasticity and data
management layer on global scale cloud applications. The
formalism used in [36] is based on a state space modeling
technique, namely Markovian Agents, which uses continu-
ous approximation of Markovian processes. The approach
proposed in [36] was applied to a realistic scenario that
encompasses both in-memory and in-storage based Big Data
applications. In contrast to our work, the focus of this work
is on the evaluation of the reliability of the system under
study. Ciardo et al. [37] have presented a Petri net based
model, named lumped Generalized Stochastic Petri Net
(GSPN), to evaluate the power requirements of different al-
location strategies for VMs in a data center when computing
resources are heterogeneous PMs with various power con-
sumption. The model accounts for allocation/deallocation
of VMs on nodes, and uses lumping technique to scale
up to the significant data center sizes. In contrast to our
work, performance and availability are not considered in
this study.

Although there have been proposed several mathemat-
ical models exploiting approximation techniques to cope
with scalability problem in other distributed systems than
clouds [16], [22], [23], the closest work to this study is
the work done by Entezari-Maleki et al. [16] in which the
performability of grid environments is evaluated by SRNs.
To this end, the authors have modeled a single grid resource
considering different scheduling schemes to dispatch grid
and local tasks to the processors of the resource. Afterwards,
the models for individual resources were combined to cap-
ture an entire grid environment, and the approximation
techniques were applied to decrease the number of states
in the underlying Markov chain of the proposed SRN. Even
though the work presented in [16] and our work are similar
in the formalism and the approximation techniques, there
are key differences between them. Most importantly, the
contexts of the two works are different distributed systems,
so details of the proposed models are thoroughly dissimilar
and disjoint. The models presented in [16] were calibrated
for a grid resource/environment, and they cannot be used
for a cloud system since the requirements and characteristics
of the systems are different. Moreover, the input parameters
of the models and the measures computed by the models
proposed in [16] are specific to grid environments to assess
the performability, ignoring the evaluation of the availability
and power consumption, which are our main concerns in
the proposed models in this paper.

3 SYSTEM DESCRIPTION

In real cloud systems comprising several thousands of
computing servers, centralized management solutions are

Fig. 1. An abstract architecture for an IaaS cloud

subject to critical design limitations, including lack of scal-
ability and expensive monitoring costs, and cannot effec-
tively manage available resources [38]. Here, we consider
an architecture in which an IaaS cloud provider uses two
hierarchical levels of management layers for handling user
requests to control a large number of physical servers in an
optimized manner. Fig. 1 presents a graphical representation
of our reference architecture, where the important compo-
nents are shown. A similar architecture was exploited in
other research proposals [39], [40], [41].

IaaS requests are submitted to the cloud provider in
the form of Virtual Machine (VM) requests. VMs are on-
demand operating system instances to provide users with
computational resources. In the following, the term request
is used to refer to a user request for provisioning VMs on
top of Physical Machines (PMs). As shown in Fig. 1, the top-
level resource manager acts as the entry point of user requests.
Requests are submitted to the global queue of the top-level
management layer which processes requests according to
a specific scheduling algorithm typically in a First Come
First Served (FCFS) order. According to a certain policy,
the top-level resource manager chooses a group of PMs
on top of them the new VM could be instantiated. In this
context, a group of PMs can be considered as a cluster of
servers or a whole data center itself, which is managed by an
independent management layer, named bottom-level resource
manager or VM allocator. In the following, we use the term
cluster to refer to such group of physical servers.

After finding a suitable cluster to be allocated to a
request, the top-level resource manager sends the request to
the VM allocator of the selected cluster. Different resource
allocation policies can be implemented in the top-level
resource manager of a cloud provider such as random, best-
fit, and worst-fit dispatch [17]. The VM allocator decides to
which PM the request should be sent, and then, it sends the

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON CLOUD COMPUTING (TCC) 5

request to the hypervisor of the destination PM. For the sake
of simplicity, we assume that each request requires only a
single VM instantiation to be processed, and all VM requests
are homogeneous demanding a fixed amount of computa-
tional power, memory, and storage [8], [32]. Furthermore, it
is assumed that each PM is allocated to only a single VM
[6], [29] though this constraint can be relaxed as described
in Section 4.1. PMs are assumed to be categorized into two
separate pools: hot (running) and cold (turned off), resulting
in different energy costs and provisioning delays [29]–[33].
A VM can be provisioned on hot PMs with minimum delay
whereas PMs in the cold pool need additional time to be
powered on before a VM instance can be deployed.

A VM allocator provisions a request based on a specific
scheduling algorithm (typically the request at the head of
its local queue) on a hot server if the pool of idle hot PMs is
not empty. In this case, the hosting PM becomes busy and
cannot host any additional VM until it is released. If no idle
hot PM is available, a PM from cold pool must be transferred
to the hot pool to be used for provisioning the requested
VM. This action can be performed, e.g., using the Wake
on LAN (WoL) feature implemented on Network Interface
Cards (NICs) of servers [42]. If both hot and cold pools are
empty, the request has to wait. Since the VM assigned to a
request is released after finishing the user’s tasks, the busy
PM allocated to that VM is also turned back to the hot pool
of idle PMs. In order to save power, idle hot PMs are moved
to cold pool if no request is waiting in the queue of VM
allocator. The movements between hot and cold pools are
handled by the power manager. The details of these two types
of movements are explained in Section 4.1.

Since failures in cloud data centers are very common
[11], [43], a comprehensive architecture should consider
the possibility of PM failures. We suppose that PM failure
can happen in each state even when a PM is in a cold
pool. It turns out that the failure rate of a busy hot PM is
larger than that of an idle hot PM, and consequently, the
failure rate of an idle hot PM is greater than that of a cold
PM. Herein, it is assumed that the applications running
on VMs are stateless, or their state is managed out of the
VMs through a database or cloud data store. Alternatively,
applications state can be reliably managed by middleware
layers, e.g. IBM Websphere [44], that replicate objects on
multiple server instances transparently to the end user, so
that the state of applications can be restored if an instance
becomes unavailable. Moreover, the concept of stateless
VMs, considered in some literature [45]–[48], is adopted by
Google Compute Engine (GCE). Hence, when a busy hot
PM fails, the VM running on the failed PM can be restarted
on another PM available for hosting VMs. The VM request
is returned to the waiting queue of VM allocator to be
processed later.

4 THE PROPOSED SRN MODELS

In order to model and evaluate the performance, availability,
and power consumption of an IaaS provider according to
the architecture shown in Section 3, an SRN for modeling a
single cluster is presented in Section 4.1. Afterwards, using
the SRN model presented in the first step, a general model
is presented in Section 4.2.1 which captures the behavior of

Fig. 2. The proposed SRN model for a cluster

the whole data center. To alleviate the scalability issues of
such a monolithic SRN model, two approximate models are
presented. The first one which is based on folding technique
is presented in Section 4.2.2, and the second one which
is based on fixed-point iteration method is introduced in
Section 4.2.3. Moreover, the proof of existence of the fixed-
point is given in Section 4.2.4. We do not present the concept
of SRNs here due to space limitations. More information on
Petri nets (PNs), timed and stochastic extensions of PNs,
and SRNs can be found in [21], [25], [49]–[51].

4.1 SRN Model for a Cluster
The SRN model proposed for analyzing a cluster in IaaS
cloud data center is presented in Fig. 2, and the descrip-
tion of all elements of this SRN is given in Table 1. It
should be mentioned that, as in many other approaches,
the times assigned to all timed transitions are assumed to
be exponentially distributed [8], [16], [17], [19], [29]–[32],
[34]. Specifically, it is assumed that the service duration of a
running VM is a random variable following an exponential
distribution with a constant rate, denoted by �

s

[6], [8], [17],
[19], [28]–[30], [32]–[34]. Hence, we consider neither the case
where the user specifies service duration of his/her VM, nor
the case in which the provider or user can terminate the VM
at any moment.

Input parameters of this model are: (1) arrival rate of
requests (�

cl

), (2) the capacity of input queue (Q
c

), (3)
initial number of PMs in cold and hot pools (N

c

and N

h

,
respectively), (4) mean time of VM provisioning (1/�

p

), (5)
service rate of each VM (�

s

), (6) mean time to move a cold
PM to the hot pool (1/�

ch

), (7) mean time to move a hot PM
to the cold pool (1/�

hc

), (8) failure rates of cold, idle, and
busy PMs represented by �

cf

, �
ihf

, and �

bhf

, respectively,
where �

cf

< �

ihf

< �

bhf

, and (9) repair rate of a failed PM
(�

r

). As shown in Fig. 2, request arrival is modeled by timed
transition T

cluster

. Once transition T

cluster

fires, a token is

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON CLOUD COMPUTING (TCC) 6

TABLE 1
Elements of the SRN model shown in Fig. 2

Name Description
Rate or
Initial number
of tokens

P
q

Queue of input requests 0
P
p

Provisioned PMs 0
P
c

Cold pool of PMs N
c

P
h

Hot pool of PMs N
h

P
f

Failed PMs 0
T
cluster

Arrival of requests �
cl

T
p

Provisioning VM for request Min(#P
q

,#P
h

).�
p

T
s

Servicing requests #P
p

.�
s

T
ch

Powering on a cold PM �
ch

T
hc

Powering off a hot PM #P
h

.�
hc

T
cf

Failure of cold PMs #P
c

.�
cf

T
ihf

Failure of idle hot PMs #P
h

.�
ihf

T
bhf

Failure of busy hot PMs #P
p

.�
bhf

T
r

Repair of failed PMs �
r

put into place P

q

to show that a request has been submitted
to the cluster and it should be processed later. The guard
function g

cl

is associated with transition T

cluster

to take care
of the size of the input queue. When the number of tokens in
place P

q

reaches the given threshold Q

c

, the guard function
g

cl

, shown in Table 2, prevents transition T

cluster

from firing.
If we consider a queue with zero capacity, then an arriving
request should only check the availability of a PM to be
assigned to that request. If there is such a PM in the cluster,
the request is accepted; otherwise, it is rejected from the
system.

