
Theoretical Computer Science 412 (2011) 3262–3282

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Verification of mobile ad hoc networks: An algebraic approach
Fatemeh Ghassemi a, Wan Fokkink b,∗, Ali Movaghar a
a Sharif University of Technology, Tehran, Iran
b Vrije Universiteit, Amsterdam, The Netherlands

a r t i c l e i n f o

Keywords:
Process theory
Local broadcast
Mobility
Axiomatization
Uniform MANET
Symbolic verification

a b s t r a c t

We introduced Computed Network Process Theory to reason about protocols for mobile
ad hoc networks (MANETs). Here we explore the applicability of our framework in two
regards: model checking and equational reasoning. The operational semantics of our
framework is based on constrained labeled transition systems (CLTSs), in which each
transition label is parameterized with the set of topologies for which this transition is
enabled. We illustrate how through model checking on CLTSs one can analyze mobility
scenarios of MANET protocols. Furthermore, we show how by equational theory one can
reason about MANETs consisting of a finite but unbounded set of nodes, in which all nodes
deploy the same protocol. Model checking and equational reasoning together provide us
with an appropriate framework to prove the correctness of MANETs. We demonstrate the
applicability of our framework by a case study on a simple routing protocol.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Mobile ad hoc networks (MANETs) consist of mobile nodes equipped with wireless transceivers to communicate
with each other directly or along multihop paths. Two nodes can effectively communicate if they are located in the
communication range of each other, defined by the underlying topology. Wireless communication is inherently unreliable;
a node may not succeed in communicating due to noise in the environment. Moreover, the mobility of nodes makes the
underlying topology dynamic. The characteristics of wireless communication and dynamism of the underlying topology
require a suitable framework for the modeling and verification of MANETs.

We introduced Restricted Broadcast Process Theory (RBPT) in [1] to specify and verifyMANET protocols, taking into account
the mobility of nodes. Topology changes are modeled implicitly in the semantics, and thus one can verify a network with
respect to arbitrary topology changes. Computed Network Process Theory (CNT) [2,3] is an extension of RBPT with so-called
computed network terms and auxiliary operators, as an expedient verification frameworkwith a sound and complete axiom
system, modulo so-called rooted branching computed network bisimilarity. The operational semantics of CNT is given by
constrained labeled transition systems (CLTSs), in which each transition label is parameterized by a set of topologies for
which this transition is enabled.

In this paper, we enhance and illustrate the applicability of our framework for the verification of MANETs in two regards:
model checking and equational reasoning.We showhow the semanticmodel of CLTSsmakes it possible to derive and analyze
mobility scenarios for MANET protocols. We exploit themCRL2 toolset [4] to convert CNT specifications into CLTSs, and then
the CADP toolset [5] to verify properties.

To verify MANET protocols for large networks, or if one needs to deal with infinite data domains, model checking is
not readily applicable. Since MANETs often consist of an arbitrary set of nodes that run the same protocols, we develop a

∗ Corresponding author. Tel.: +31 20 5987735; fax: +31 20 5987653.
E-mail addresses: fghassemi@mehr.sharif.edu (F. Ghassemi), w.j.fokkink@vu.nl, wanf@cs.vu.nl (W. Fokkink), movaghar@sharif.edu (A. Movaghar).

0304-3975/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2011.03.017

http://dx.doi.org/10.1016/j.tcs.2011.03.017
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:fghassemi@mehr.sharif.edu
mailto:w.j.fokkink@vu.nl
mailto:wanf@cs.vu.nl
mailto:movaghar@sharif.edu
http://dx.doi.org/10.1016/j.tcs.2011.03.017

F. Ghassemi et al. / Theoretical Computer Science 412 (2011) 3262–3282 3263

symbolic verification technique for such networks within the CNT framework, based on the cones and foci method [6–8].
This technique works on a restricted class of specifications, called linear computed network equations, in which the states
are data objects, and rephrases the question whether the system specification and implementation are equivalent in terms
of proof obligations on relations between data objects. We exploit our equations to convert the parallel composition of an
arbitrary number of similar processes, modulo some data parameters, to a single linear equation using the Composition
Theorem from [9]. The Composition Theorem however is based on the assumption that communications are restricted to
two processes. Since in our framework wireless communication is an essential ingredient, we generalize the Composition
Theorem to this setting. The linear equation representing the MANET of similar nodes, and the desired external behavior of
this network (also expressed by a linear equation) are taken as input to the symbolic verification technique, which reduces
the question of their behavioral equivalence to proving data equalities. The framework of mCRL2 [10] allows for this tight
integration between processes and data.

To the best of our knowledge, this paper is the first to address the symbolic verification of MANETs. We use a simple
routing protocol based on ad hoc on-demand distance vector (AODV) routing protocol as a running example, and prove that
the protocol correctly routes data from a source to a destination.

The structure of the paper is as follows. Section 2 explains the modeling concepts and operational semantics underlying
CNT. Section 3 explains the formal framework: syntax and axioms. Section 4 presents a case study, and shows how our
semantic model is capable of deriving errors caused by the mobility of nodes. In Section 5 we explain our symbolic
verification approach, and how it can be exploited to verify MANETs with similar nodes. Finally, Section 6 summarizes our
results and future work.

2. Concepts

In wireless communication, when a node transmits a message, only nodes that are located in its transmission area can
receive this message. For this reason, the communication in wireless networks is called local broadcast. We model the
unreliable local broadcast service provided by the MAC-layer (of each MANET node), in which the sender and receiver
are synchronous and receive actions carry (error-free) messages. A node B is connected to a node A, if B is located within
the transmission range of A. This connectivity relation between nodes, which is not necessarily symmetric, introduces a
topology concept. A topology is a function γ : Loc → P(Loc) where A, B, C ∈ Loc denote a finite set of addresses, which
models the hardware addresses. The network topology, due to themobility of nodes in aMANET, is dynamic andmay change
rapidly and unpredictably over time.

We model mobility implicitly in the semantics; each state is representative of all possible topologies a network can
meet, and a network can be at any of these topologies. Each transition is constrained by a set of topologies for which such a
behavior is possible. We introduced network constraints in [2] to formally specify the set of topologies. The set of addresses
is extended with the unknown address ?. A network constraint C is a set of connectivity pairs : Loc × Loc , such that the
second address cannot be ?. The connectivity pair ? A denotes that a node with address A is connected to an unknown
address from which it can receive data, while B A denotes that A is connected to B and consequently B can send data to
A. We write {B A, C} instead of {B A, B C}. Each network constraint C represents the set of topologies that satisfy
the connectivity pairs in C, i.e., {γ |∀ℓ ∈ Loc ·C(ℓ) ⊆ γ (ℓ)}. Therefore, the empty network constraint {} denotes all possible
topologies. Let C denote the set of all network constraints that can be defined over network addresses in Loc .

In this paper, compared to [3], we transfer network constraints from transition subscripts into transition labels, which
are interpreted as the set of topologies for which such a transition is enabled. This transmission of network constraints from
the transitions into the labels simplifies our framework, as will be explained in Section 3.2. We override the definition of
constrained labeled transition systems (CLTSs), the operational behavior of MANETs, given in [3] such that the previous results
are preserved.

LetMsg denote a set of messages communicated over a network and ranged over by m. Let Act be the network send and
receive actions with signatures nsnd : Msg × Loc and nrcv : Msg respectively. The send action nsnd(m, ℓ) denotes that the
message m is transmitted from a node with the address ℓ, while the receive action nrcv(m) denotes that the message m is
ready to be received. Let Actτ = Act ∪ {τ }, ranged over by η.

Definition 1. A CLTS is defined by ⟨S, L, →, s0⟩, with S a set of states, L ⊆ C × Actτ , → ⊆ S × L × S a transition relation,

and s0 ∈ s the initial state. A transition (s, (C, η), s′) ∈ → is denoted by s
(C,η)
−−→ s′.

Suppose for a real MANET (a network with a set of nodes, each running a process), its behavior is modeled by a CLTS
partly shown in Fig. 1. Consider the behavior of the real MANET when all processes of nodes are reset. We explain how the
behavior of this MANET for the scenario depicted in Fig. 2 can be inferred from its CLTSmodel. Initially its CLTS is in state s0
irrespective of the underlying topology. When the underlying topology changes from 2.1 to 2.2 in the MANET, the state of
its CLTS is not changed, since each state is representative of any topology changes. When the underlying topology is 2.2, the
message m1 is sent by node A. Since the underlying topology belongs to the network constraints {} and {A B}, the CLTS
implies that the behavior of MANET would become state s0 or s1. Being in any of these states, when the underlying topology
of MANET changes to 2.3 and then 2.4, the state of its model is not changed. However, when the underlying topology is 2.4,
node B sends m2. Since a transition with such an action does not belong to state s0, it can be inferred that the previous

3264 F. Ghassemi et al. / Theoretical Computer Science 412 (2011) 3262–3282

Fig. 1. A part of the behavioral model of a MANET.

Fig. 2. A mobility scenario.

Fig. 3. Two mobility scenarios for an execution fragment of the CLTS in Fig. 1.

behavior of MANETwas s1. Themodel explains that since the underlying topology belongs to the network constraints {} and
{B A}, the next behavior of the MANET would be either s0 or s2.
For the executions of the CLTS in Fig. 1, such as s0

({A B},nsnd(m1,A))
−−−−−−−−−−−−−→ s1

({B A},nsnd(m2,B))
−−−−−−−−−−−−−→ s2, we can derive differentmobility

scenarios for the real MANET, as shown in Fig. 3.
Concluding, a CLTS defines the behavior of the corresponding MANET for arbitrary topology changes, and an execution

of the CLTS represents multiple mobility scenarios.

3. Formal framework: computed network theory

To separate themanipulation of data fromprocesses, wemake use of equational abstract data types [11]. Data is specified
by equational specifications: one can declare data types (so-called sorts) and functions working upon these data types, and
describe themeaning of these functions by equational axioms. Following the approach of [12,13], we consider the Computed
Network Theory with equational abstract data types. We first explain the set of data types considered in our framework,
and then define the CNT operators and their axioms.

3.1. Data types

We treat the set of network addresses Loc , messages Msg and network constraints C as data types within the CNT
framework. By defining appropriate functions over them,we can provide the axioms and operational semantics of computed
network terms. We use mCRL2 notation to define data types: sort declares sort names, func specifies constructor and map
non-constructor functions, var declares variable names, and rew defines non-constructor functions by means of rewrite
rules. We assume that the function if : Bool×D×D is defined for all data sorts D, which returns the first D parameter if the
boolean parameter equals true, otherwise the second D parameter is returned.

The data sort Bool is used in the conditional operator construct to change the behavior of a process in terms of data
values. This data sort is defined by two constructors T and F . The conventional operators ∧, ∨ and ¬ can be defined over it

F. Ghassemi et al. / Theoretical Computer Science 412 (2011) 3262–3282 3265

sort Msg sort Loc
func req : Loc → Msg func ? :→ Loc

rep : Loc × Loc → Msg adr : Loc → Loc
map isTypereq : Msg → Bool map eq : Loc × Loc → Bool

eq : Msg × Msg → Bool >: Loc × Loc → Bool
var ℓ, ℓ1, ℓ2, ℓ3, ℓ4 : Loc
rew eq(req(ℓ1), req(ℓ2)) = eq(ℓ1, ℓ2) sort C

eq(rep(ℓ1, ℓ2), rep(ℓ3, ℓ4)) = func empNC :→ C
eq(ℓ1, ℓ3) ∧ eq(ℓ2, ℓ4) con : Loc × Loc × C → C

isTypereq(req(ℓ)) = T map union : C × C → C
isTypereq(rep(ℓ1, ℓ2)) = F subs : Loc × Loc × C → C

include : C × C → Bool

Fig. 4. Data sorts used in the CNT framework.

straightforwardly. The data sort Nat specifies the natural numbers by the constant 0 and the unary function succ. We use
1, 2, . . . for succ(0), succ(succ(0)), The definition of functions +, >, ≥ and eq are straightforward.