Places P
c

and P

h

model cold and hot pools of the system,
respectively. The number of tokens inside places P

c

and P

h

show the number of operational PMs in cold and hot pools,
respectively. If there is at least one token in both places P

q

and P

h

, transition T

p

is enabled, and it can fire. Upon firing
of this transition, one token is removed from both places
P

q

and P

h

, and one token is added to place P

p

. The actual
firing rate of T

p

is Min(#P

q

,#P

h

) · �
p

where �

p

is the
provisioning rate of a single VM and Min(#P

q

,#P

h

) is
the minimum number of tokens in P

q

and P

h

. If there is a
token in place P

q

and no token in place P

h

, the existence
of a token in place P

c

is checked. If there is at least one
token in P

c

, it shows that there is a cold PM which can
be moved to the hot pool to be allocated to the waiting
request. In this case, transition T

ch

fires and moves a token
from P

c

to P

h

. The guard function of transition T

ch

, called
g

ch

, is presented in Table 2. Otherwise, the newly received
request has to wait because there are no idle hot or cold PMs,
which indicates that all PMs have been already allocated
to the requests or failed. In the case of a queue with zero
capacity, the guard function [g

cl

] should check the condition
[#P

h

] + [#P

c

] > 0, which checks the existence of an
available PM in the cluster.

The existence of a token in place P

p

shows that a VM is
running on a PM. The servicing process is modeled by timed
transition T

s

. The firing rate of this transition is (#P

p

) · �
s

where (#P

p

) denotes the number of tokens inside place P

p

.

TABLE 2
Guard functions of the SRN model shown in Fig. 2

Guard Function Value

g
cl

1 if [#P
q

] < Q
c

0 otherwise

g
ch

1 if [#P
q

�#P
h

] > 0

0 otherwise

g
hc

1 if [#P
q

] = 0

0 otherwise

So, the firing rate of transition T

s

is marking dependent,
which is shown by symbol # on the arc connecting place
P

p

to transition T

s

. Upon firing of this transition, a token
is removed from place P

p

, and a token is deposited into
place P

h

to show that a user request has been completed,
and its corresponding PM was turned back to the hot pool.
Timed transition T

hc

models the movement of a hot PM to
the cold pool. A guard function, called g

hc

, is associated
with this transition to check the existence of a token in place
P

q

. If there is no token in place P

q

, and at least one token in
place P

h

, transition T

hc

fires. Using this mechanism, we shut
down idle hot PMs to save power when there is no waiting
request in the cluster. The guard function g

hc

is shown in
Table 2. As shown in Table 1, the firing rate of transition T

hc

is (#P

h

) ·�
hc

where (#P

h

) is the number of tokens in place
P

h

and (1/�
hc

) is the mean time to move a hot PM to the
cold pool.

As mentioned in Section 3, all PMs in a cloud system are
prone to fail. We model these failures using three different
timed transitions, named T

bhf

, T
ihf

, and T

cf

, which model
failure processes of busy hot PMs, idle hot PMs, and cold
PMs, respectively. Upon firing of transition T

bhf

, a token
is removed from place P

p

, and a token is deposited into
both places P

q

and P

f

. Using this mechanism, the request
associated to a failed PM is returned to the waiting queue
to be allocated to another PM later. If the capacity of the
input queue is zero, the output arc from transition T

bhf

to place P

q

should be removed. In this case, the rejection
probability of the cluster can be computed by counting the
number of tokens rejected by both timed transitions T

cluster

and T

bhf

. Tokens in place P
f

represent failed PMs waiting to
be repaired. Timed transition T

r

models the repair process of
failed PMs. When a failed PM is repaired through transition
T

r

, one token is put into place P

c

, which indicates that the
repaired PM is available for submitted requests as a cold
PM. Transition T

r

is not marking dependent since each clus-
ter is assumed to be equipped with only one repair facility.
Firing rates of the transitions related to the failure/repair
behavior of PMs are shown in Table 1.

It is worth mentioning that the proposed model shown
in Fig. 2 can be easily modified to handle VM multiplexing
by setting the multiplicity of the arcs connecting transition
T

ch

to place P

h

, place P

h

to transition T

hc

, transition T

cf

to place P

f

, and place P

f

to transition T

r

to the number
L, where L is the maximum number of VMs which can be
concurrently provisioned on a single PM. However, to avoid
the state space explosion which occurs in the monolithic
model proposed for a cloud data center in Section 4.2, we

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON CLOUD COMPUTING (TCC) 7

ignore this extension.

4.2 SRN Models for Entire Cloud Data Center
In this section, the SRN model presented for a single cluster
is used to model a more realistic IaaS cloud including many
clusters which are managed hierarchically. As described in
Section 3, the hierarchical structure considered here includes
two management levels though it can even be extended to
more levels. As a two-level hierarchical structure, the top-
level entity can be considered as a network of data centers
while the low-level could be a data center itself as proposed
in [52]. Alternatively, the top-level element can be consid-
ered as a data center while the bottom-level could model a
cluster [38], [53]. Each level has its own management part
in such a way that the top-level management layer receives
an IaaS request and decides to which low-level element this
request should be dispatched. Afterwards, the management
part of the bottom-level element decides how to service the
request using its own available PMs in the local cold and
hot pools.

4.2.1 The Monolithic Model

Using the SRN model shown in Fig. 2, a model for the
entire cloud data center is presented in Fig. 3 that obeys the
reference architecture of Fig. 1. The proposed SRN contains
N clusters at bottom-level which are homogeneous with
respect to their structure, and the number and capacity of
their PMs.

In this model, there is a single entry point for user
requests at top-level management layer, which is modeled
by timed transition T

input

with firing rate �

input

. The arriv-
ing requests are buffered into a single queue with limited
capacity modeled by place P

input

. The transition T

input

is
enabled only if the number of tokens in place P

input

is less
than the given threshold Q

in

. This condition is realized by
guard function g

in

shown in Table 3. The explanation given
about the local queue with zero capacity in bottom-level
resource manager can be generalized to the global queue
of the top-level resource manager by checking the existence
of an available PM in one of the underlying clusters upon
arriving a request to the global queue. The arriving requests
to the top-level resource manager are dispatched to the
clusters existing in the data center. The dispatching process
is modeled by timed transitions T

clusteri , 1 i N . The
selection of the cluster to host the incoming request is done
according to a load distribution policy which checks the
number of waiting requests inside each cluster. If a cluster
has free resources, it is selected to host the new request. In
this paper, we adopt a random load distribution policy, i.e.,
if there are more than one cluster capable to host a request,
one of them is selected randomly. If the local queues of all
clusters are full, requests have to wait in the global queue till
one of the clusters becomes available. After dispatching an
incoming request, the VM allocator of the receiving cluster
queues the request in its local buffer shown by P

qi in Fig. 3.
The capacity of this queue for each cluster i is Q

c

. The
remaining process proceeds according to the description
given in Section 4.1. All guard functions of SRN model
presented in Fig. 3 are described in Table 3.

The SRN model shown in Fig. 3 can be used to model a
cloud data center with any number of clusters with different

Fig. 3. Monolithic SRN model of a cloud data center

TABLE 3
Guard functions of the SRN model shown in Fig. 3

Guard Function Value

g
in

1 if [#P
input

] < Q
in

0 otherwise

g
cli

1 if [#P
qi] < Q

c

0 otherwise

g
chi

1 if [#P
qi �#P

hi
] > 0

0 otherwise

g
hci

1 if [#P
qi] = 0

0 otherwise

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON CLOUD COMPUTING (TCC) 8

configurations. However, when it is applied to model a
real cloud system even with a small number of clusters
and servers, it encounters the state space explosion problem
since the number of states of the underlying Markov chain
of the SRN grows exponentially and cannot be solved by
existing packages and tools. The number of states increases
exponentially as the number of clusters, the number of
servers in each cluster, and the capacity of global and local
queues increase. Numerical results showing the intractabil-
ity of the monolithic model are given in Section 6.

4.2.2 The Folded Approximate Model

Since it is assumed that the structure and configuration of all
clusters of the SRN model presented in Fig. 3 are the same,
one possible approximate model consists of an arbitrarily
selected Tagged cluster (e.g. cluster 1) and a Folded sub-
network for the remaining (N � 1) ones grouped together
to form a single powerful cluster while leaving the top-level
management layer intact [16], [22]. In such model, places P

q

,
P

p

, P
h

, P
c

, and P

f

in the Folded part correspond to places
P

qi , P
pi , P

hi , P
ci , and P

fi , 2 i N , of the monolithic
SRN model shown in Fig. 3, respectively.

In this approximate model, the initial number of tokens
inside places P

c

and P

h

are N

c

= (N � 1) · N
c1 and N

h

=
(N�1) ·N

h1 , respectively, where N

c1 and N

h1 are the initial
number of tokens in places P

c1 and P

h1 of the Tagged cluster,
respectively. Furthermore, the capacity of the local queue
of the Folded cluster is Q

c

= (N � 1) · Q
c1 , where Q

c1 is
the capacity of the local queue of the Tagged cluster. The
request arrival rate (�

cl

), transfer rate from the cold pool to
the hot pool (�

ch

), and repair rate of PMs (�
r

) in the Folded
subnet are �

cl

= (N � 1) · �
cl1 , �

ch

= (N � 1) · �
ch1 , and

�

r

= (N � 1) · �
r1 , respectively, where �

cl1 , �
ch1 , and �

r1

are the corresponding parameters in the Tagged cluster.
Since the rate of PM transmission from the hot pool to

the cold pool, provision and service rates of VMs, and failure
rates of cold and hot PMs are marking dependent, these val-
ues are not multiplied by (N � 1). This is because the initial
number of cold and hot PMs and the input rate of requests
to the Folded subnet have been already multiplied by (N�1).
The guard functions associated with timed transitions of
the Folded subnet of the model are the same as the guard
functions described in Table 2 except for g

cl

in which Q

c

has
to be replaced by (N � 1) · Q

c

. It is worth to mention that
multiplying the parameters of a single cluster by (N � 1)
and associating them to the corresponding parameters of
the Folded subnet allow only to approximate the required
metrics. However, exact estimation of the number of tokens
and the rate of transitions is very difficult since there are
many factors that come to play.

As it is shown in Section 6, although the folding approx-
imation method partially overcomes the scalability problem
of the monolithic model, it is not still appropriate for model-
ing cloud systems with large number of clusters or servers.
Nevertheless, it provides a good improvement over the
monolithic model regarding the number of states and non-
zero entries in the underlying Markov chain while keeping
errors in a tolerable range.

4.2.3 The Fixed-point Approximate Model

In order to cope with the state space explosion problem that
still affects the folded model, and to refine the model further
to solve larger cloud instances, another approximate model
based on fixed-point iteration [22], [24], [54] is presented.
The fixed-point iteration technique is known as a good
solution for analyzing a system of interdependent compo-
nents [16], [31]. In this method, each component is analyzed
with the remaining components represented in a simplified
manner (i.e., a delay). The method acts iteratively, and the
parameters of the simplified complement of a component
are modified after the other components are analyzed. Each
component is then re-analyzed with new input parameters
to produce updated inputs for other components. This
process is iterated until the difference of interested values
in two successive iterations becomes lower than a given
threshold.

To apply fixed-point technique, the monolithic SRN
model shown in Fig. 3 is divided into two sub-models: the
first sub-model contains a tagged cluster together with the
top-level cloud management elements, and the second sub-
model contains remaining (N�1) clusters. Since the remain-
ing (N �1) clusters act as a delay to the tagged cluster, they
are replaced by a timed transition in the first sub-model.
Fig. 4 shows the first sub-model of the fixed-point iteration
method. In this figure, transition T

delay

represents the delay
associated with other (N � 1) clusters.

The number of tokens, the rate of transitions, and guard
functions defined in the SRN model shown in Fig. 4 are
the same as their corresponding values in the Tagged subnet
of the model described in Section 4.2.2. To evaluate the
performance measures of interest, this model should be
solved with an appropriate firing rate for timed transition
T

delay

. Since the rate of this transition cannot be determined
a priori, the SRN model shown in Fig. 4 cannot be solved
directly. Instead, the rate of T

delay

can be approximated
using the iterative approach of fixed-point by exploiting the
second sub-model shown in Fig. 5.

In Fig. 5, place P

input

contains M tokens where
1 M Q

in

, and Q

in

is the capacity of the global
queue of top-level resource manager, which is equal to the
maximum number of tokens that can be placed in P

input

represented in SRN model of Fig. 4. The initial number of
tokens in places P

c

and P

h

are N

c

= (N � 1) · N
c1 and

N

h

= (N�1) ·N
h1 , respectively, where N

c1 and N

h1 are the
corresponding parameters of the tagged cluster defined in
the SRN model of Fig. 4. The capacity of the local queue of
the second sub-model is Q

c

= (N � 1) · Q
c1 , where Q

c1

is the capacity of the local queue of the first sub-model.
Furthermore, the rate of request arrival to the system (�

cl

),
the rate of moving PMs from the cold pool to the hot pool
(�

ch

), and the repair rate of failed PMs (�
r

) in the model of
Fig. 5 are �

cl

= (N � 1) · �
cl1 , �

ch

= (N � 1) · �
ch1 , and

�

r

= (N�1) ·�
r1 , respectively, where �

cl1 , �
ch1 , and �

r1 are
the corresponding parameters of the first sub-model. Other
values for firing rate of transitions and the initial number of
tokens in places are the same as those of the model shown
in Fig. 4.

As shown in Fig. 5, a new place P

end

is added to the
model to trap all requests submitted to the system after
their successful execution. Therefore, if the initial number

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON CLOUD COMPUTING (TCC) 9

Fig. 4. The fixed-point approximate model for entire cloud data center
(the first sub-model)

Fig. 5. The fixed-point approximate model for entire cloud data center
(the second sub-model)

TABLE 4
Guard functions of the SRN model shown in Fig. 5

Guard Function Value

g
ihf

, g
cf

, and g
r

1 if [#P
end

] < M

0 otherwise

Fig. 6. Import graph of interacting sub-models in the fixed-point approx-
imate technique

of tokens inside place P

input

is M , after a specific amount
of time, all the tokens will be moved to the place P

end

.
If suitable guard functions are defined for transitions of
this model, the underlying Markov chain will be an ab-
sorbing Markov chain and the Mean Time To Absorption
(MTTA) of the model can be calculated. Table 4 describes
the newly added guard functions to the second sub-model.
Guard functions g

ihf

, g
cf

, and g

r

are associated with timed
transitions T

ihf

, T

cf

, and T

r

, respectively. Other guard
functions of the SRN model shown in Fig. 5 are the same
as those of the Folded subnet of the SRN model proposed in
Section 4.2.2.

Let MTTA

i

represent the mean time to absorption of the
SRN model shown in Fig. 5 when M is equal to i. Also, let
⇡(#P

input

= i) denote the steady-state probability of there
being i tokens in place P

input

of the same model, which
can be computed by steady-state analysis of the SRN model
shown in Fig. 4. Then, the MTTA of the SRN model of Fig. 5
is computed as (1).

MTTA =
QinX

i=1

MTTA

i

· ⇡(#P

input

= i) (1)

Once MTTA value is computed, the firing rate of timed
transition T

delay

is computed as (2).

�

↵

=
1

MTTA

(2)

The value of �
↵

is used for solving the first sub-model at
the next iteration. Solving this model at the next iteration
results in new steady-state probabilities of there being i

tokens in place P

input

. These values are then applied to
equations (1) and (2) to determine the new value of �

↵

.
This process continues until the difference of values of �

↵

in two successive iterations becomes lower than a specific
threshold. The import graph describing interaction between
two sub-models of the fixed-point approximate model (SRN
models shown in Fig. 4 and Fig. 5) is represented in Fig. 6.

4.2.4 Existence of a Fixed-point

In this section, we demonstrate that a fixed-point always ex-
ists when the decomposition illustrated above is performed.
To achieve this, the following proof is presented.

Let y

i

= ⇡(#P

input

= i), where ⇡(#P

input

= i) is
the steady-state probability of there being i tokens in place

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON CLOUD COMPUTING (TCC) 10

P

input

and 1 i Q

in

. Considering the SRN model
presented in Fig. 4, for some function h, we can write
y

i

= h(�
↵

) where �

↵

is the firing rate of timed transition
T

delay

. On the other hand, this rate is obtained by computing
MTTA in SRN shown in Fig. 5 for i tokens inside place
P

input

where 1 i Q

in

. Using (1) and (2), we can write
1
�↵

=
P

Qin

i=1 MTTA

i

· ⇡(#P

input

= i) where MTTA

i

is
the mean time to absorption of SRN shown in Fig. 5 when
the number of the tokens inside place P

input

is i. Let vector
~y = (y1, . . . , yQin), so for some function f we can derive
~y = f(~y).

Brouwer’s fixed-point theorem [24] is used to show that
f(~y) = ~y has a solution. This theorem states that if there
exists a compact convex set C ⇢ R

n and there is a continuous
function f such that f(~y) 2 C for all ~y 2 C , then there exists
a solution for equation f(~y) = ~y.

Since ~y = (y1, y2, . . . , yQin), and each y

i

=
⇡(#P

input

= i) representing the steady-state probability of
there being i tokens in place P

input

is bounded below by 0
and above by 1, so each y

i

is bounded in range [0, 1]. Hence,
C is defined as a set of points (y1, y2, . . . , yQin) where each
y

i

2 [0, 1]. Consider the function f over C by defining
y

i

= ⇡(#P

input

= i) and y

i

= f(y
i

), 1 i Q

in

. Since the
probability of being in a subset of a Markov chain is always
bounded below by 0 and above by 1, therefore y

i

2 [0, 1] for
all i. Now C will be shown to be a convex set. A set C ⇢ R

n

is convex if �~x + (1 � �)~y 2 C whenever ~x and ~y are n-
vectors 2 C and � 2 [0, 1]. Let us consider one equation:
z

i

= �x

i

+ (1 � �)y
i

. It turns out that z
i

� 0 since � � 0,
x

i

� 0, (1��) � 0, and y

i

� 0. Since z

i

is maximized when
x

i

= y

i

= 1 (since � � 0 and (1 � �) � 0) to its maximum
value 1, z

i

 1.
Finally, we show that f is continuous over C . Func-

tion f(~y) is continuous if for each point ŷ 2 C ,
lim

~y!ŷ

f(~y) = f(ŷ). As f(~y) is a vector valued func-
tion, this is equivalent to say lim

~y!ŷ

f

k

(~y) = f

k

(ŷ) for
k 2 {1, 2, . . . , Q

in

} and ŷ 2 C . By defining lim
~y!ŷ

f

k

(~y) =
lim

~y!ŷ

⇥
[MTTA1 ·⇡(#P

in

= 1)]+ [MTTA2 ·⇡(#P

input

=
2)] + . . .+ [MTTA

Qin · ⇡(#P

input

= Q

in

)]
⇤
, we can derive

lim
~y!ŷ

f

k

(~y) = lim
~y!ŷ

⇥
[MTTA1 · y1] +

⇥
[MTTA2 · y2] +

. . . + [MTTA

Qin · y
Qin]

⇤
. Since y

i

= ⇡(#P

input

= i)
is the probability of being in a subset of the states of a
Markov chain, lim

yi!ŷi yi = ŷ

i

. Due to the fact that each
term of the summation converges to its (finite) value at ŷ,
lim

~y!ŷ

f

k

(~y) = f

k

(ŷ), and therefore, lim
~y!ŷ

f(~y) = f(ŷ).