Some data sort definitions are given in Fig. 4. For a complete definition see [14]. The network addresses are generated
from the constant ? and the unary function adr . We use A, B, . . . to denote adr(?), adr(adr(?)), The functions eq and
> compare two network addresses. The network constraints are generated from the constant empNC and the con function
which adds a connectivity pair to network constraints. The function union merges two network constraints such that the
redundant connections are removed and the connectivity pairs are sorted in terms of the connected addresses (i.e. the second
parameter in con). The function subs substitutes all occurrences of the address in its second parameter with the address in
its first parameter. The function include examines if the connectivity pairs of a network constraint are included in another.
We write C1 ∪ C2, C1 ⊆ C2 and C[ℓ/ℓ′

] instead of union(C1, C2), include(C1, C2) and subs(C, ℓ, ℓ′) respectively. We also
write {}, {A B}, {A B, C} for empNC , con(A, B, empNC), con(A, B, con(A, C, empNC)).

A message can carry data parameters. For instance, in Fig. 4, the message req : Loc → Msg has one parameter of type
Loc. The function eq compares two messages. For each message name m defined in Msg , a function is Typem : Mag → Bool
is defined which examines if a message term is constructed by the message namem.

The semantics of the data part (of a specification), denoted by D, is defined the same way as in [13]. It should contain the
Bool domain with distinct T and F constants, Loc , C, and Msg domains.

3.2. Computed network terms

Let D denote a data sort; u, v and d range over closed and open data terms of sort D, respectively. Data terms are written
as follows for the different sorts: b is of type Bool, m is of type Msg , ℓ is of type Loc , and C is of type C. Let d[d1/d2] denote
substitution of d2 by d1 in the data term d; this can be extended to computed network terms. Let A denote a countably
infinite set of process names which are used as recursion variables in recursive specifications. This set can be split into
two disjoint subsets Ap and An. Without loss of generality we assume that process names and messages have exactly one
parameter.

The transmission of network constraints into labels allows one to treat the so-called computednetwork terms, introduced
in [3], as prefixed terms, so that the previous two-level syntax of CNT collapses to one:

t ::= 0 | β.t | t + t | [b]t � t |
∑

d:D t | A(d) , A(d : D)
def
= t | [[t]]ℓ |

t | t | t t | t ‖ t | (νℓ)t | τm(t) | ∂m(t)

0 defines a deadlock process. The prefix operator in β.t denote a process which performs β and then behaves as t . The action
β can be of two types:

• rcv(m) and snd(m) actions, denoted by α, which model the protocol receive and send actions respectively. They model
the interaction of a protocol with its underlyingMAC layer;

• (C, nrcv(m)), (C, nsnd(m, ℓ)) and (C, τ) actions, denoted by (C, η), where the first two actions are called the network
receive and send actions respectively. They model the interaction of multiple MAC layers in a MANET. An action (C, η)
represents the behavior η for the set of topologies specified by C.

The process t1+t2 behaves non-deterministically as t1 or t2. The conditional construct [b]t1�t2 behaves as t1 whenD |= b = T
and as t2 when D |= b = F . The summation

∑
d:D t , which binds the name d to t , defines a non-deterministic choice among

t[u/d] for all closedu ∈ D. A process name is declaredbyA(d : D)
def
= t , whereA ∈ A, and d is a variable name thatmay appear

free in t , meaning that it is not within the scope of a sum operator in t . Computed network terms are considered modulo
α-conversion of bound names. The function fn, which returns the set of free names, is defined over computed network
terms as usual. A term is closed if the set of its free names is empty. The deployment of a process t at a network address
ℓ ≠? is specified as [[t]]ℓ, which defines a single-node MANET. The parallel composition t1 ‖ t2 defines two MANETs that
communicate by local broadcast; if there is a connectivity between nodes of t1 and t2 they may communicate, otherwise
the send/receive actions of t1 and t2 are interleaved. CNT borrows from the process algebra ACP [15] the operators left merge

3266 F. Ghassemi et al. / Theoretical Computer Science 412 (2011) 3262–3282

() and communication merge (|) to axiomatize parallel composition. Hiding (νℓ)t conceals the activities of a node with the
address ℓ by renaming this address to ? in network send/receive actions. For eachmessage typem : D → Msg , the operators
τm(−) and ∂m(−) are defined; Abstraction τm(t) renames network send/receive actions over messages of type m to τ , and
Encapsulation ∂m(t) forbids receiving messages of type m and renames them to 0. We use τ{m1,...,mn}(t) and ∂{m1,...,mn}(t)
to denote τm1(. . . (τmn(t)) . . .) and ∂m1(. . . (∂mn(t)) . . .) respectively. We will use MANET, network and computed network
terms interchangeably.

A computed network term t should be grammatically well-defined:

• If t ≡ [[t ′]]ℓ, then t ′ has no network prefix action (C, η), deployment [[]], parallel ‖, left merge , communication merge
|, hiding (νℓ), abstraction τm, encapsulation ∂m, and process name A(d) such that A ∈ An.

• If t ≡ rcv(m(d)).t ′, then it should be in the context of a summation like
∑

d:D, wherem : D → Msg .
• If t ≡ α.t ′, then it should be in the context of a deployment operator.
• If t ≡ A(d) where A ∈ Ap, then it should be in the context of a deployment operator. Furthermore it should be defined

by an equation like A(d : D)
def
= t ′ such that t ′ has no network prefix action (C, η), deployment [[]], parallel ‖, left merge

, communication merge |, hiding (νℓ), abstraction τm, encapsulation ∂m, and process name A′(d) such that A′
∈ An.

Moreover, each occurrence of A should be in the context of an α prefix action in t ′.
• If t ≡ B(d)where B ∈ An, then it should not be in the context of a deployment operator. Furthermore it should be defined

by an equation like B(d : D)
def
= t ′ such that t ′ is well-defined.

Intuitively a computed network is grammatically well-defined if processes deployed at a network address, called protocols,
are defined by protocol action prefix, choice, summation, conditional, deadlock operators and process names. From now
on we will only consider computer network terms that are well-defined. For example, [[X(A)]]A ‖ [[Y (B)]]B where X(adr :

Loc)
def
= snd(req(A)).X(adr) and Y (adr : Loc)

def
=

∑
lx:Loc rcv(req(lx)).snd(rep(adr, lx)).

Y (adr) is a well-defined computed network term. The process name X defines a protocol which sends req messages
iteratively, while Y receives a req and then sends a repmessage.

3.3. Rooted branching computed network bisimilarity

Computed network terms are considered modulo rooted branching computed network bisimilarity [3]. To define this
equivalence relation, we introduce the following notations:

• ⇒ denotes the reflexive and transitive closure of unobservable actions:
– t ⇒ t;
– if t

(C,τ)
−−→ t ′ for some arbitrary network constraint C and t ′ ⇒ t ′′, then t ⇒ t ′′.

• t
⟨(C,η)⟩
−−−→ t ′ iff t

(C,η)
−−→ t ′ or t

(C[ℓ/?],η[ℓ/?])
−−−−−−−−→ t ′ and η is of the form nsnd(m, ?) for some m.

Intuitively t ⇒ t ′ expresses that after a number of topology changes, t can behave like t ′. Furthermore, an action like
({? B}, nsnd(req(?), ?)) can be matched to an action like ({A B}, nsnd(req(A), A)), which is its ⟨−⟩ counterpart.

Definition 2. A binary relation R on computed network terms is a branching computed network simulation if t1Rt2 and

t1
(C,η)
−−→ t ′1 implies that either:

• η is of the form nrcv(m) or τ , and t ′1Rt2; or

• there are t ′2 and t ′′2 such that t2 ⇒ t ′′2
⟨(C,η)⟩
−−−→ t ′2, where t1Rt ′′2 and t ′1Rt ′2.

R is a branching computed network bisimulation if R and R−1 are branching computed network simulations. Two terms
t1 and t2 are branching computed network bisimilar, denoted by t1 ≃b t2, if t1Rt2 for some branching computed network
bisimulation relation R.

Definition 3. Two terms t1 and t are rooted branching computed network bisimilar, written t1 ≃rb t2, if:

• t1
(C,η)
−−→ t ′1 implies there is a t ′2 such that t2

⟨(C,η)⟩
−−−→ t ′2 and t ′1 ≃b t ′2;

• t2
(C,η)
−−→ t ′2 implies there is an t ′1 such that t1

⟨(C,η)⟩
−−−→ t ′1 and t ′1 ≃b t ′2.

Rooted branching computed network bisimilarity is an equivalence relation and constitutes a congruence with respect
to the CNT operators; see [3]. Intuitively two computed network terms are equivalent if they send and receive a same
set of messages for a set of topologies. However a receiving action which would not change the sending behavior of
a node can be removed. Therefore, an only receiving MANET (after its first action) is equivalent to deadlock. It should
be noted that a node like [[Y (B)]]B is not branching bisimilar to the sending node [[Y ′(B)]]B where Y ′(adr : Loc)

def
=∑

lx:Loc snd(rep(adr, lx)).Y
′(adr), since the latter sends iff it receives a request message while the former always sends.

F. Ghassemi et al. / Theoretical Computer Science 412 (2011) 3262–3282 3267

Table 1
Axioms for choice, conditional and summation operators.

Ch1 0 + t = t Sum1

−
d:D

t = t, d ∉ fn(t)

Ch2 t1 + t2 = t2 + t1 Sum2

−
d:D

t =

−
e:D

t[e/d]

Ch3 t1 + (t2 + t3) = (t1 + t2) + t3 Sum3

−
d:D

t =

−
d:D

t + t[u/d]

Ch4 t + t = t Sum4

−
d:D

(t1 + t2) =

−
d:D

t1 +

−
d:D

t2

Con1 [b]t1 � t2 = t1, D |= b = T Con2 [b]t1 � t2 = t2, D |= b = F
Ch5 (C, nsnd(m, ?)).t + ⟨(C, nsnd(m, ?))⟩.t = ⟨(C, nsnd(m, ?))⟩.t
Ch6 (C1, η).t + (C2, η).t = (C1, η).t, C1 ⊆ C2

3.4. Axioms

We define the behavior of operators through their axioms over closed terms, which are sound with respect to rooted
branching computed network bisimilarity. The axioms of choice, conditional and summation operator are given in Table 1.
The axioms Ch1−4, Con1−2 and Sum1−4 are straightforward (cf. [16]). The axiom Ch5 is new in our framework, denoting that
a network send action originated from a node of which the address is unknown can be removed if there is the same action
originating from a node with a known address. The axiom Ch6 explains that if an action η is possible for a set of topologies,
then it is also possible for all subsets of this set.