5 PERFORMANCE MEASURES OF INTEREST

In this section, some performance measures which can be
obtained by solving the SRN models given in Section 4 at
steady-state are introduced. These measures can be com-
puted using the Markov reward approach [55]. In this
approach, appropriate reward rates are assigned to each
feasible marking of an SRN model, and then, expected
reward rates in the steady-state are computed. Let r denote
the reward function that associates a reward rate r

i

to each
marking i of an SRN model. If ⇡

i

denotes the probability
for the SRN to be in marking i at steady-state, then the
expected reward at steady-state, E[r], can be calculated byP

i

r

i

⇡

i

. In the following, some of the interesting measures
which can be computed using our proposed models are

described. These measures are defined and evaluated for
a single cluster (i.e., the tagged cluster) in the cloud data
center.

Mean response time: It is the mean time from when a
request is submitted by the top-level resource manager to
a VM allocator at cluster level until the time it completes
its service. In other words, this is the mean time from the
instant a token is deposited into P

q

until it leaves place P

p

by firing transition T

s

. Using Little’s law [20], the steady-
state mean response time is computed as (3).

E[RT] =
E[rq] + E[rp]

�

eff

cl

(3)

where r

q and r

p are reward functions counting the number
of tokens inside places P

q

and P

p

, respectively, and �

eff

cl

is
the effective rate of request arrival into the cluster queue.
In other words, it is the expected throughput of transition
T

cluster

and is computed as (4).

�

eff

cl

= (1� p

b

)�
cl

(4)

where p

b

is the blocking probability of arriving requests
at cluster level and is computed by assigning the reward
function (5) to SRN models.

r

b =

⇢
1, [#P

q

] � Q

c

0, otherwise

(5)

Mean percentage of available PMs: It is the mean
percentage of non-failed PMs, which can be derived as (6).

E[AV] = (1� E[rf]

N

c

+N

h

)⇥ 100 (6)

where r

f is the reward function that counts the number of
failed PMs by counting the number of tokens inside place
P

f

. Moreover, N
c

and N

h

are initial numbers of PMs in cold
and hot pools, respectively as described in Section 4.1.

Mean power consumption: It is the mean value of power
consumed by PMs inside a cluster and is computed as (7).

E[PC] =
�
c

bh

E[rp] + c

ih

E[rh] + c

c

E[rc]
�
· p

max

(7)

where rp , rh , and r

c are the reward functions that count the
number of tokens inside places P

p

, P
h

, and P

c

, respectively.
Moreover, p

max

is the maximum power consumption of a
PM, and c

bh

, c
ih

, and c

c

are fractions of maximum power
consumed by a PM in its busy, idle, and turned off modes,
respectively. (0 c

bh

, c

ih

, c

c

 1).

6 PERFORMANCE EVALUATION

In order to compare the results obtained by analytically
solving three SRN models presented in Section 4.2, a two-
level cloud data center with different number of clusters is
considered in this section. The models have been solved for
a wide range of input parameter values, but for the sake
of brevity, we only report some interesting results in this
paper. Most of the values considered as input parameters of
the cloud system investigated in this paper, are according to
other literature proposals [8], [16], [17], [29]–[31], [56]. These
values are shown in Table 5. As mentioned in Section 4.1,
the value of L, the multiplexing factor, can be set to any
arbitrary number, such as 2, 4, or 8 which are typical in

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON CLOUD COMPUTING (TCC) 11

TABLE 5
Configuration of the cloud data center considered in this paper

Parameter Value or Range

Requests arrival rate (�
input

) [30, 50] requests/hour
Capacity of global queue (Q

in

) 5 requests
Capacity of local queue (Q

ci) 2 requests
Initial number of cold PMs in

3 PMs
each cluster (N

ci)
Initial number of hot PMs in

0 PMs
each cluster (N

hi
)

Requests arrival rate to
1000 requests/hour

each cluster (�
cli

)
Provisioning rate (�

pi) 30 VMs/hour
Service rate of each VM (�

si) 3 VMs/hour
Transmission rate of a cold PM to

20 PMs/hour
the hot pool (�

chi
)

Transmission rate of a hot PM to
60 PMs/hour

the cold pool (�
hci

)
Failure rate of a cold PM (�

cfi
) 0.001 PMs/hour

Failure rate of an idle PM (�
ihfi

) 0.01 PMs/hour
Failure rate of a busy PM (�

bhfi
) 0.015 PMs/hour

Repair rate of a failed PM (�
ri) 0.33 PMs/hour

Maximum power consumption of
400 watts

a PM (p
max

)
Fraction of maximum power consumed

0.1
in cold mode (c

c

)
Fraction of maximum power consumed

0.675
in idle mode (c

ih

)
Fraction of maximum power consumed

1
in busy mode (c

bh

)

real world systems [57]–[59], without encountering any state
space explosion in the model of Fig. 2. However, if it is
set to a larger number in the model of Fig. 3, representing
the monolithic model of a cloud data center, the model
cannot be solved and it encounters largeness problem. Since
the main aim of both folded and fixed-point approximate
models is to approximate the monolithic model, we cannot
compare the results obtained from the approximate models
with the results of the monolithic model if VM multiplexing
is taken into account.

We use the SPNP software package [60] to solve the
SRN models presented in this paper. The comparison of
the steady-state mean response time of IaaS requests among
monolithic, folded approximate, and fixed-point approxi-
mate models are shown in Table 6. Here, Percent Error
(PE) expresses the difference between an approximate or
simulated value and an exact or known one, computed
from the monolithic model, as a percentage of the exact
value. The steady-state percentage of available PMs resulted
from the monolithic and two approximate models are pre-
sented in Table 7. Moreover, Table 8 shows the steady-state
mean power consumption of PMs obtained from above-
mentioned models. In all of these tables, N represents
the number of clusters within a data center. It is worth
mentioning that running the monolithic model for just four
clusters produces so many states and leads to state space

TABLE 6
Steady-state mean response time

�
E[RT]

�
resulted from monolithic,

folded, and fixed-point models (in seconds)

N �input

SRN Models
Monolithic Folded Fixed-point

Value Value PE (%) Value PE (%)

2

30 2118.834 2118.834 0.000 2123.208 0.206
35 2121.728 2121.728 0.000 2123.298 0.074
40 2122.693 2122.693 0.000 2123.327 0.030
45 2123.057 2123.057 0.000 2123.341 0.013
50 2123.208 2123.208 0.000 2123.345 0.006

3

30 2075.602 2065.414 0.491 2123.194 2.293
35 2104.855 2101.090 0.179 2123.294 0.876
40 2115.634 2114.147 0.070 2123.327 0.364
45 2119.853 2119.216 0.030 2123.338 0.164
50 2121.642 2121.343 0.014 2123.345 0.080

TABLE 7
Steady-state percentage of available PMs

�
E[AV]

�
resulted from

monolithic, folded, and fixed-point models

N �input

SRN Models
Monolithic Folded Fixed-point

Value Value PE (%) Value PE (%)

2

30 95.432 95.432 0.000 95.429 0.003
35 95.430 95.430 0.000 95.429 0.001
40 95.429 95.429 0.000 95.429 0.000
45 95.429 95.429 0.000 95.429 0.000
50 95.429 95.429 0.000 95.429 0.000

3

30 95.488 95.514 0.028 95.429 0.061
35 95.445 95.452 0.007 95.429 0.017
40 95.434 95.436 0.002 95.429 0.005
45 95.431 95.431 0.001 95.429 0.002
50 95.430 95.430 0.000 95.429 0.001

explosion. Therefore, we only compare the measures of the
models with two and three clusters.

As can be seen in Tables 6, 7, and 8, the steady-state mean
values of the interested measures obtained from all models
are very close to each other. For example, the maximum
percent errors of the results obtained by (folded, fixed-
point) approximate models in Tables 6, 7, and 8 are (0.491%,

2.293%), (0.028%, 0.061%), and (0.552%, 1.225%), respec-
tively. This indicates that our proposed approximate models
can appropriately estimate the steady-state mean response
time, available PMs, and power consumption of the mono-
lithic model.

In order to cross validate the results obtained from the
monolithic model and to compare them with the results
achieved by solving approximate models, we simulate the
IaaS cloud mentioned above using an ad-hoc discrete-event
simulation method we developed in Java. Furthermore, to
demonstrate the accuracy of the proposed models, we sim-
ulate the sample cloud systems with the CloudSim frame-
work. CloudSim is a Java-based development platform to
support modeling and simulation of large-scale cloud com-
puting environments [27]. We extend the CloudSim frame-
work to adapt it to the requirements of the proposed models

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON CLOUD COMPUTING (TCC) 12

TABLE 8
Steady-state power consumption

�
E[PC]

�
resulted from monolithic,

folded, and fixed-point models (in watts)

N �input

SRN Models
Monolithic Folded Fixed-point

Value Value PE (%) Value PE (%)

2

30 1109.541 1109.541 0.000 1110.285 0.067
35 1110.095 1110.095 0.000 1110.295 0.018
40 1110.235 1110.235 0.000 1110.298 0.006
45 1110.276 1110.276 0.000 1110.299 0.002
50 1110.290 1110.290 0.000 1110.299 0.001

3

30 1096.847 1090.789 0.552 1110.284 1.225
35 1106.547 1104.928 0.146 1110.295 0.339
40 1109.126 1108.650 0.043 1110.298 0.106
45 1109.886 1109.729 0.014 1110.299 0.037
50 1110.138 1110.080 0.005 1110.299 0.015

by defining the global and local queues, and PM powering
on/off, failure, and repair events. The results obtained by
the discrete-event simulation and the CloudSim framework
are reported in Table 9 and Table 10, respectively. Each row
of these tables is the average obtained from 50 independent
simulation runs for which the Standard Deviation (SD) is
also computed. According to Table 9, the maximum percent
errors of the results obtained by discrete-event simulation
and the monolithic model for response time, availability,
and power consumption are 0.052%, 0.020%, and 0.036%,
respectively. These errors for the results achieved by the
CloudSim framework are 1.863%, 0.180%, and 0.324%,
respectively. Both sets of errors indicate that the simulation
approaches are able to validate the results obtained from the
proposed monolithic model. Moreover, the results obtained
by simulation of the cloud systems with a larger number of
clusters verify the correctness of the proposed approximate
models.

The numbers of states and non-zero entries of the under-
lying Markov chain matrix generated by three monolithic,
folded and fixed-point models are shown in Table 11 and Ta-
ble 12, respectively. It should be mentioned that the numbers
reported for fixed-point approximate model are only the
numbers generated by the second sub-model (Fig. 5) for the
maximum value of M , since the numbers of states and non-
zero entries of the underlying Markov chain matrix of the
first sub-model (Fig. 4) are fixed numbers for all values of
N and �

input

. As shown in Table 11 and Table 12, numbers
reported for fixed-point approximate model are much less
than those for two other models. Hence, it can be concluded
that using fixed-point technique and folding method to ap-
proximate complex models of cloud systems can be helpful
in reducing the number of states and avoiding state space
explosion.

Among state-of-the-art approaches proposed in the same
area, the work presented in [17] provides an analyti-
cal framework based on SRNs that allows cloud service
provider to decide about the resource allocation policies to
be enforced. Though it lacks the details existing in real cloud
systems including VM provisioning and failure/repair of
PMs, power-aware resource allocation is one of the main
concerns investigated in [17]. Hence, we compare our pro-

posed fixed-point approximate model and the model pre-
sented in [17] (the saturation strategy), based on the number
of states in the underlying Markov chains and the number
of the non-zero entries in the underlying Markov chain
matrices. The results are shown in Table 13 and Table 14. As
it can be observed from Table 13 and Table 14, the numbers
reported for our fixed-point approximate model are always
significantly lower than those for the model presented in
[17], which proves that our fixed-point approximate model
is more scalable. However, it should be noted that the aim
of our proposed model and the model presented in [17],
and the details of the systems considered in both models
are different, and we only compared the models in terms of
the resulting state space.

7 SENSITIVITY ANALYSIS

In this section, the sensitivity of output measures to the
variation of input parameters is studied. To achieve this,
each input parameter is varied in a valid range, and then the
sensitivity of the results to the variation of that parameter is
analyzed. There are many input parameters in the proposed
SRNs. For the sake of brevity, we only report the sensitivity
of output measures to the variation of four important input
parameters by considering four different scenarios. The
input parameters varied in these scenarios are: (1) the initial
number of cold PMs in each cluster (N

c

), (2) the failure rate
of a busy hot PM (�

bhf

), (3) the failure rate of an idle hot
PM (�

ihf

), and (4) the failure rate of a cold PM (�
cf

). In
all scenarios, the number of clusters, N , and the request
arrival rate, �

input

, are set to 3 clusters and 40 requests/hour,
respectively. Unless differently stated, the values of other
input parameters are the ones reported in Table 5.

In the first scenario, the impact of the variation of the ini-
tial number of cold PMs in each cluster on output measures
of interest is studied. To this end, the initial number of cold
PMs per each cluster, N

c

, is changed from 1 to 3. Tables 15,
16, and 17 show the steady-state mean response time, per-
centage of available PMs, and power consumption, respec-
tively, obtained by solving the monolithic, folded, and fixed-
point models. The maximum percent errors of the results
obtained by (folded, fixed-point) approximate models in Ta-
bles 15, 16, and 17 are (0.070%, 0.364%), (0.002%, 0.005%),
and (0.043%, 0.106%), respectively, which indicate that the
values of output measures obtained from all models are very
close to each other. It can be further observed that all output
measures are sensitive to the variation of the number of
PMs. As the initial number of cold PMs inside each cluster
increases, the response time and the percentage of available
PMs decrease whereas the power consumption increases.

In the second scenario, the impact of the variation of
failure rate of busy hot PMs on output measures of interest
is studied. For this purpose, the failure rate of a busy
hot PM, �

bhf

, is changed from 0.015 to 0.05 PMs/hour
with step 0.005. Tables 18, 19, and 20 show the steady-
state mean response time, percentage of available PMs, and
power consumption, respectively, obtained by solving the
monolithic, folded, and fixed-point models. The maximum
percent errors of the results obtained by (folded, fixed-
point) approximate models in Tables 18, 19, and 20 are
(0.085%, 0.364%), (0.007%, 0.013%), and (0.043%, 0.106%),

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON CLOUD COMPUTING (TCC) 13

TABLE 9
Results obtained by the discrete-event simulation

N
�input

Measures
Response Percentage of Power

Time (in seconds) Available PMs Consumption (in watts)
Value PE (%) SD Value PE (%) SD Value PE (%) SD

2

30 2118.586 0.012 1.394 95.437 0.005 0.045 1109.538 0.000 0.141
35 2121.458 0.013 1.173 95.438 0.008 0.058 1110.158 0.006 0.239
40 2122.675 0.001 0.920 95.435 0.006 0.063 1110.284 0.004 0.498
45 2122.592 0.022 1.819 95.448 0.020 0.090 1110.481 0.018 0.884
50 2123.352 0.007 0.872 95.426 0.003 0.038 1110.242 0.004 0.210

3

30 2076.674 0.052 3.990 95.494 0.006 0.049 1096.452 0.036 0.919
35 2105.035 0.009 0.831 95.442 0.003 0.126 1106.314 0.021 0.922
40 2116.033 0.019 1.619 95.421 0.014 0.094 1108.899 0.020 1.016
45 2119.802 0.002 0.351 95.436 0.005 0.039 1109.910 0.002 0.118
50 2121.880 0.011 2.071 95.443 0.014 0.055 1110.277 0.013 1.179

TABLE 10
Results obtained by the CloudSim framework

N
�input

Measures
Response Percentage of Power

Time (in seconds) Available PMs Consumption (in watts)
Value PE (%) SD Value PE (%) SD Value PE (%) SD

2

30 2154.661 1.691 132.761 95.533 0.106 0.541 1106.190 0.302 14.864
35 2158.603 1.738 134.095 95.528 0.103 0.625 1106.664 0.309 12.907
40 2158.585 1.691 140.310 95.541 0.117 0.410 1106.914 0.299 12.352
45 2157.768 1.635 126.432 95.586 0.165 0.437 1107.445 0.255 10.913
50 2157.170 1.600 120.178 95.601 0.180 0.650 1107.647 0.238 9.535

3

30 2114.262 1.863 139.473 95.591 0.108 0.409 1095.501 0.123 11.316
35 2140.610 1.699 131.743 95.520 0.079 0.536 1103.277 0.296 12.382
40 2148.574 1.557 125.269 95.560 0.132 0.515 1106.061 0.276 15.657
45 2153.200 1.573 142.551 95.519 0.092 0.789 1106.294 0.324 14.045
50 2155.608 1.601 123.066 95.523 0.097 0.382 1106.576 0.321 13.582

TABLE 11
The number of states in the underlying Markov chain of the monolithic,

folded, and fixed-point models

N
SRN Models

Monolithic Folded Fixed-point

2 66150 66150 314
3 6945750 502740 881
4

Memory shortage

1905750 1469
5 5159700 2057
6

Memory shortage

2645
10 4997
20 10877
30 16757
40 22637
50 28517

respectively, which show that the values of the output mea-
sures obtained from all models are very close to each other.
It can be seen that by increasing the failure rate of a busy

TABLE 12
The number of the non-zero entries in the underlying Markov chain

matrix of the monolithic, folded, and fixed-point models

N
SRN Models

Monolithic Folded Fixed-point

2 538125 538125 1125
3 81860625 4688670 4078
4

Memory shortage

18905975 7223
5 53024790 10343
6

Memory shortage

13463
10 25943
20 57143
30 88343
40 119543
50 150743

hot PM, the response time increases whereas the percentage
of available PMs and power consumption decrease.

In the third scenario, the impact of variation of failure

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON CLOUD COMPUTING (TCC) 14

TABLE 13
Comparison of the number of states in the underlying Markov chain of
our proposed fixed-point model with that of the model presented in [17]

Number Our proposed Model presented
of PMs fixed-point model in [17]

30 4997 453292
60 10877 2598132
90 16757 6735092
120 22637

Memory shortage150 28517
300 57917
600 116717

TABLE 14
Comparison of the number of non-zero entries in the underlying

Markov chain matrix of our proposed fixed-point model with that of the
model presented in [17]

Number Our proposed Model presented
of PMs fixed-point model in [17]

30 25943 2864362
60 57143 16401800
90 88343 42362070
120 119543

Memory shortage150 150743
300 306743
600 618743

TABLE 15
Steady-state mean response time

�
E[RT]

�
resulted from the

monolithic, folded, and fixed-point models when N
c

varies (in seconds)

Nc

SRN Models
Monolithic Folded Fixed-point

Value Value PE (%) Value PE (%)

1 4011.815 4011.815 0.000 4011.826 0.000
2 2585.772 2585.668 0.004 2586.506 0.028
3 2115.634 2114.147 0.070 2123.327 0.364

TABLE 16
Steady-state percentage of available PMs

�
E[AV]

�
resulted from the

monolithic, folded, and fixed-point models when N
c

varies

Nc

SRN Models
Monolithic Folded Fixed-point

Value Value PE (%) Value PE (%)
1 95.782 95.782 0.000 95.782 0.000
2 95.612 95.612 0.000 95.612 0.000
3 95.434 95.436 0.002 95.429 0.005

TABLE 17
Steady-state power consumption

�
E[PC]

�
resulted from the

monolithic, folded, and fixed-point models when N
c

varies (in watts)

Nc

SRN Models
Monolithic Folded Fixed-point

Value Value PE (%) Value PE (%)
1 371.513 371.513 0.000 371.513 0.000
2 741.685 741.678 0.001 741.706 0.003
3 1109.126 1108.650 0.043 1110.298 0.106

TABLE 18
Steady-state mean response time

�
E[RT]

�
resulted from the

monolithic, folded, and fixed-point models when �
bhf

varies (in
seconds)