Axioms for process names are given in Table 2. Unfold and Fold express existence and uniqueness of a solution for the
equation A(d : D)

def
= t , which correspond to the Recursive Definition Principle (RDP) and Recursive Specification Principle (RSP)

in ACP. An occurrence of a process name A in t is called guarded if this occurrence is in the scope of an action prefix operator
(not (C, τ) prefix) and not in the scope of an abstraction operator [3]. A is guarded in t if every occurrence of A in t is guarded.

Axioms for deployment, left and communication merge, and parallel operators are given in Table 3. The axioms Dep3−5,
Br , LM1−4 and S1−3,5 are straightforward.Dep1 expresses thatwhen aprotocol sends amessage (denoted by snd), themessage
is sent into the network (denoted by nsnd), irrespective of underlying topology (expressed by {}). Dep2 expresses that when
a protocol receives a message (denoted by rcv), it should receive it from the network (denoted by nrcv) while it is connected
to some sender whose address is unknown (expressed by {? ℓ}). It should be noted that Dep5 satisfies the second and
third well-definedness rules given in Section 3.2.

The axioms Sync1−3 explain the synchronization of two MANETs. The sending MANET (C1, nsnd(m1, ℓ)).t1 can
communicate with the receiving MANET (C2, nrcv(m2)).t2, if the receiving addresses (denoted by C2) are also connected
to the sender ℓ (denoted by C1 ∪ C2[ℓ/?]). Likewise two receiving MANETs synchronize on a message when the receiving
addresses of both MANETs are connected to the same unknown address (denoted by C1 ∪C2). Two sending MANETs cannot
synchronize due to their signal collision. When a MANET is communicating through a τ action, it cannot be synchronized
with another MANET, as indicated by axiom S4.

We return to the example at the end of Section 3.2. The behavior of [[X(A)]]A ‖ [[Y (B)]]B can be calculated as follows:

[[X(A)]]A ‖ [[Y (B)]]B = [[X(A)]]A [[Y (B)]]B + [[Y (B)]]B [[X(A)]]A + [[X(A)]]A | [[Y (B)]]B
[[X(A)]]A = ({}, nsnd(req(A), A)).[[X(A)]]A

[[Y (B)]]B =

−
lx:Loc

({? B}, nrcv(req(lx))).[[snd(rep(B, lx)).Y (B)]]B

[[X(A)]]A [[Y (B)]]B = ({}, nsnd(req(A), A)).[[X(A)]]A ‖ [[Y (B)]]B

[[Y (B)]]B [[X(A)]]A =

−
lx:Loc

({? B}, nrcv(req(lx))).[[snd(rep(B, lx)).Y (B)]]B ‖ [[X(A)]]A

[[X(A)]]A | [[Y (B)]]B = ({A B}, nsnd(req(A), A)).[[X(A)]]A ‖ [[snd(rep(B, A)).Y (B)]]B

The axioms of hiding and encapsulation are given in Table 4. The hiding operator (νℓ)_ conceals the address of a node
with the address ℓ from external observers. Therefore, the behavior of a hidden node deploying process X , (νC)[[X(C)]]C ,
is ({}, nsnd(req(?), ?)).(νC)[[X(C)]]C . Then the behavior of [[X(A)]]A ‖ (νC)[[X(C)]]C , by application of axioms Dep1,2, Res2,
Br , LM1, Sync1 and Ch5, equals ({}, nsnd(req(A), A)).[[X(A)]]A ‖ (νC)[[X(C)]]C . This indicates that [[X(A)]]A ‖ (νC)[[X(C)]]C =

[[X(A)]]A, since both are a solution of Z
def
= ({}, nsnd(req(A), A)).Z by axiom Fold. Intuitively, the hidden node C does not

change the behavior of [[X(A)]]A from the point view of an external observer, since it assumes that the action of C belongs
to A.

3268 F. Ghassemi et al. / Theoretical Computer Science 412 (2011) 3262–3282

Table 2
Axioms for process names.

Unfold A(u) = t[u/d], A(d : D)
def
= t

Fold ∀d : D · t1(d) = t2[t1(d1)/A(d1)] · · · [t1(dn)/A(dn)] ⇒

t1(d) = A(d), A(d : D)
def
= t2 if A is guarded in t

Table 3
Axioms for process names, deployment, left and communication merge, and parallel operators.

Dep1 [[snd(m).t]]ℓ = ({}, nsnd(m, ℓ)).[[t]]ℓ Dep4 [[0]]ℓ = 0

Dep2 [[rcv(m).t]]ℓ = ({? ℓ}, nrcv(m)).[[t]]ℓ Dep5

[[−
d:D

t
]]

ℓ

=

−
d:D

[[t]]ℓ

Dep3 [[t1 + t2]]ℓ = [[t1]]ℓ + [[t2]]ℓ

Br t1 ‖ t2 = t1 t2 + t2 t1 + t1 | t2 S1 t1 | t2 = t2 | t1
LM1 (C, η).t1 t2 = (C, η).(t1 ‖ t2) S2 (t1 + t2) | t3 = t1 | t3 + t2 | t3
LM2 (t1 + t2) t3 = t1 t3 + t2 t3 S3 0 | t = 0
LM3 0 t = 0 S4 (C, τ).t1 | t2 = 0

LM4

−
d:D

t1


t2 =

−
d:D

t1 t2 S5

−
d:D

t1


| t2 =

−
d:D

t1 | t2

Sync1 (C1, nsnd(m1, ℓ)).t1 | (C2, nrcv(m2)).t2 = [eq(m1, m2)](C1 ∪ C2[ℓ/?], nsnd(m1, ℓ)).t1 ‖ t2 � 0
Sync2 (C1, nrcv(m1)).t1 | (C2, nrcv(m2)).t2 = [eq(m1, m2)](C1 ∪ C2, nrcv(m1)).t1 ‖ t2 � 0
Sync3 (C1, nsnd(m1, ℓ1)).t1 | (C2, nsnd(m2, ℓ2)).t2 = 0

Table 4
Axiomatization of hiding, abstraction and encapsulation operators.

Res1 (νℓ)(t1 + t2) = (νℓ)t1 + (νℓ)t2 Res3 (νℓ)0 = 0
Res2 (νℓ)(C, η).t = (C[?/ℓ], η[?/ℓ]).(νℓ)t Res4 (νℓ)

−
d:D

t =

−
d:D

(νℓ)t

Ecp1 ∂m((C, nsnd(m, ℓ)).t) = (C, nsnd(m, ℓ)).∂m(t)
Ecp2 ∂m((C, nrcv(m)).t) = [¬isTypem(m)](C, nrcv(m)).∂m(t) � 0

Abs1 τm((C, η).t) = (C, τm(η)).τm(t)
Abs2 τm(t1 + t2) = τm(t1) + τm(t2) Ecp3 ∂m(t1 + t2) = ∂m(t1) + ∂m(t2)
Abs3 τm(0) = 0 Ecp4 ∂m(0) = 0

Abs4 τm

−
d:D

t


=

−
d:D

τm(t) Ecp5 ∂m

−
d:D

t


=

−
d:D

∂m(t)

T1 (C, η).((C ′, nrcv(m)).t + t) = (C, η).t
T2 (C, η).((C ′, τ).(t1 + t2) + t2) = (C, η).(t1 + t2)

The axiom Abs1 renames η actions carrying messages of typem to τm(η), which is defined as follows:

τm(nrcv(m)) = if (isTypem(m), τ , nrcv(m))

τm(nsnd(m, ℓ)) = if (isTypem(m), τ , nsnd(m, ℓ))

The axiom Ecp2 explains that the encapsulation operator renames network receive actions of messages of type m to 0. For
example,

∂req([[X(A)]]A ‖ [[Y (B)]]B) = ({}, nsnd(req(A), A)).∂req([[X(A)]]A ‖ [[Y (B)]]B)
+ ({A B}, nsnd(req(A), A)).∂req([[X(A)]]A ‖ [[snd(rep(B, A)).Y (B)]]B)

Axiom T1 removes a receive action that does not affect the behavior of a network, while T2 removes a τ action which
preserves the behavior of a network after some topology changes. The remaining axioms in this table are straightforward.

4. Case study: a simple routing protocol

We consider a simple routing protocol, which is similar to AODV [17] in its basic concepts. In a MANET, each node can
communicate with other nodes indirectly by exploiting a routing protocol. In these protocols, all nodes act as router and
relay messages to the next hop for an intended destination. To this aim, each node keeps the address of the next hop for
some destinations in a routing table. When a node needs to transmit data to a destination, it first retrieves in its routing
table the address of the next hop to which it should send data. If the next hop is unknown, it initiates the route discovery

F. Ghassemi et al. / Theoretical Computer Science 412 (2011) 3262–3282 3269

Init(adr, dst : Loc)
def
=∑

lx:Loc [¬eq(lx, ?) ∧ ¬eq(lx, adr) ∧ ¬eq(lx, dst)]snd(data(lx)).0 � 0

Mid(nx : Loc, adr : Loc)
def
=

[¬(eq(nx, ?))](∑
lx:Loc rcv(data(lx)).

[eq(lx, adr)]snd(data(nx)).Mid(nx, adr) � Mid(nx, adr) +∑
lx:Loc rcv(error(lx)).

[eq(lx, nx)]snd(error(adr)).RtDy(adr, ?) � Mid(nx, adr) +

snd(error(adr)).RtDy(adr, ?) +∑
lx:Loc rcv(req(lx)).snd(rep(adr, lx)).Mid(nx, adr)) +

� (RtDy(adr, ?) +∑
lx:Loc rcv(req(lx)).RtDy(adr, lx))

RtDy(adr : Loc, src : Loc : Bool)
def
=

snd(req(adr)).
(
∑

lx:Loc
∑

ly:Loc rcv(rep(lx, ly)).(
[eq(ly, adr)]

[¬eq(src, ?)]snd(rep(adr, src)).Mid(lx, adr) � Mid(lx, adr)
�RtDy(adr, src)) + RtDy(adr, src))

Dst(adr : Loc)
def
=∑

lx:Loc rcv(req(lx)).snd(rep(adr, lx), 0)).Dst(adr) +∑
lx:Loc rcv(data(lx)).[eq(lx, adr)]0 � Dst(adr).

Fig. 5. The specifications of the initiator, middle and destination processes.

process. In this process, the node broadcasts a req(dst, adr) message, where adr is the address of the node itself, to ask its
neighbors whether they know a route to a node with address dst . On receiving a req(dst, src) message, a node examines its
routing table; if it knows a route to the destination, it replies by sending a rep(dst, adr, src) message, where adr and src are
the addresses of the receiving and requesting nodes respectively. Otherwise it rebroadcasts req by substituting src for its
own address. Each node, upon receiving the rep(dst, nx, adr)message, updates its routing table by setting the address of the
next hop for dst to nx, and relays the message to its requesting neighbor, if it is not the initiator of route discovery. When a
node with address adr detects that its route to dst is not valid anymore due to a link break-down, it broadcasts the message
error(dst, adr) to inform its neighbors that it cannot be used as a router to dst . If a node that uses the address nx as the next
hop for transmitting data to dst receives error(dst, nx), then it erases this routing record in its routing table, and informs its
neighbors by replacing nx by its own address.

4.1. Protocol specification

To ease the process of verification, we decompose the specification of the protocol into three processes, namely initiator,
middle and destination. The initiator node delivers its data to a middle node, to route its data to the destination. The middle
nodes find a route to the destination node, update this route with regard to topology changes, and carry data along a route.
The destination node replies to requests, and receives data destined for it.