�bhf

SRN Models
Monolithic Folded Fixed-point

Value Value PE (%) Value PE (%)
0.015 2115.634 2114.147 0.070 2123.327 0.364
0.020 2132.356 2130.764 0.075 2139.628 0.341
0.025 2149.884 2148.206 0.078 2156.756 0.320
0.030 2168.233 2166.484 0.081 2174.720 0.299
0.035 2187.407 2185.600 0.083 2193.530 0.280
0.040 2207.408 2205.554 0.084 2213.186 0.262
0.045 2228.238 2226.355 0.085 2233.688 0.245
0.050 2249.892 2247.988 0.085 2255.033 0.228

TABLE 19
Steady-state percentage of available PMs

�
E[AV]

�
resulted from the

monolithic, folded, and fixed-point models when �
bhf

varies

�bhf

SRN Models
Monolithic Folded Fixed-point

Value Value PE (%) Value PE (%)
0.015 95.434 95.436 0.002 95.429 0.005
0.020 93.955 93.958 0.003 93.949 0.006
0.025 92.461 92.464 0.003 92.453 0.009
0.030 90.954 90.958 0.004 90.945 0.010
0.035 89.441 89.446 0.006 89.431 0.011
0.040 87.924 87.930 0.007 87.914 0.011
0.045 86.410 86.416 0.007 86.399 0.013
0.050 84.900 84.906 0.007 84.889 0.013

TABLE 20
Steady-state power consumption

�
E[PC]

�
resulted from the

monolithic, folded, and fixed-point models when �
bhf

varies (in watts)

�bhf

SRN Models
Monolithic Folded Fixed-point

Value Value PE (%) Value PE (%)
0.015 1109.126 1108.650 0.043 1110.298 0.106
0.020 1091.755 1091.295 0.042 1092.806 0.096
0.025 1074.195 1073.752 0.041 1075.136 0.088
0.030 1056.502 1056.078 0.040 1057.342 0.080
0.035 1038.729 1038.327 0.039 1039.479 0.072
0.040 1020.927 1020.547 0.037 1021.595 0.065
0.045 1003.144 1002.786 0.036 1003.738 0.059
0.050 985.422 985.088 0.034 985.950 0.054

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON CLOUD COMPUTING (TCC) 15

TABLE 21
Steady-state mean response time

�
E[RT]

�
resulted from the

monolithic, folded, and fixed-point models when �
ihf

varies (in
seconds)

�ihf

SRN Models
Monolithic Folded Fixed-point

Value Value PE (%) Value PE (%)
0.01 2115.634 2114.147 0.070 2123.327 0.364
0.02 2118.701 2117.196 0.071 2126.290 0.358
0.03 2121.793 2120.274 0.072 2129.285 0.353
0.04 2124.914 2123.377 0.072 2132.302 0.348
0.05 2128.061 2126.506 0.073 2135.351 0.343
0.06 2131.236 2129.663 0.074 2138.425 0.337
0.07 2134.433 2132.849 0.074 2141.525 0.332
0.08 2137.658 2136.056 0.075 2144.653 0.327
0.09 2140.909 2139.296 0.075 2147.810 0.322
0.10 2144.185 2142.558 0.076 2150.993 0.318

TABLE 22
Steady-state percentage of available PMs

�
E[AV]

�
resulted from the

monolithic, folded, and fixed-point models when �
ihf

varies

�ihf

SRN Models
Monolithic Folded Fixed-point

Value Value PE (%) Value PE (%)
0.01 95.434 95.436 0.002 95.429 0.005
0.02 95.136 95.138 0.002 95.132 0.004
0.03 94.838 94.840 0.002 94.834 0.004
0.04 94.539 94.541 0.002 94.535 0.004
0.05 94.239 94.241 0.002 94.236 0.003
0.06 93.938 93.940 0.002 93.936 0.002
0.07 93.637 93.639 0.002 93.635 0.002
0.08 93.335 93.337 0.002 93.334 0.001
0.09 93.033 93.034 0.001 93.032 0.001
0.10 92.730 92.731 0.001 92.729 0.001

rate of idle hot PMs on output measures is investigated.
In this scenario, the failure rate of an idle hot PM, �

ihf

, is
changed from 0.01 to 0.1 PMs/hour with step 0.01. Tables 21,
22, and 23 show the steady-state mean response time, per-
centage of available PMs, and power consumption, respec-
tively, obtained by solving the monolithic, folded, and fixed-
point models. The maximum percent errors of the results
obtained by (folded, fixed-point) approximate models in Ta-
bles 21, 22, and 23 are (0.076%, 0.364%), (0.002%, 0.005%),
and (0.043%, 0.106%), respectively. It can be concluded
from these results that, by increasing the failure rate of
an idle hot PM, the mean response time increases whereas
the percentage of available PMs and power consumption
decrease.

In the fourth scenario, the impact of variation of failure
rate of cold PMs on output measures is investigated by
varying the failure rate of a cold PM, �

cf

, from 0.001 to
0.01 PMs/hour with step 0.001. Tables 24, 25, and 26 show
the steady-state mean response time, percentage of available
PMs, and power consumption, respectively. The maximum
percent errors of the results obtained by (folded, fixed-
point) approximate models in Tables 24, 25, and 26 are

TABLE 23
Steady-state power consumption

�
E[PC]

�
resulted from the

monolithic, folded, and fixed-point models when �
ihf

varies (in watts)

�ihf

SRN Models
Monolithic Folded Fixed-point

Value Value PE (%) Value PE (%)
0.01 1109.126 1108.650 0.043 1110.298 0.106
0.02 1105.641 1105.166 0.043 1106.796 0.104
0.03 1102.147 1101.673 0.043 1103.285 0.103
0.04 1098.644 1098.171 0.043 1099.765 0.102
0.05 1095.132 1094.661 0.043 1096.236 0.101
0.06 1091.613 1091.142 0.043 1092.701 0.100
0.07 1088.086 1087.616 0.043 1089.157 0.098
0.08 1084.552 1084.084 0.043 1085.607 0.097
0.09 1081.011 1080.544 0.043 1082.051 0.096
0.10 1077.464 1076.999 0.043 1078.488 0.095

TABLE 24
Steady-state mean response time

�
E[RT]

�
resulted from the

monolithic, folded, and fixed-point models when �
cf

varies (in seconds)

�cf

SRN Models
Monolithic Folded Fixed-point

Value Value PE (%) Value PE (%)
0.001 2115.634 2114.147 0.070 2123.327 0.364
0.002 2115.641 2114.154 0.070 2123.330 0.363
0.003 2115.644 2114.161 0.070 2123.330 0.363
0.004 2115.652 2114.172 0.070 2123.334 0.363
0.005 2115.659 2114.179 0.070 2123.334 0.363
0.006 2115.662 2114.186 0.070 2123.338 0.363
0.007 2115.670 2114.194 0.070 2123.341 0.363
0.008 2115.677 2114.201 0.070 2123.341 0.362
0.009 2115.680 2114.208 0.070 2123.345 0.362
0.010 2115.688 2114.215 0.070 2123.348 0.362

(0.070%, 0.364%), (0.002%, 0.005%), and (0.044%, 0.109%),
respectively. By increasing the failure rate of a cold PM,
the mean response time increases, but the percentage of
available PMs and power consumption decrease. However,
the impact of variation of failure rate of a cold PM on output
measures is negligible. It is worth to mention that since the
mean number of tokens in place P

c

is around 5 ⇥ 10�3,
output measures are not very sensitive to the variation of
the failure rate of a cold PM as shown in this scenario.

8 CONCLUSION AND FUTURE WORK

In this paper, we aimed to simultaneously analyze the
performance, availability, and power consumption of IaaS
cloud systems. To achieve this, an SRN model was pro-
posed for a cluster of PMs within a cloud data center. The
proposed model captures several realistic aspects of an IaaS
cloud including different pools of PMs, provisioning delays,
servicing process, and failure/repair behavior of PMs. The
model also exploits a strategy for moving PMs between cold
and hot pools in order to minimize power consumption of
the cluster. The SRN model presented for a single cluster
was then used to model a more realistic IaaS cloud system

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON CLOUD COMPUTING (TCC) 16

TABLE 25
Steady-state percentage of available PMs

�
E[AV]

�
resulted from the

monolithic, folded, and fixed-point models when �
cf

varies

�cf

SRN Models
Monolithic Folded Fixed-point

Value Value PE (%) Value PE (%)
0.001 95.434 95.436 0.002 95.429 0.005
0.002 95.433 95.435 0.002 95.429 0.004
0.003 95.433 95.435 0.002 95.428 0.005
0.004 95.432 95.434 0.002 95.428 0.004
0.005 95.432 95.433 0.001 95.428 0.004
0.006 95.431 95.432 0.001 95.428 0.003
0.007 95.430 95.432 0.002 95.427 0.003
0.008 95.430 95.431 0.001 95.427 0.003
0.009 95.429 95.430 0.001 95.427 0.002
0.010 95.429 95.429 0.000 95.427 0.002

TABLE 26
Steady-state power consumption

�
E[PC]

�
resulted from the

monolithic, folded, and fixed-point models when �
cf

varies (in watts)

�cf

SRN Models
Monolithic Folded Fixed-point

Value Value PE (%) Value PE (%)
0.001 1109.126 1108.650 0.043 1110.298 0.106
0.002 1109.119 1108.642 0.043 1110.295 0.106
0.003 1109.112 1108.634 0.043 1110.292 0.106
0.004 1109.106 1108.625 0.043 1110.289 0.107
0.005 1109.099 1108.617 0.043 1110.287 0.107
0.006 1109.092 1108.609 0.044 1110.284 0.107
0.007 1109.086 1108.601 0.044 1110.281 0.108
0.008 1109.079 1108.592 0.044 1110.278 0.108
0.009 1109.072 1108.584 0.044 1110.276 0.109
0.010 1109.065 1108.576 0.044 1110.273 0.109

containing many clusters in a hierarchical form. Since the
monolithic SRN model encounters the largeness problem,
two approximate models called folded and fixed-point were
proposed to solve this problem. Comparing the results
obtained from monolithic model with the results obtained
from our proposed approximate models showed that the
accuracy of measures is not compromised when exploiting
approximation techniques. Therefore, cloud providers can
benefit from the proposed modeling approaches during
design, development, and maintenance of an IaaS cloud.

Following are some ideas and issues which can be used
for further research in this area:

• The design and analysis of more complicated strate-
gies and policies at top-level management layer of
the reference cloud architecture is an interesting
work. For example, if the performance, availability,
and power consumption measures of the individual
clusters are available at the top-level resource man-
ager, it can dispatch the requests more efficiently
applying smart load distribution techniques. The
top-level resource manager may try to minimize the
number of active clusters and reduce the overall

power consumption by switching inactive clusters to
low-power mode.

• By consolidating requested VMs on fewer PMs, both
the utilization of switched-on servers and the energy
efficiency of the cloud data center are improved.
The reduction of total power consumption, when
consolidation is adopted, is due to the non energy-
proportional characteristics of real servers. One fu-
ture research direction is to extend our proposed
models to support the VM consolidation by design-
ing proper scheduling policies at the bottom-level
management layer, i.e., cluster level. The VM migra-
tion, which is an important part of the consolidation,
is another concern that can be considered in the
future work

• Extending the models presented in this paper to
support heterogeneous PMs and VMs is another in-
teresting research line which can be developed. Con-
sidering heterogeneous PMs, we can model different
classes of PMs with different processing speeds, stor-
ages, memory capacities, failure/repair rates, and
power consumptions. Moreover, heterogeneous VMs
can be modeled with different requirements. One
way to support the heterogeneity is to add some
auxiliary places and transitions to the proposed mod-
els representing different classes of VMs and PMs
and their associated events like arrival, servicing,
and failure. The penalty of such an approach is fast
growth of the state space when several classes of
VMs or PMs need to be modeled. Another way to
support the heterogeneity is to use Colored Petri
Nets (CPNs) which is an extension to PNs that allows
tokens to have data types, making it possible for the
modeler to differentiate between tokens representing
different classes of VMs and PMs.

• Exploiting the proposed models of a cluster and a
data center, and increasing the number of manage-
ment layers of the reference cloud architecture, geo-
distributed cloud system containing many different
data centers can be modeled. The fixed-point approx-
imate model seems promising to alleviate the large-
ness problem of very large-scale IaaS cloud systems.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Kon-
winski, G. Lee, D. Patterson, A. Rabkin, and I. Stoica, “A view of
cloud computing,” Communications of the ACM, vol. 53, no. 4, pp.
50–58, 2010.

[2] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic,
“Cloud computing and emerging IT platforms: Vision, hype, and
reality for delivering computing as the 5th utility,” Future Genera-
tion Computer Systems, vol. 25, no. 6, pp. 599–616, 2009.

[3] F. Machida, D. S. Kim, and K. S. Trivedi, “Modeling and analysis
of software rejuvenation in a server virtualized system with live
VM migration,” Performance Evaluation, vol. 70, no. 3, pp. 212–230,
2013.

[4] Y. Han, J. Chan, T. Alpcan, and C. Leckie, “Using virtual machine
allocation policies to defend against co-resident attacks in cloud
computing,” IEEE Transactions on Dependable and Secure Computing,
vol. 14, no. 1, pp. 95–108, 2017.

[5] J. Subirats and J. Guitart, “Assessing and forecasting energy effi-
ciency on cloud computing platforms,” Future Generation Computer
Systems, vol. 45, pp. 70–94, 2015.

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON CLOUD COMPUTING (TCC) 17

[6] R. Ghosh, F. Longo, V. K. Naik, and K. S. Trivedi, “Modeling and
performance analysis of large scale IaaS clouds,” Future Generation
Computer Systems, vol. 29, no. 5, pp. 1216–1234, 2013.

[7] L. Zhao, S. Sakr, and A. Liu, “A framework for consumer-centric
SLA management of cloud-hosted databases,” IEEE Transactions
on Services Computing, vol. 8, no. 4, pp. 534–549, 2015.

[8] D. Bruneo, “A stochastic model to investigate data center perfor-
mance and QoS in IaaS cloud computing systems,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 25, no. 3, pp. 560–569,
2014.

[9] K. Bilal, S. U. R. Malik, S. U. Khan, and A. Y. Zomaya, “Trends and
challenges in cloud datacenters,” IEEE Cloud Computing, vol. 1,
no. 1, pp. 10–20, 2014.

[10] “Downtime, outages and failures - understanding their true costs,”
http://urlm.in/sjhk, accessed: July 2017.

[11] K. V. Vishwanath and N. Nagappan, “Characterizing cloud com-
puting hardware reliability,” in The 1st ACM symposium on Cloud
Computing, Indianapolis, IN, US, June 2010, pp. 193–204.

[12] J. Koomey, “Growth in data center electricity use 2005 to 2010,”
A report by Analytical Press, completed at the request of The New York
Times, 2011.

[13] T. Mastelic, A. Oleksiak, H. Claussen, I. Brandic, J.-M. Pierson, and
A. V. Vasilakos, “Cloud computing: Survey on energy efficiency,”
ACM Computing Surveys, vol. 47, no. 2, pp. 1–35, 2015.

[14] T. Mastelic and I. Brandic, “Recent trends in energy-efficient cloud
computing,” IEEE Cloud Computing, vol. 2, no. 1, pp. 40–47, 2015.

[15] X. Chang, R. Xia, J. K. Muppala, K. S. Trivedi, and J. Liu, “Effective
modeling approach for IaaS data center performance analysis
under heterogeneous workload,” IEEE Transactions on Cloud Com-
puting, vol. PP, no. 99, 2016.

[16] R. Entezari-Maleki, K. S. Trivedi, and A. Movaghar, “Performabil-
ity evaluation of grid environments using stochastic reward nets,”
IEEE Transactions on Dependable and Secure Computing, vol. 12, no. 2,
pp. 204–216, 2015.

[17] D. Bruneo, A. Lhoas, F. Longo, and A. Puliafito, “Modeling and
evaluation of energy policies in green clouds,” IEEE Transactions
on Parallel and Distributed Systems, vol. 26, no. 11, pp. 3052–3065,
2015.

[18] R. Entezari-Maleki, M. Bagheri, S. Mehri, and A. Movaghar, “Per-
formance aware scheduling considering resource availability in
grid computing,” Engineering with Computers, vol. 33, no. 2, pp.
191–206, 2017.

[19] R. Entezari-Maleki, L. Sousa, and A. Movaghar, “Performance and
power modeling and evaluation of virtualized servers in IaaS
clouds,” Information Sciences, vol. 394, pp. 106–122, 2017.

[20] K. S. Trivedi, Probability and Statistics With Reliability, Queuing and
Computer Science Applications, 2nd ed. John Wiley and Sons, 2002.

[21] J. K. Muppala and K. S. Trivedi, “Composite performance and
availability analysis using a hierarchy of stochastic reward nets,”
in Computer Performance Evaluation, Modelling Techniques and Tools,
G. Balbo and G. Serazzi, Eds. Elsevier Science Publishers B.V.
(North-Holland), 1992, pp. 335–349.

[22] H. Choi and K. S. Trivedi, “Approximate performance models of
polling systems using stochastic petri nets,” in IEEE INFOCOM,
Florence, Italy, May 1992, pp. 2306–2314.

[23] O. C. Ibe, H. Choi, and K. S. Trivedi, “Performance evaluation of
client-server systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 4, no. 11, pp. 1217–1229, 1993.

[24] V. Mainkar and K. S. Trivedi, “Sufficient conditions for existence
of a fixed point in stochastic reward net-based iterative models,”
IEEE Transactions on Software Engineering, vol. 22, no. 9, pp. 640–
653, 1996.

[25] M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Frances-
chinis, Modeling with Generalized Stochastic Petri Nets, 1st ed. John
Wiley and Sons, 1995.

[26] K. Kant and M. M. Srinivasan, Introduction to Computer System
Performance Evaluation, 1st ed. McGraw-Hill, 1992.

[27] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose, and
R. Buyya, “CloudSim: A toolkit for modeling and simulation
of cloud computing environments and evaluation of resource
provisioning algorithms,” Software: Practice and Experience, vol. 41,
no. 1, pp. 23–50, 2011.

[28] D. Bruneo, F. Longo, and A. Puliafito, “Evaluating energy con-
sumption in a cloud infrastructure,” in The IEEE International
Symposium on a World of Wireless, Mobile and Multimedia Networks,
Lucca, Italy, June 2011, pp. 1–6.

[29] R. Ghosh, K. S. Trivedi, V. K. Naik, and D. S. Kim, “End-to-
end performability analysis for Infrastructure-as-a-Service cloud:
An interacting stochastic models approach,” in The IEEE 16th Pa-
cific Rim International Symposium on Dependable Computing, Tokyo,
Japan, December 2010, pp. 125–132.

[30] H. Khazaei, J. Misic, and V. B. Misic, “A fine-grained performance
model of cloud computing centers,” IEEE Transactions on Parallel
and Distributed Systems, vol. 24, no. 11, pp. 2138–2147, 2013.

[31] R. Ghosh, F. Longo, F. Frattini, S. Russo, and K. S. Trivedi,
“Scalable analytics for IaaS cloud availability,” IEEE Transactions
on Cloud Computing, vol. 2, no. 1, pp. 57–70, 2014.

[32] R. Ghosh, F. Longo, R. Xia, V. K. Naik, and K. S. Trivedi, “Stochastic
model driven capacity planning for an infrastructure-as-a-service
cloud,” IEEE Transactions on Services Computing, vol. 7, no. 4, pp.
667–680, 2014.

[33] H. Khazaei, J. Misic, V. B. Misic, and S. Rashwand, “Analysis of
a pool management scheme for cloud computing centers,” IEEE
Transactions on Parallel and Distributed Systems, vol. 24, no. 5, pp.
849–861, 2013.

[34] D. Bruneo, A. Lhoas, F. Longo, and A. Puliafito, “Analytical
evaluation of resource allocation policies in green IaaS clouds,”
in The 3rd International Conference on Cloud and Green Computing,
Karlsruhe, Germany, September-October 2013, pp. 84–91.