We specify a network composed of four nodes, where one nodes deploys the initiator process, two nodes the middle
process, and one node the destination process. Since we focus on finding a route to a specific dst , wemodel the routing table
with a variable nx of sort Loc , and remove dst from the parameter list of messages like req, rep and error . The specifications
of the initiator, middle and destination processes, called Init , Mid and Dst respectively, are given in Fig. 5. Process RtDy
specifies the route discovery process; src denotes the node for which the route discovery process was initiated and should
be replied to.

4.2. Protocol analysis

The most fundamental error in routing protocol operations is failure to route correctly. The correct operation of MANET
routing protocols can be defined as follows [18]: If from some point in time on there exists a path between two nodes, then the
protocol must be able to find some path between the nodes. Furthermore, when a path has been found, and for the time it stays
valid, it must be possible to send packets along the path from the source node to the destination node. A situation which violates
the above property is a routing loop, meaning that somewhere along the path from the source to its destination a packet
can enter a forwarding circle. We are going to examine whether our simple routing protocol is loop-free. To this aim, we
encode the processes in mCRL2, to derive the CLTS of the MANET:

M0 ≡ ∂{req,rep,error,data}([[Init(A,D)]]A ‖ [[Mid(?, B)]]B ‖ [[Mid(?, C)]]C ‖ [[Dst(D)]]D).

3270 F. Ghassemi et al. / Theoretical Computer Science 412 (2011) 3262–3282

With regard to the fourth well-definedness rule, and by application of axioms Dep1−5, Con1,2 and Fold, for every CNT

term [[t(d)]]ℓ, there is a network name A(d : D)
def
= t ′, where A ∈ An, such that [[t(d)]]ℓ = A(d). To encode M0, we first

derive equivalent network names for [[Init(ℓ, ℓ′)]]ℓ, [[Mid(ℓ′, ℓ, b)]]ℓ, and [[Dst(ℓ)]]ℓ, namely Initn(ℓ, ℓ′), Midn(ℓ′, ℓ, b), and
Dstn(ℓ).

The only difference between parallel composition of mCRL2 and CNT is on their synchronization part; in mCRL2, two
actions are synchronized if they agree on the number and values of their parameters, while in CNT two actions are
synchronized if they agree on the message part, while some calculations are performed on their network constraints
(see axioms Sync1−3). To model the local broadcast communication of CNT by the parallel composition of mCRL2, we define
a set of actions nsndi, nrcvj : C × Msg × Loc , where 0 ≤ i, ≤ n, 1 ≤ j ≤ n with n the number of nodes. The action
nrcvi({ℓ ℓ1, . . . , ℓi}, m, ℓ) denotes that the message m, when sent by the node with address ℓ, can be received by i nodes
with addresses ℓ1, . . . , ℓi, because they are connected to the sender. And nsndi({ℓ ℓ1, . . . , ℓi}, m, ℓ) denotes that the
node with address ℓ sends the message m while i nodes with addresses ℓ1, . . . , ℓi are connected to it and consequently can
receive m. To model the network constraint calculations, each ({}, nsnd(m, ℓ)).t and ({? ℓ}, nrcv(m).t (resulting from the
axioms Dep1,2 in the previous step) is encoded as

({},nsnd(m, ℓ)).t :

nsnd0({}, m, ℓ).t +−
ℓ1:Loc

([¬eq(ℓ, ℓ1)]nsnd1({ℓ ℓ1}, m, ℓ).t � 0+

−
ℓ2:Loc

([¬eq(ℓ, ℓ2) ∧ ¬eq(ℓ1, ℓ2)]nsnd2({ℓ ℓ1, ℓ2}, m, ℓ).t � 0 +

· · · +−
ℓn:Loc

([¬eq(ℓ, ℓn) ∧ · · · ∧ ¬eq(ℓn−1, ℓn)]nsndn({ℓ ℓ1, . . . , ℓn}, m, ℓ).t � 0) . . .))

({? ℓ}, nrcv(m)).t :−
ℓ1:Loc

([¬eq(ℓ, ℓ1)]nrcv1({ℓ1 ℓ}, m, ℓ1).t � 0+

−
ℓ2:Loc

([¬eq(ℓ, ℓ2) ∧ ¬eq(ℓ1, ℓ2)]nrcv2({ℓ1 ℓ, ℓ2}, m, ℓ1).t � 0 +

· · · +−
ℓn:Loc

([¬eq(ℓ, ℓn) ∧ · · · ∧ ¬eq(ℓn−1, ℓn)]nrcvn({ℓ1 ℓ, ℓ2, . . . , ℓn}, m, ℓ1).t � 0) . . .))

where the sum, choice, conditional and action prefix operators are mCRL2 constructs with the same semantics as in CNT. A
CNT term t with its network receive and send actions encoded as above is denoted by ℑ(t). The CNT term ∂M(t1 ‖ . . . ‖ tn),
where M is the set of all messages, is modeled by the mCRL2 operators renaming ρ, allow ∇ , communication Γ , and
parallel ‖, where ρ{a→b} renames the action name a to b,∇{a} renames all actions except a to deadlock, and Γ{a|b→c} renames
synchronized actions a and b to c:

ρ{nsnd0→nsnd}(∇{nsnd0,nsnd}(Γ{nsnd1|nrcv1→nsnd,...,nsndn|nrcvn| . . . |nrcvn  
n items

→nsnd}(ℑ(t1) ‖ . . . ‖ ℑ(tn)))).

Thus, the encoding of M0 is achieved by setting n to 4, and t1, t2, t3 and t4 to Initn(A,D),Midn(?, B),Midn(?, C), and Dstn(D)
in the above formula. The labeled transition system resulting from this encoding contains labels of the form nsnd(C, m, ℓ).
Since only middle nodes look for a route to the destination, the loop can only occur between the middle nodes B and C .
Therefore we can examine the existence of a loop by the following regular µ-calculus formula [19]:

⟨true⋆
⟩⟨nsnd({B C}, data(C), B)⟩
⟨nsnd({C B}, data(B), C)⟩true

F. Ghassemi et al. / Theoretical Computer Science 412 (2011) 3262–3282 3271

Fig. 6. A scenario leading to a loop formation in the simple routing protocol.

where ⟨true⋆
⟩ at the start of the formula denotes any system trace, and true at the end of the formula any state. The CADP

model checker confirms that the above property holds, and returns the following execution:

M0
nsnd({B C},req(B),B)

−−−−−−−−−−−−→ M1
nsnd({C D},req(C),C)

−−−−−−−−−−−−−→ M2
nsnd({D C},rep(D,C),D)

−−−−−−−−−−−−−−→ M3

M3
nsnd({C B},rep(C,B),C)

−−−−−−−−−−−−−−→ M4
nsnd({},error(C),C)

−−−−−−−−−−→ M5
nsnd({C B,D},req(C),C)

−−−−−−−−−−−−−−→ M6

M6
nsnd({B C},rep(B,C),B)

−−−−−−−−−−−−−−→ M7
nsnd({A B},data(B),A)

−−−−−−−−−−−−−→ M8

M8
nsnd({B C},data(C),B)

−−−−−−−−−−−−−→ M9
nsnd({C B},data(B),C)

−−−−−−−−−−−−−→ M8 . . .

From this one can derive the following scenario during which a loop is formed. Let B have a route to D through C (Fig. 6(1)),
and then the link between C and D goes down. Next B loses the error message because of a temporary link failure between
C and B (Fig. 6(2)). Then the link between C and B becomes valid and C requests a path to D (Fig. 6(3)). Finally B replies and
a loop is formed (Fig. 6(4)). This scenario complies with the scenario explained in [20]. However, there the model is verified
against a specific mobility scenario, while in our approach themodel is verified againstmany instances ofmobility scenarios
at the same time. Therefore, as explained in Section 2, we can derive mobility scenarios leading to the (undesired) property.

A solution to prevent loop-formation is assigning a sequence number to each route, to track changes in the underlying
topology (and using hop counts to choose the shorter path). When there is a topology change, the sequence number is
incremented. Thus the protocol is refined as follows: each node sends its req by appending its known sequence number
(for the destination), to indicate the freshness of the route required. Each node also keeps the sequence number for each
destination in its routing table, and replies to a request only if its sequence number is at least as much as the one in the
request message. When a route expires, the node should keep the incremented sequence number for that destination, to
remember the sequence number for which it should initiate the request, as remarked in [20]. We have also experienced this
in model checking, as otherwise a loop is formed.

We revised our code by assigning a sequence number (and a hop count) to each route (as shown in Section 5.4). To keep
the state space finite, we specified that aMid process can only detect a link breakage once, since it causes an increase in the
sequence number. Bymodel checking we are sure that the protocol is correct for scenarios leading to one link breakagewith
three middle nodes. We will verify the correctness of the improved protocol for an arbitrary number of link breakages and
number of middle nodes in Section 5.4, using a symbolic verification technique.

5. Symbolic verification

To prove the correctness of a communication protocol, it is common to prove a network composed of a number of
nodes each deploying the protocol — referred to as the implementation — equivalent to a more abstract description — the
specification — of the desired external behavior.

We rephrase the question whether the implementation of a MANET and its specification are equivalent in terms of proof
obligations on relations between data objects. This technique is based on the cones and foci method [6]. A restricted class of
CNT specifications, called linear computed network equations, are considered, in which the states are data objects. To prove
equivalence of an implementation and a specification, given in this linear format, a state mapping between the data objects
of the implementation and specification is given. The proof is completed by showing that the state mapping constitutes a
branching computed network bisimulation.

5.1. Linear computed network equations and invariants

A linear computed network equation (LCNE) is a computed network term consisting of only action prefix, summation and
conditional operators; it does not contain any parallel, encapsulation, abstraction or hiding operators. An LCNE is basically
a vector of data parameters together with a list of condition, action and effect triples, describing for each state under which
condition an actionmay happen andwhat is its effect on the vector of data parameters. Each computed network term can be

3272 F. Ghassemi et al. / Theoretical Computer Science 412 (2011) 3262–3282

transformed into an LCNE using the axioms (cf. [21]). In this paper we do not discuss the algorithm transforming a network
specification into an LCNE, but will only consider one example in Section 5.3.

Without loss of generality, we assume that eachmessage constructor has exactly one parameter. Let the set of (concrete)
actions be Actc = {nsnd(m(−), ℓ), nrcv(m(−))|∀m : Dm → Msg, ∀ℓ ∈ Loc}, ranged over by η(−).

Definition 4. A linear computed network equation is a CNT specification of the form

A(d : D)
def
=

−
η:Actc∪{τ }

−
e:E

[hη(d, e)](Cη(d, e), η(fη(d, e))).A(gη(d, e)) � 0

where hη : D × E → Bool, Cη : D × E → C, fη : D × E → Dm and gη : D × E → D for each η ∈ Actc ∪ {τ }.

The LCNE in Definition 4 has exactly one CLTS as its solution (modulo strong bisimilarity). In this CLTS, the states are data
elements d : D, where D may be a Cartesian product of n data types, i.e. (d1, . . . , dn), the transition labels are the network
send and receive actions of messages parameterized with data, and the transition constraints are network constraints
parameterized with data. The LCNE expresses that state d can send/receive message η(fη(d, e)) for the set of topologies
specified by Cη(d, e) to end up in state gη(d, e) under the condition that hη(d, e) is true.

Definition 5. A mapping I : D → Bool is an invariant for an LCNE, written as in Definition 4, if for all η ∈ Actc ∪ {τ }, d : D
and e : E,

I(d) ∧ hη(d, e) ⇒ I(gη(d, e)).

Invariants can be used to characterize the set of reachable states of an LCNE. Namely, if I(d) and it is possible to perform
η(fη(d, e)) (since hη(d, e) holds), then I holds in the resulting state gη(d, e).

5.2. Equivalence checking by using state mappings

The system implementation and specification, both given in linear format, are branching computed network bisimilar, if
there exists a state mapping φ between them which satisfies the transfer conditions of Definition 2. An invariant I can be
imposed; then the transfer conditions only need to hold in states where I is true, and consequently equivalence between
implementation and specification is only guaranteed to hold in states where I is true.

To allow infinite sequences of τ -transitions in the implementation, we leave the abstraction operator τM around it, to
ensure that it has a unique solution. The set of communications over M is defined by IM as

{nsnd(C, m, ℓ), nrcv(C, m)|∃m ∈ M · isTypem(m)}.

Let ⟨η⟩ denote η or, η[ℓ/?] and η is of the form nsnd(m, ?). Depending on the value of ⟨η⟩, for any binary relation ⊙,
rη(e, d) ⊙ r ′

⟨η⟩
(e, d′) iff rη(e, d) ⊙ r ′

η(e, d
′) or rη(e, d)[ℓ/?] ⊙ r ′

η[ℓ/?](e, d
′).

Proposition 1. Let the LCNE Imp be of the form

Imp(d : D)
def
=

−
η∈Actc∪{τ }

−
e:E

[hη(d, e)](Cη(d, e), η(fη(d, e))).Imp(gη(d, e)) � 0

Furthermore, let the LCNE Spec be of the form

Spec(d′
: D′)

def
=

−
η∈Actc\IM

−
e:E

[h′

η(d
′, e)](C ′

η(d
′, e), η(f ′

η(d
′, e))).Spec(g ′

η(d
′, e)) � 0

Let I : D → Bool be an invariant for Imp, and φ : D → D′ a state mapping. If for all η ∈ Actc \ IM and ητ ∈ IM , φ satisfies the
following conditions:

1. ∀e : E(hητ (d, e) ⇒ φ(d) = φ(gητ (d, e)));
2. ∀e : E, hη(d, e) implies that either η is a receive action such that φ(d) = φ(gη(d, e)), or h′

⟨η⟩
(φ(d), e) holds for some ⟨η⟩ such

that fη(d, e) = f ′

⟨η⟩
(φ(d), e), C ′

⟨η⟩
(φ(d), e) ⊆ Cη(d, e), and φ(gη(d, e)) = g ′

⟨η⟩
(φ(d), e);

F. Ghassemi et al. / Theoretical Computer Science 412 (2011) 3262–3282 3273

3. ∀e : E, h′
η(φ(d), e) implies that either η is a receive action such that φ(d) = g ′

η(φ(d), e), or there exists d∗ such that

d
ητ1
−→C1 . . .

ητn
−→Cn d∗, where ητ1 , . . . , ητn ∈ IM , and for some ⟨η⟩, h⟨η⟩(d∗, e) holds with f⟨η⟩(d∗, e) = f ′

η(φ(d), e),
C⟨η⟩(d∗, e) ⊆ C ′

η(φ(d), e), and φ(g⟨η⟩(d∗, e)) = g ′
η(φ(d), e));

then for all d : D with I(d), τM(Imp(d)) ≃b Spec(φ(d)).

See Appendix for the proof. Since each state of the specification defines the external behavior of the implementation
with regard to any possible topology changes, the mapped state of the implementation should not be changed by
τ -transitions (whichmay be triggered due to some topology changes), as implied by the first criterion. And each state of the
implementation has the same observable behavior as its mapped state in the specification, directly or after some topology
changes, as implied by the second and third criterion.

Due to mobility of nodes, MANET protocols usually contain mechanisms to examine if a node connection to some other
node exists or not. For instance, a node may examine whether it is still connected to its next hop for a destination in a
routing protocol, or to its leader in a leader election protocol. Suchmechanisms are modeled by non-deterministic behavior
in the protocol specification, which restarts some part of the process (like route discovery in a routing protocol). Due to
such mechanisms, in each state of the implementation, the observable behavior may change after a set of τ -transitions. On
the other hand, since we assume arbitrary mobility for MANET nodes, each state of the specification defines the behavior
of a MANET for any possible topology change. Therefore, we lack a collection of so-called focus points [6,7]: states in the
implementation that can be matched to some state in the specification with the same observable behavior.

For example, to show that ∀n : Nat · N(n) ≃b M(n), where

N(n : Nat)
def
= [n ≥ 1]({}, nsnd(data(B), A)).N(n + 1) � 0 + [n ≥ 1]({}, nsnd(data(B), ?)).N(n + 2) � 0

M(b : Bool)
def
= [eq(b, T)]({}, nsnd(data(B), A)).M(b) � 0

it suffices to show that φ(n) = if (n ≥ 1, T , F) satisfies the second and third conditions of Proposition 1 (as there is no
abstraction):

• When n ≥ 1 holds, two actions η1 ≡ nsnd(data(−), A) and η2 ≡ nsnd(data(−), ?) are possible. For the first action,
fη1(n) = B, Cη1(n) = {}, and gη1(n) = n + 1. Since φ(n) = T , h′

η1
(T) while fη1(n) = f ′

η1
(T), C ′

η1
(T) ⊆ Cη1(n), and

φ(gη1(n)) = g ′
η1

(T). For the second action, fη2(n) = B, Cη2(n) = {}, and gη2(n) = n + 2. The only action of M is again
matched to this action, since ⟨nsnd(data(−), ?)⟩ = nsnd(data(−), A), while fη2(n) = f ′

⟨η2⟩
(T), C ′

⟨η2⟩
(T) ⊆ Cη2(n), and

φ(gη2(n)) = g ′

⟨η2⟩
(T).

• The only action of M when eq(φ(n ≥ 1), T)) is η ≡ nsnd(data(−), A), and the same action is enabled in N when n ≥ 1,
with the same parameter and network constraint.

5.3. Linearization of uniform MANETs

In practice a MANET often consists of an arbitrary set of similar nodes: each node is identified by a unique network
address, and deploys the same protocols. In this section we show how our symbolic verification approach can be exploited
to verify such networks. To this aim, we first provide a general recursive specification for MANETs with similar nodes, and
then derive a linear computed network equation as a solution of the recursive specification, using the CNT axioms, data
axioms and induction. The derived linear equation is strongly bisimilar to the original recursive equation.

Without loss of generality, we assume that each message constructor has exactly one parameter. We assume that each
process P(ℓ, d) is defined using a linear process equation (LPE) [22] of the form:

P(ℓ : Loc, d : D)
def
=∑

m∈Msg
∑

e:Em [hms(ℓ, d, e)]snd(m(fms(ℓ, d, e))).P(ℓ, gms(ℓ, d, e)) � 0 +

[hmr (ℓ, d, e)]rcv(m(fmr (ℓ, d, e))).P(ℓ, gmr (ℓ, d, e)) � 0
(1)

where hms/mr : Loc × D × Em → Bool, fms/mr : Loc × D × Em → Dm and gms/mr : Loc × D × Em → D for each m ∈ Msg .
As we do not want to fix the addresses of nodes in the MANET beforehand, we use two auxiliary data sorts: LocList

which is a list of network addresses of nodes, and similar to the approach of [9], DTablewhich is a table indexed by network
addresses, where each entry maintains the state of the node at the corresponding network address. We also exploit for each
m ∈ Msg an auxiliary data sort EListm, which is a list of elements of sort Em, the auxiliary data type used in functions of
messages (see Eq. (1)).

The sort LocList is defined below. Lists are generated from the empty list empL and add, which places a new address in
the list. The function has examines if an element belongs to the list; include examines if the first list is included in the second
list; remove removes an address from the list; head returns the first element of the list; size returns the length of the list;
nodup examines if the list has no duplicated item; and eq compares two lists.

3274 F. Ghassemi et al. / Theoretical Computer Science 412 (2011) 3262–3282

To increase readability, we write binary functions in infix manner, and use symbols ∅, ◃, ∈, ⊆, \, | | and ℓl[0] for empL,
add, has, include, remove, size and head(ℓl), respectively. The data sort EListm for m ∈ Msg is defined in the same way as
LocList , but using the constant empEm.

sort LocList
func empL :→ LocList

add : Loc × LocList → LocList
map has : Loc × LocList → Bool

include, eq : LocList × LocList → Bool
remove : LocList × Loc → LocList
head : LocList → Loc
size : LocList → Nat
nodup : LocList → Bool

var ℓl, ℓl1, ℓl2 : LocList, ℓ, ℓ1, ℓ2 : Loc
rew has(ℓ, empL) = F LA1

has(ℓ1, add(ℓ2, ℓl)) = if (eq(ℓ1, ℓ2), T , has(ℓ1, ℓl)) LA2
include(empL, ℓl) = T LA3
include(add(ℓ, ℓl1), ℓl2) = has(ℓ, ℓl2) ∧ include(ℓl1, ℓl2) LA4
remove(empL, ℓ) = empL LA5
remove(add(ℓ1, ℓl), ℓ2) = if (eq(ℓ1, ℓ2), remove(ℓl, ℓ2), add(ℓ1, remove(ℓl, ℓ2))) LA6
head(add(ℓ, ℓl)) = ℓ LA7
size(empL) = 0 LA9
size(add(ℓ, ℓl)) = size(ℓl) + 1 LA10
nodup(empL) = T LA11
nodup(add(ℓ, ℓl)) = ¬has(ℓ, ℓl) ∧ nodup(ℓl) LA12
eq(ℓl1, ℓl2) = include(ℓl1, ℓl2) ∧ include(ℓl2, ℓl1) LA13

Tables are generated from the constant empT and an operation upd, which places a new entry in the table. The function
get gets an entry from the table using its index. The function upd_allgm(ℓ◃ℓl, e◃ el, dt) updates the list of entries ℓ◃ℓl in the
table using the function gm : Loc×D×Em → D; the entry ℓ is updated by gm(ℓ, get(ℓ, dt), e), which uses the network address
ℓ, the previous value at the entry, and an auxiliary value e. Intuitively this function is helpful to update a set of receiver nodes
that communicate with a sender over messagem. Similarly the function and_allhm,fm,f ′m(ℓ1 ◃ ℓl, ℓ2, e2, e1 ◃ el, dt) examines a
Boolean expression on a list of entries ℓ1◃ℓlusing functionshm : Loc×D×Em → Bool and fm, f ′

m : Loc×D×Em → Dm; for each
entry ℓ1, it examines if hm(ℓ1, get(ℓ1, dt), e1) evaluates to true and if f ′

m(ℓ1, get(ℓ1, dt), e1) is equal to fm(ℓ2, get(ℓ2, dt), e2).
Intuitively this function is helpful to examine if a set of nodes can synchronize with each other upon receiving a message
of typem, i.e., whether the conditions of their actions are true (examined by hm) and their message parameters are equal to
each other (examined by fm, f ′

m).

sort DTable
func empT :→ DTable

upd : Loc × D × DTable → DTable
map get : Loc × DTable → D

upd_allgm : LocList × EListm × DTable → DTable
and_allhm,fm,f ′m : LocList × Loc × Em × EListm × DTable → Bool

var ℓ, ℓ1, ℓ2 : Loc, ℓl : LocList,
d : D, dt : DTable,
e, e1, e2 : Em, el : EListm

rew get(ℓ1, upd(ℓ2, d, dt)) = if (eq(ℓ1, ℓ2), d, get(ℓ1, dt)) TA1
upd_allgm(empL, el, dt) = dt TA2
upd_allgm(add(ℓ, ℓl), add(e, el), dt) =

upd(ℓ, gm(ℓ, get(ℓ, dt), e), upd_allgm(ℓl, el, dt)) TA3
and_allhm,fm,f ′m(empL, ℓ, e, el, dt) = T TA4
and_allhm,fm,f ′m(add(ℓ1, ℓl), ℓ2, e2, add(e1, el), dt) =

and(hm(ℓ1, get(ℓ1, dt), e1), and(eq(fm(ℓ2, get(ℓ2, dt), e2),
f ′
m(ℓ1, get(ℓ1, dt), e1)), and_allhm,fm,f ′m(ℓl, ℓ2, e2, el, dt))) TA5

Axioms TA2−5 are schematic and can be defined for all functions gms/mr , hms/mr , fms/mr in Eq. (1) for any m ∈ Msg .
In the remainderwewrite dt[ℓ] instead of get(ℓ, dt). The following network recursive specification puts nodes deploying

process P at network addresses of ℓl in parallel.