[35] A. Castiglione, M. Gribaudo, M. Iacono, and F. Palmieri, “Mod-
eling performances of concurrent big data applications,” Software:
Practice and Experience, vol. 45, no. 8, pp. 1127–1144, 2015.

[36] E. Barbierato, M. Gribaudo, and M. Iacono, “Modeling and eval-
uating the effects of big data storage resource allocation in global
scale cloud architectures,” International Journal of Data Warehousing
and Mining (IJDWM), vol. 12, no. 2, pp. 1–20, 2016.

[37] G. Ciardo, M. Gribaudo, M. Iacono, A. Miner, and P. Piazzolla,
“Power consumption analysis of replicated virtual applications
in heterogeneous architectures,” in Digitally Supported Innovation.
Springer, 2016, pp. 285–297.

[38] B. Addis, D. Ardagna, B. Panicucci, M. S. Squillante, and L. Zhang,
“A hierarchical approach for the resource management of very
large cloud platforms,” IEEE Transactions on Dependable and Secure
Computing, vol. 10, no. 5, pp. 253–272, 2013.

[39] X. Qiu, Y. Dai, Y. Xiang, and L. Xing, “A hierarchical correlation
model for evaluating reliability, performance, and power con-
sumption of a cloud service,” IEEE Transactions on Systems, Man,
and Cybernetics: Systems, vol. 46, no. 3, pp. 401–412, 2016.

[40] M. Sedaghat, F. Hernandez-Rodriguez, and E. Elmroth, “Decen-
tralized cloud datacenter reconsolidation through emergent and
topology-aware behavior,” Future Generation Computer Systems,
vol. 56, pp. 51–63, 2016.

[41] F. Farahnakian, T. Pahikkala, P. Liljeberg, J. Plosila, and H. Ten-
hunen, “Hierarchical VM management architecture for cloud data
centers,” in The IEEE 6th International Conference on Cloud Com-
puting Technology and Science (CloudCom), Singapore, Singapore,
December 2014, pp. 306–311.

[42] B. C. Gunaratne, K. Christensen, and B. Nordman, “Managing
energy consumption costs in desktop PCs and LAN switches
with proxying, split TCP connections, and scaling of link speed,”
International Journal of Network Management, vol. 15, no. 5, pp. 297–
310, 2005.

[43] B. Javadi, D. Kondo, A. Iosup, and D. Epema, “The failure trace
archive: Enabling the comparison of failure measurements and
models of distributed systems,” Journal of Parallel and Distributed
Computing, vol. 73, no. 8, pp. 1208–1223, 2013.

[44] “WebSphere application server,” http://www-
03.ibm.com/software/products/en/appserv-was, accessed:
July 2017.

[45] M. Nabi, M. Toeroe, and F. Khendek, “Availability in the cloud:
State of the art,” Journal of Network and Computer Applications,
vol. 60, pp. 54–67, 2016.

[46] Y. Geng, S. Chen, Y. Wu, R. Wu, G. Yang, and W. Zheng, “Location-
aware MapReduce in virtual cloud,” in The International Conference
on Parallel Processing (ICPP), Taipei City, Taiwan, September 2011,
pp. 275–284.

[47] A. Kanso and Y. Lemieux, “Achieving high availability at the ap-
plication level in the cloud,” in The IEEE 6th International Conference
on Cloud Computing (CLOUD), Santa Clara, CA, June-July 2013, pp.
778–785.

[48] W. Li, A. Kanso, and A. Gherbi, “Leveraging linux containers to
achieve high availability for cloud services,” in The IEEE Interna-

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON CLOUD COMPUTING (TCC) 18

tional Conference on Cloud Engineering (IC2E), Tempe, AZ, March
2015, pp. 76–83.

[49] J. L. Peterson, Petri Net Theory and the Modeling of Systems, 1st ed.
Prentice Hall, 1981.

[50] M. A. Marsan, G. Conte, and G. Balbo, “A class of generalized
stochastic petri nets for the performance evaluation of multipro-
cessor systems,” ACM Transactions on Computer Systems, vol. 2,
no. 2, pp. 93–122, 1984.

[51] F. Bause and P. S. Kritzinger, Stochastic Petri Nets- An Introduction
to the Theory, 2nd ed. Vieweg Verlag, 2002.

[52] F. F. Moghaddam, “Carbon-profit-aware job scheduling and load
balancing in geographically distributed cloud for HPC and web
applications,” Ph.D. dissertation, Ecole de Technologie Superieure,
2014.

[53] I. Hwang and M. Pedram, “Hierarchical virtual machine consoli-
dation in a cloud computing system,” in The IEEE 6th International
Conference on Cloud Computing, Santa Clara, CA, June-July 2013,
pp. 196–203.

[54] L. A. Tomek and K. S. Trivedi, “Fixed point iteration in availability
modeling,” in The 5th International GI/ITG/GMA Conference on
Fault-Tolerant Computing Systems, Tests, Diagnosis, Fault Treatment,
Nrnberg, Germany, September 1991, pp. 229–240.

[55] G. Ciardo, A. Blakemore, P. F. Chimento, J. K. Muppala, and
K. S. Trivedi, “Automated generation and analysis of markov
reward models using stochastic reward nets,” in Linear Algebra,
Markov Chains, and Queueing Models, ser. The IMA Volumes in
Mathematics and its Application, C. D. Meyer and R. J. Plemmons,
Eds., vol. 48. Springer, 1993, pp. 145–191.

[56] D. Meisner, B. T. Gold, and T. F. Wenisch, “PowerNap: Eliminating
server idle power,” in The 14th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
Washington, DC, March 2009, pp. 205–216.

[57] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. A. Bhattacharya,
“Virtual machine power metering and provisioning,” in The 1st
ACM Symposium on Cloud Computing, Indianapolis, IN, June 2010,
pp. 39–50.

[58] Q. Chen, P. Grosso, K. van der Veldt, C. de Laat, R. Hofman, and
H. Bal, “Profiling energy consumption of VMs for green cloud
computing,” in The IEEE 9th International Conference on Depend-
able, Autonomic and Secure Computing (DASC), Sydney, Australia,
December 2011, pp. 768–775.

[59] J. Bi, Z. Zhu, R. Tian, and Q. Wang, “Dynamic provisioning model-
ing for virtualized multi-tier applications in cloud data center,” in
The IEEE 3rd International Conference on Cloud Computing (CLOUD),
Miami, FL, July 2010, pp. 370–377.

[60] G. Ciardo, J. Muppala, and K. S. Trivedi, “SPNP: stochastic petri
net package,” in The 3rd International Workshop on Petri Nets and
Performance Models, Kyoto, Japan, December 1989, pp. 142–151.

Ehsan Ataie is a Ph.D. candidate in Computer
Engineering at the Department of Computer En-
gineering in the Sharif University of Technology,
Tehran, Iran. He received his B.S. and M.S.
degrees from the same university in 2002 and
2005, respectively. He visited Politecnico di Mi-
lano in 2016. His main research interests include
cloud computing, green computing, and perfor-
mance and dependability modeling and evalua-
tion.

Reza Entezari-Maleki is a Post-Doctoral Re-
searcher in the School of Computer Science at
Institute for Research in Fundamental Sciences
(IPM) in Tehran, Iran. He received his Ph.D. in
Computer Engineering from the Sharif Univer-
sity of Technology, Tehran, Iran in 2014, and
M.S. and B.S. degrees in Computer Engineering
from the Iran University of Science and Tech-
nology, Tehran, Iran in 2009 and 2007, respec-
tively. His main research interests are perfor-
mance/dependability modeling and evaluation,

distributed computing systems, cloud computing, and task scheduling
algorithms.

Leila Rashidi is currently a Ph.D. candidate in
Computer Engineering (Software discipline) at
the Department of Computer Engineering, Sharif
University of Technology, Tehran, Iran. She re-
ceived the B.S. degree in Computer Engineer-
ing (Software discipline) from the University of
Tehran (UT), Tehran, Iran, in 2014. Her main re-
search interests are performance analysis, wire-
less networks, and mobility modeling.

Kishor S. Trivedi received the M.S. and Ph.D.
degrees in computer science from the University
of Illinois, Urbana. He holds the Hudson Chair
with the Department of Electrical and Com-
puter Engineering, Duke University, Durham,
NC. Since 1975, he has been with the Duke
faculty. He is the author of the well-known text
entitled Probability and Statistics with Reliabil-
ity, Queuing and Computer Science Applications
(Prentice-Hall); a thoroughly revised second edi-
tion (including its Indian edition) of this book has

been published by John Wiley. He is also the author of two other
books, one entitled Performance and Reliability Analysis of Computer
Systems (Kluwer) and the other entitled Queuing Networks and Markov
Chains (John Wiley). He has published more than 500 papers and has
supervised 45 Ph.D. dissertations. His research interests are reliability,
availability, performance, performability, and survivability modeling of
computer and communication systems. Dr. Trivedi is a Life Fellow of
the IEEE and is a Golden Core Member of the IEEE Computer Society.

Danilo Ardagna is an Associate Professor at
the Dipartimento di Elettronica Informazione and
Bioingegneria at Politecnico di Milano, Milan,
Italy. He received the Ph.D. degree in Com-
puter Engineering from Politecnico di Milano in
2004. His work focuses on the design, proto-
type and evaluation of optimization algorithms
for resource management and planning of cloud
systems.

Ali Movaghar is a Professor in the Depart-
ment of Computer Engineering at Sharif Uni-
versity of Technology in Tehran, Iran and has
been on the Sharif faculty since 1993. He re-
ceived his B.S. degree in Electrical Engineer-
ing from the University of Tehran in 1977, and
M.S. and Ph.D. degrees in Computer, Informa-
tion, and Control Engineering from the University
of Michigan, Ann Arbor, in 1979 and 1985, re-
spectively. His research interests include perfor-
mance/dependability modeling and formal verifi-

cation of wireless networks and distributed real-time systems. He is a
senior member of the IEEE and the ACM.