Manet(ℓl : LocList, dt : DTable)
def
= [eq(ℓl, ∅)]0 � [[P(ℓl[0], dt[ℓl[0]])]]ℓl[0] ‖ Manet(ℓl \ ℓl[0], dt). (2)

F. Ghassemi et al. / Theoretical Computer Science 412 (2011) 3262–3282 3275

Mid(nx : Loc, hp : Nat, sq : Nat, adr : Loc)
def
=

[¬(eq(nx, ?))](∑
lx:Loc rcv(data(lx)).[eq(lx, adr)]
snd(data(nx)).Mid(nx, hp, sq, adr)

�Mid(nx, hp, sq, adr) +∑
lx:Loc rcv(error(lx)).

[eq(lx, nx)]snd(error(adr)).RtDy(sq + 1, adr, ?)
�Mid(nx, hp, sq, adr) +

snd(error(adr)).RtDy(sq + 1, adr, ?) +∑
lx:Loc

∑
sx:Nat rcv(req(lx, sx)).
[sq ≥ sx]snd(rep(adr, lx, sq, hp)).Mid(nx, hp, sq, adr)

�RtDy(sx, adr, lx))
� (RtDy(sq, adr, ?) +∑

lx:Loc
∑

sx:Nat rcv(req(lx, sx)).RtDy(max(sx, sq), adr, lx))

RtDy(sq : Nat, adr : Loc, src : Loc)
def
=

snd(req(adr, sq)).
(
∑

lx:Loc
∑

ly:Loc
∑

sx:Nat
∑

hpx:Nat rcv(rep(lx, ly, sqx, hpx)).(
[eq(ly, adr) ∧ sx ≥ sq]

([¬eq(src, ?)]snd(rep(adr, src, sqx, hpx + 1)).Mid(lx, hpx + 1, sqx, adr)
�Mid(lx, hpx + 1, sqx, adr))

�RtDy(sq, adr, src))
+RtDy(sq, adr, src)

Fig. 7. The revised specifications of the middle process.

Below we present the core lemma of this section. It gives an expansion of Manet , where all operators for parallelism
have been removed. The resulting network has the list ℓl and the table dt as parameters. In essence, the complexity of the
computed networkManet is now encoded using the list and table operations.

Lemma 1 says that in the network X , the node with network address k ∈ ℓl may send the message m, parameterized
by data from this node, if it is ready to send (as indicated by hms(k, dt[k], e)) to a list ℓs (without duplicates) of receiver
nodes with addresses in ℓl\k that are all ready to receive such amessage (examined by and_allhmr ,fms ,fmr). Table entries with
indices in ℓs and k are updated as a result of this communication (using upd_allgmr

). The function C(ℓ, ℓs) = {ℓ ℓ′
|ℓ′

∈ ℓs}

specifies the network constraint for this behavior of the network, indicating there is a communication link from ℓ to each
node in ℓs. Nodes in the network X may also receive amessagem from an unknown address ?; the receiving nodesmust have
network addresses in ℓs, where ℓs ⊆ ℓl ∧ ¬eq(ℓs, ∅) ∧ nodup(ℓs), and must be ready to receive such a message (examined
by and_allhmr ,fmr ,fmr). All table entries with indices in ℓs are updated as a result of this receive action (using upd_allgmr

).

Lemma 1. The MANET Manet as defined in Eqs. (1) and (2) is a solution for the MANET X in Eq. (3) below.

X(ℓl : LocList, dt : DTable)
def
=∑

m∈Msg
∑

k:Loc
∑

ℓs:LocList
∑

e:Em

∑
el:EListm

[k ∈ ℓl ∧ ℓs ⊆ ℓl \ k ∧ nodup(ℓs) ∧ |ℓs| = |el|∧
hms(k, dt[k], e) ∧ and_allhmr ,fms ,fmr (ℓs, k, e, el, dt)]

(C(k, ℓs), nsnd(m(fms(k, dt[k], e)), k)).
X(ℓl, upd(k, gms(k, dt[k], e), upd_allgmr

(ℓs, el, dt))) � 0 +∑
m∈Msg

∑
ℓs:LocList

∑
el:EListm

[ℓs ⊆ ℓl ∧ ¬eq(ℓs, ∅) ∧ nodup(ℓs) ∧ |ℓs| = |el|∧
and_allhmr ,fmr ,fmr (ℓs, ℓs[0], el[0], el, dt)]

(C(?, ℓs), nrcv(m(fmr (ℓs[0], dt[ℓs[0]], el[0])))).
X(ℓl, upd_allgmr

(ℓs, el, dt)) � 0.

(3)

See [14] for the proof. The following Composition Theorem is a corollary of Lemma 1 and the axiom Fold.

Theorem 1. Manet(ℓl, dt) = X(ℓl, dt).

5.4. Verification of the improved routing protocol

The revised versions of the processes of Fig. 5, which exploit sequence numbers to trace the freshness of routes and hop
counts to choose the shortest paths, are specified in Figs. 7 and 8.

Then the linear formats of these specifications are given in Figs. 9 and 10 (see [14] for explanations how the linear formats
are derived). In each summand of the LPEs (and LCNEs later), we only present the parameters whose values are changed: d/x
denotes that the parameter x is assigned the data term d. Moreover, b and ¬b denote eq(b, T) and eq(b, F) respectively. In
these specifications, all request and replymessages carry the sequence number of the path they request for or reply to, while
reply messages also carry the hop count of the path. When a process broadcasts the message error to inform its neighbors
that it cannot be used as a router, it increments its sequence number, whichwill be used later in the route discovery process.

3276 F. Ghassemi et al. / Theoretical Computer Science 412 (2011) 3262–3282

Dst(sq : Nat, adr : Loc)
def
=∑

lx:Loc
∑

sx:Nat rcv(req(lx, sx)).
snd(rep(adr, lx,max(sqx, sq), 0)).Dst(max(sqx, sq), adr)∑

lx:Loc rcv(data(lx)).[eq(lx, adr)]0 � Dst(sq, adr).

Fig. 8. The revised specification of destination process.

Init(s : Nat, adr, dst : Loc)
def
=∑

lx:Loc [eq(s, 0) ∧ ¬eq(lx, ?) ∧ ¬eq(lx, adr) ∧ ¬eq(lx, dst)]
snd(data(lx)).Init(1/s) � 0

Dst(s : Nat, src : Loc, sq : Nat, adr : Loc)
def
=∑

lx:Loc
∑

sx:Nat [eq(s, 0)]rcv(req(lx, sx)).
Dst(1/s,max(sx, sq)/sq, lx/src) � 0 +

[eq(s, 1)]snd(rep(adr, src, sq, 0)).Dst(0/s) � 0 +∑
lx:Loc [eq(s, 0)]rcv(data(lx)).Dst(if (eq(lx, adr), 2, s)/s) � 0.

Fig. 9. The linearized equations of the initiator and destination processes.

Mid(s : Nat, nx, src : Loc, sq, hp : Nat, adr : Loc, dih : Bool)
def
=

[dih]snd(data(nx)).Mid(F/dih) � 0 +∑
lx:Loc [eq(s, 0) ∧ ¬eq(nx, ?) ∧ ¬dih]
rcv(data(lx)).Mid(if (eq(lx, adr), T , dih)/dih) � 0 +

[(eq(s, 0) ∧ eq(nx, ?)) ∨ s ≥ 3]
snd(req(adr, sq)).Mid(4/s, if (eq(s, 0), ?, src)/src) � 0 +∑

lx:Loc
∑

sx:Nat [¬dih ∧ eq(s, 0)]rcv(req(lx, sx)).
Mid(if (sx > sq ∨ eq(nx, ?), 3, 2)/s, lx/src,max(sq, sx)/sq) � 0 +

[eq(s, 2)]snd(rep(adr, src, sq, hp)).Mid(0/s) � 0 +∑
lx:Loc

∑
dx:Loc

∑
sx:Nat

∑
hx:Nat [eq(s, 4)]

rcv(rep(lx, dx, sx, hx)).
Mid(if (eq(dx, adr) ∧ sx ≥ sq, if (¬eq(src, ?), 2, 0), s)/s,
if (eq(dx, adr) ∧ sx ≥ sq, lx, nx)/nx,

if (eq(dx, adr) ∧ sx ≥ sq, sx, sq)/sq,
if (eq(dx, adr) ∧ sx ≥ sq, (hx + 1), hp)/hp) � 0 +

[eq(s, 1) ∨ (¬dih ∧ eq(s, 0) ∧ ¬eq(nx, ?))]snd(error(adr)).
Mid(3/s, ?/src, (sq + 1)/sq) � 0 +∑

lx:Loc [¬dih ∧ eq(s, 0) ∧ ¬eq(nx, ?)]
rcv(error(lx)).Mid(if (eq(lx, nx), 1, s)/s) � 0

Fig. 10. The linearized equation of the middle process.

Routing(n,N : Nat, fin : Bool)
def
=

[(¬fin ∧ n > 1) ∨ eq(n, 0)]
({}, nsnd(data(?), ?)).Routing(T/fin) � 0 +∑

h:Nat [(¬fin ∧ n > 1 ∧ h < N) ∨ (eq(n, 0) ∧ h ≤ N)]

({}, nsnd(data(?), ?)).Routing(h/n) � 0 +

[¬fin ∧ eq(n, 1)]({}, nsnd(data(B), ?)).Routing(T/fin) � 0

Fig. 11. The desired external behavior.

Therefore, a node that has not received an error message on a route for a destination, cannot reply to a request message,
since its sequence number is less than the sequence number of the request message. The dih parameter in process Mid is
introduced during the linearization process to indicate when data is held by the node.

The desired external behavior of a MANET running the routing protocol is given by the process Routing in Fig. 11. The
intuition behind this specification is: when data is held by a middle node (n ≥ 1) and there is no routing loop on its route to
the destination, the distance that the datamessage should pass to reach the destination, specified by n, is atmostN , whereN
is the number ofmiddle nodes. However, when there is amovement or an error among the nodes including the next node on
the route (and the next hop is not the destination, i.e. n > 1), the route and consequently the distance to pass may change.
This change is specified by arbitrary changes of n to a value less than N (since the middle node holding the data would not
participate in the route discovery of its next hop, the number of middle nodes participating in the route discovery is at most
N − 1). For a network with only the known address B, the data message begins its journey from some initiator (that itself
does not know any route to the destination) with n = 0, until it reaches the destination B, in themeantimemoving between
(middle nodes with) unknown addresses. If a next hop loses the data or the destination receives the data, there is no further
data message. The Boolean variable fin is false as long as the initiator or a middle node holds the data. In any state, either
the data is safely transferred to the next hop (while the distance of the next hop may change in case the next hop is not
the destination), or the next hop may lose it (and consequently fin is updated to true). Due to arbitrary mobility of nodes, a

F. Ghassemi et al. / Theoretical Computer Science 412 (2011) 3262–3282 3277

route is always found from any middle node to the destination. Therefore, the desired external behavior specifies that data
always reaches its destination, unless it is lost on the way.

We are going to prove that the parallel composition of a node with the initiator process, a finite number of nodes
deploying themiddle process, specified by nMid using Eq. (2), and a nodewith the destination process, behaves like Routing:

nMid(ℓl : LocList, ξ t : ΞTable)
def
=

[eq(ℓl, ∅)]0 � ([[Mid(ξ t[ℓl[0]])]]ℓl[0] ‖ nMid(ℓl \ ℓl[0], ξ t))

where nodup(ℓl), Ξ : Nat × Loc2 × Nat2 × Loc × Bool, and ΞTable is a table containing elements of sort Ξ . Let ξ ∈ Ξ

represent the sequence ⟨s, nx, src, hp, sq, adr, dih⟩. getdih(ℓ, ξ t) returns the dih element of the entry with index ℓ in the
table ξ t : ΞTable, and upddih(ℓ, b, ξ t) updates such an element. We use dihi or ξ t[i].dih to denote getdih(i, ξ t). Our goal is
to derive the following equation (Theorem 2):

({}, τ).Routing(0, |ℓl|, F) = ({}, τ).τM2
(∂M1

((νA)

[[Init(0, A, B)]]A ‖ (νℓl)nMid(ℓl, ξ t) ‖ [[Dst(0, ?, 0, B)]]B))
(4)

where M1 = {req, rep, error, data}, M2 = {req, rep, error}, (νℓl) abbreviates (νℓ1) . . . (νℓn) for all ℓ1, . . . , ℓn ∈ ℓl, A, B ∉ ℓl,
and for all i ≤ |ℓl|, the ith entry of table ξ t is ⟨0, ?, ?, 0, 0, i, F⟩. The initial τ actions specify the initial route discoveries of
middle nodes. To prove Eq. (4) regarding Lemma 2, we exploit the symbolic verification technique to show that:

Routing(0, |ℓl|, fin) ≃b τM2
(InitnMidDst(0, ℓl, ξ t, 0, ?, 0))

where

InitnMidDst(sA : Nat, ℓl : LocList, ξ t : ΞTable, sB : Nat, srcB : Loc, sqB : Loc)
def
=−

lx:Loc

−
ls:LocList

[
eq(sA, 0) ∧ ls ⊆ ℓl ∧


i∈ls

(eq(si, 0) ∧ ¬eq(nxi, ?) ∧ ¬dihi)

]
(1)

({}, nsnd(data(?), ?)).InitnMidDst(1/sA, ∀i∈lsif (eq(lx, i), T , dihi)/dihi) � 0 +−
k:Loc

−
ls:LocList

[
k ∈ ℓl ∧ ls ⊆ (B ◃ ℓl \ k) ∧ dihk (2)


i∈ls\B

(eq(si, 0) ∧ ¬eq(nxi, ?) ∧ ¬dihi ∧ (B ∈ ls ⇒ eq(sB, 0)))
]

(if (B ∈ ls, {? B}, {}), nsnd(data(if (eq(nxk, B), B, ?)), ?)).
InitnMidDst(F/dihk, ∀i∈ls\Bif (eq(nxk, i), T , dihi)/dihi,

if (B ∈ ls ∧ eq(nxk, B), 2, sB)/sB) � 0 +−
k:Loc

−
ls:LocList

[
k ∈ ℓl ∧ ls ⊆ (B ◃ ℓl \ k) ∧ ((eq(sk, 0) ∧ eq(nxk, ?)) (3)

∨ sk ≥ 3)

i∈ls\B

(¬dihi ∧ eq(si, 0) ∧ (B ∈ ls ⇒ eq(sB, 0)))
]

(if (B ∈ ls, {? B}, {}), nsnd(req(?, sqk), ?)).
InitnMidDst(4/sk, if (eq(sk, 0), ?, srck)/srck, ∀i∈ls\B(

if (sqk > sqi ∨ eq(nxi, ?), 3, 2)/si, k/srci,max(sqi, sqk)/sqi),
if (B ∈ ls, 1, sB)/sB, if (B ∈ ls,max(sqk, sqB), sqB)/sqB,
if (B ∈ ls, k, srcB/srcB)) � 0+−

k:Loc

−
ls:LocList

[
k ∈ ℓl ∧ ls ⊆ (ℓl \ k) ∧ eq(sk, 2)


i∈ls\B

eq(si, 4)
]

(4)

({}, nsnd(rep(?, ?, sqk, hpk), ?)).InitnMidDst(0/sk, (
∀i∈lsif (eq(srck, i) ∧ sqk ≥ sqi, if (¬eq(srci, ?), 2, 0), si)/si,

if (eq(srck, i) ∧ sqk ≥ sqi, k, nxi)/nxi,
if (eq(srck, i) ∧ sqk ≥ sqi, sqk, sqi)/sqi,
if (eq(srck, i) ∧ sqk ≥ sqi, hpk + 1, hpi)/hpi)) � 0+

3278 F. Ghassemi et al. / Theoretical Computer Science 412 (2011) 3262–3282−
ls:LocList

[
eq(sB, 1) ∧ ls ⊆ ℓl ∧ ¬eq(ls, ∅)


i∈ls

eq(si, 4)
]

(5)

({}, nsnd(rep(B, ?, sqB, 0), B)).InitnMidDst((
∀i∈lsif (eq(srcB, i) ∧ sqB ≥ sqi, if (¬eq(srci, ?), 2, 0), si)/si,

if (eq(srcB, i) ∧ sqB ≥ sqi, B, nxi)/nxi,
if (eq(srcB, i) ∧ sqB ≥ sqi, sqB, sqi)/sqi,

if (eq(srcB, i) ∧ sqB ≥ sqi, 0, hpi)/hpi), 0/sB) � 0+−
k:Loc

−
ls:LocList

[
k ∈ ℓl ∧ ls ⊆ (ℓl \ k) ∧ (eq(sk, 1) (6)

∨ (¬dihk ∧ eq(sk, 0) ∧ ¬eq(nxk, ?)))

i∈ls

(¬dihi ∧ eq(si, 0) ∧ ¬eq(nxi, ?))
]

({}, nsnd(error(?), ?)).InitnMidDst(3/sk, ?/srck, (sqk + 1)/sqk,
∀i∈lsif (eq(k, nxi), 1, si)/si) � 0

where


i∈ℓs
examines a Boolean expression on, and ∀i∈ℓs updates, a set of entries, implemented like the functions

and_allhm,fm,f ′m and upd_allgm , respectively. For instance,


i∈ls eq(si, 4) and ∀i∈lsif (eq(k, nxi), 1, si)/si) are equal to
and_all(ls, ξ t) and upd_all(ls, k, ξ t) respectively, where:

and_all(∅, ξ t) = T
and_all(ℓ ◃ ℓl, ξ t) = eq(ξ t[ℓ].s, 4) ∧ and_all(ℓl, ξ t)
upd_all(∅, ℓ′, ξ t) = empT
upd_all(ℓ ◃ ℓl, ℓ′, ξ t) = upds(ℓ, if (eq(ℓ

′, ξ t[ℓ].nx), 1, ξ t[ℓ].s), upd_all(ℓl, ℓ′, ξ t)).

Lemma 2.

InitnMidDst(sA, ℓl, ξ t, sB, srcB, sqB) = ∂M1
((νA)[[Init(sA, A, B)]]A ‖ (νℓl)nMid(ℓl, ξ t) ‖ [[Dst(sB, srcB, sqB, B)]]B).

Proof. We first expand nMid(ℓl, ξ t) by application of Composition Theorem 1 (see [14]), and then ∂M1
((νA)[[Init(sA, A, B)]]A ‖

(νℓl)nMid(ℓl, ξ t) ‖ [[Dst(sB, srcB, sqB, B)]]B) by application of parallel, hiding, and encapsulation and LA1−13 axioms.We conclude
the proof by application of Fold. �

We introduce the state mapping φ : Nat × LocList × ΞTable × Nat × Loc × Nat → Nat2 × Bool, where φ(sA, ℓl,
ξ t, sB, srcB, sqB) = (n,N, fin) is defined:

n = if (¬fin, if (eq(sA, 0), 0, ∃i∈ℓl · dihi ⇒ hpi), any value)

N = |ℓl|

fin =


i∈ℓl

¬dihi ∧ eq(sA, 1)

As long as data is held by some node in the network (¬fin), the value of 0 for n denotes that the data is held by the initiator
(that does not know any route to the destination) while the value n ≥ 1 denotes that the data is held by a middle node and
so this value specifies the distance that data message should pass to reach the destination. Therefore, when data is not held
by the initiator (¬eq(sA, 0)), its value is the hop count of middle node holding the data. Themaximum distance that the data
message can pass equals the number of middle nodes. Since fin implies no further data transmission, it becomes true if the
middle nodes and the initiator do not have the data. The values of sB, srcB and sqB do not affect φ, so we write φ(sA, ℓl, ξ t)
instead of φ(sA, ℓl, ξ t, sB, srcB, sqB).

Invariants of InitnMidDst(sA, ℓl, ξ t, sB, srcB, sqB) are:

I1 ≡ eq(si, 0) ∨ eq(si, 1) ∨ eq(si, 2) ∨ eq(si, 3) ∨ eq(si, 4) ∨ eq(si, 5)
I2 ≡ (eq(sB, 0) ∨ eq(sB, 1) ∨ eq(sB, 2)) ∧ (eq(sA, 0) ∨ eq(sA, 1))
I3 ≡ eq(nxi, j) ∨ eq(nxi, ?)
I4 ≡ dihi ⇒ eq(sA, 1) ∧ ∀k∈ℓl∧¬eq(k,i)¬dihk

I5 ≡ dihi ⇒ eq(si, 0) ∧ ¬eq(nxi, ?)
I6 ≡ eq(nxi, j) ∧ eq(sj, 0) ⇒ ¬eq(nxj, ?)
I7 ≡ eq(nxi, j) ∧ si ≤ 2 ⇒ sqj ≥ sqi ∧ hpi > 0

F. Ghassemi et al. / Theoretical Computer Science 412 (2011) 3262–3282 3279

I8 ≡ eq(nxi, j) ∧ eq(sqi, sqj) ∧ si ≤ 2 ⇒ eq(hpi, hpj + 1)
I9 ≡ eq(nxi, B) ⇔ eq(hpi, 1) ∧ sqB ≥ sqi

I10 ≡ eq(si, 3) ∨ eq(si, 4) ⇔ eq(nxi, ?)
I11 ≡ si ≤ 2 ⇒ ¬eq(src i, ?)

where i, j ∈ ℓl such that ¬eq(i, j).
Invariants I1−3 define the ranges of variables. Intuitively I4 explains that only one middle node or the initiator can hold

the data, and I5 explains this is when that node has a route to the destination (¬eq(nx, ?)) and stays in the state 0. Each
next hop always has a route unless it is involved in another route discovery (when ¬eq(sj, 0)), as stated by I6. Invariants
I7,8 imply that on a route from a middle node to the destination, either the sequence numbers increase, or the sequence
numbers are equal (denoting to a stable route) and the hop counts decrease. When a middle node is directed connected
to the destination, its hop count is 1, as explained by I9. The existence of a route in the node i is inferred by the condition
si ≤ 2, as implied by I10. By I11, a node may send a reply to a node with address src i if it is involved in a route discovery.

Lemma 3. I1−11 are invariants of InitnMidDst(sA, ℓl, ξ t, sB, srcB, sqB).

Proof. We only prove invariants I7 and I8 together; the others can be proved with a similar argumentation. We start from
a state with eq(si, 0) ∧ eq(sj, 0) ∧ eq(nxi, j) ∧ eq(sqi, sqj) ∧ eq(hpi + 1, hpj) ∧ eq(nxj, k) ∧ ¬eq(i, k). According to the values
of dihi and dihj, three cases can be considered. We examine the activities of node i and j in these states, to trace how sqi, sqj
and hpi, hpj are changed. We use x′ to denote the updated value of x in the next state:

• dihi: In this state, according to I4, ¬dihj. By summand (2), node i may send a data message, and two cases can be
distinguished. If j ∈ ls, a statewith¬dih′

i∧dih′

j is reached, otherwise a statewith¬dih′

i is reached. Both cases are examined
later. By summand (6), node jmay send an errorwhile i ∉ ls (since dihi), and a statewith eq(s′j, 3)∧sq′

j = sqj+1 is reached.
From this state, only states with eq(nxi, j) ∧ sqj > sqi ∧ dihi are reached, unless node i sends data which is examined
later. By summand (6), node j may receive an error message from any node other than i and a state with eq(s′j, 1). Again
from this state, node j may send an error message, and a state with eq(s′j, 3) ∧ sq′

j = sqj + 1 is reached as discussed
before. By summand (3), node jmay receive a request from any node other than i. Depending on the value of the carried
sequence number, a state with eq(s′j, 2) or eq(s

′

j, 3) is reached. In the former case, node j can only send a reply message
by summand (4), and then a state with eq(s′j, 0) is reached again. In the latter case, a state with eq(s′j, 3) ∧ sq′

j = sqj + 1
is reached as discussed before.

• dihj: In this state, according to I4, it holds that ¬dihi. By summand (2), node jmay send a data message, and only a state
with¬dihi∧¬dihj is reached (which is discussed later). By summand (6), node imay send an errorwhile j ∉ ls (since dihj),
and a state with eq(s′i, 3) ∧ sq′

i = sqi + 1 is reached. From this state, only states with eq(si, 0) ∧ ¬eq(nxi, j) are reached,
unless node j sends data which is examined later. By summand (6), node i may receive an error, but since it was from
a node other than j, its state is not changed. By summand (3), node i may receive a request from any node other than j.
Depending on the value of the carried sequence number, a state with eq(s′i, 2) or eq(s

′

i, 3) is reached. In the former case,
node i can only send a reply message by summand (4), and then a state with eq(s′i, 0) is reached again. In the latter case,
a state with eq(s′i, 3) ∧ sq′

i = sqi + 1 is reached, as discussed before.
• ¬dihi ∧ ¬dihj: By summands (3), (6), (2) and (1), the following cases need to be considered:

– By summand (3), node i may receive a request from any node other than j (since ¬eq(nxj, ?)), and depending on the
value of its carried sequence number, a state with eq(s′i, 2) or eq(s

′

i, 3) ∧ sq′

i = sqi + 1 is reached. In the former case,
node i can only send a reply message, and again a state with eq(s′i, 0) is reached. In the latter case, by summand (3),
node i may send a request, and a state with eq(s′i, 4) is reached, while depending on j ∈ ls, node j may receive such a
request. If node j receives such a request, then eq(s′j, 3) ∧ eq(src ′

j , i) ∧ sq′

j = sqj + 1 holds. From this state, jmay find a
path to the destination, and reply to i, so by summand (4), a statewith eq(si, 0)∧eq(nxi, j)∧eq(sqi, sqj)∧eq(hpi, hpj+1)
can be reached. However if a node other than j replies to i, then a state with eq(si, 0) ∧ ¬eq(nxi, j) is reached. If node
j does not receive such a request, then node i may send the request again by summand (3) until it receives a reply.
If j never receives these requests, then states with eq(si, 0) ∧ ¬eq(nxi, j) are reached, but if j receives one of these
requests of i, then a state with eq(s′j, 3) ∧ eq(src ′

j , i) ∧ sq′

j = sqj + 1 is reached, as already discussed.
– By summand (3), node j may receive a request from any node other than i (since ¬eq(nxi, ?)). With a similar

argumentation as in the previous case, suppose that a state with eq(s′j, 3) ∧ sq′

j = sqj + 1 ∧ ¬eq(src ′

j , i) is reached.
From this state two sets of states can be reached. Either node i may not send or receive any request with a higher
sequence number than its own, and consequently only states with eq(si, 0) ∧ eq(nxi, j) ∧ sqj > sqi can be reached. Or
node imay send or receive a request with a higher sequence number, in which case states with eq(si, 0) ∧ ¬eq(nxi, j)
can be reached (since ¬eq(src ′

j , i)).
– By summand (3), both nodes i, jmay receive a request from a node k, and depending on the carried sequence number,

the next states of both are 2 or 3. The first case is straightforward, as discussed in the previous cases. In the second
case, a state with eq(s′l, 3) ∧ eq(src ′

l , k) ∧ sq′

l = sql + 1 where l ∈ {i, j} is reached. From this state, only states with
eq(si, 0) ∧ ¬eq(nxi, j) can be reached.

3280 F. Ghassemi et al. / Theoretical Computer Science 412 (2011) 3262–3282

– By summand (6), node j may send an error message, and depending on i ∈ ls, node i may receive. If node i does
not receive it, then a state with eq(s′j, 3) ∧ sq′

j = sqj + 1 ∧ eq(src ′

j , ?) is reached. From this state two sets of states
can be reached. Either node i may not send or receive any request with a higher sequence number than its own, and
consequently only states with eq(si, 0)∧ eq(nxi, j)∧ sqj > sqi can be reached. Or node imay send or receive a request
with a higher sequence number, in which case states with eq(si, 0) ∧ ¬eq(nxi, j) can be reached (since eq(src ′

j , ?)). If
node i receives the error, a state with eq(s′j, 3) ∧ sq′

j = sqj + 1∧ eq(src ′

j , ?) ∧ eq(s′i, 1) is reached. From this state, only
states with eq(si, 0) ∧ ¬eq(nxi, j) can be reached (since eq(src ′

j , ?)).
– By summand (6), node i may send an error message, and no matter whether j receives it or not, a state with

eq(s′i, 3) ∧ sq′

i = sqi + 1 is reached. By summand (3), node i may send a request, and as discussed before, depending
on whether j may receive such requests and then sends a reply to i, two sets of states can be reached: either
eq(si, 0) ∧ eq(nxi, j) ∧ eq(sqi, sqi) ∧ eq(hpi, hpj + 1) or eq(si, 0) ∧ ¬eq(nxi, j).

– By summand (6), node i, j may receive an error from a node l. Depending on nxl, one of the nodes i, j would receive
it, and a state with eq(nx′

i, 2) or eq(nx
′

j, 2) is reached. In any of these state, node i or j may send an error, which was
discussed before.

– By summands (2) and (1), node i, j may receive data from a node l where dihl. Depending on nxl, one of the nodes i, j
may receive it, and a state with ¬dih′

l ∧ dih′

i or ¬dih′

l ∧ dih′

j is reached, as discussed before. �

Lemma 4. For all sA, ℓl : LocList with nodup(ℓl), ξ t, sB, srcB, sqB and A, B ∉ ℓl such that the invariants of I1−11 are satisfied, then

τM2
(InitnMidDst(sA, ℓl, ξ t, sB, srcB, sqB)) ≃b Routing(φ(sA, ℓl, ξ t)).

Proof. According to Proposition 1, the following conditions should be examined. Let ητ ∈ IM1
where IM1

= {nsnd(C, m, ℓ),

nrcv(C, m)|∃m ∈ M1 · isTypem(m)}. We use x′ to denote the updated value of x in the next state.

1. Two cases need to be considered for the states of InitnMidDst: the data is held by node A, i.e. eq(sA, 0), or by a middle
node i ∈ ℓl (since if no node holds the data, no ητ action can make dihj for some node j or eq(sA, 0), and consequently the
mapped state, i.e. ¬fin, would not change). If eq(sA, 0), then the mapped state is eq(n, 0) and no ητ action can change sA.
If dihi, then themapped state is eq(n, hpi), while¬fin∧eq(N, |ℓl|). The hpi may change if node i receives a repmessage by
summand (4) or (5) (when eq(si, 4)). But by invariant I5 and dihi, eq(si, 0) holds and so it cannot receive such a message.
Since an ητ by another node would not change hpi and dihi, the mapped state is not changed by any ητ .

2. Only communications of InitnMidDst over messages data are visible, which are only possible when dihi for some node
i ∈ ℓl or eq(sA, 0). Therefore three classes of states can be considered.
• eq(sA, 0): By invariant I4,


i∈ℓl ¬dihi holds. In these states, for any arbitrary lx : Loc and ls : LocList , InitnMidDst

performs nsnd(data(?), ?) for all possible topologies {} by summand (1), while node lxmay receive or may not receive
such data (depending on lx ∈ ls ∧ eq(slx, 0) ∧ ¬eq(nxlx, ?)). If node lx does not receive such data, a state with
eq(s′A, 1)


i∈ℓl ¬dihi is reached, and this scenario is matched with a same action and network constraint of Routing

which makes eq(fin′, F). If node lx receives this message, a state with dih′

lx is reached. This scenario can be matched
with the same action and network constraint of Routing , by which eq(n′, hplx).

• dihi∧eq(nxi, j)∧hpi > 1: By invariantI4, eq(sA, 1)


j∈ℓl,¬eq(i,j) ¬dihj holds. In these states, for any arbitrary ls : LocList ,
InitnMidDst performs nsnd(data(?), ?) by summand (2)with the network constraint {? B} or {} depending on B ∈ ls,
while node j may receive or may not receive such data (depending on j ∈ ls ∧ eq(sj, 0) ∧ ¬eq(nxj, ?)). If node j does
not receive such a message, a state with ¬dih′

i ∧ eq(sA, 1)


j∈ℓl,¬eq(i,j) ¬dihj is reached, and this scenario is matched
by the sending data action of Routing with the network constraint {} which makes eq(fin′, F). If the next hop (node j)
receives, then this scenario can be matched by the sending data action of Routing with the network constraint {}, by
which eq(n′, hpj).

• dihi∧eq(nxi, j)∧eq(hpi, 1): By invariant I9, eq(j, B), and by invariant I4, eq(sA, 1)


j∈ℓl,¬eq(i,j) ¬dihj. In these states, for
any arbitrary ls : LocList , InitnMidDst performs nsnd(data(B), ?) by summand (2) with the network constraint {? B}
or {} depending on B ∈ ls, and a state with ¬dih′

i ∧ eq(sA, 1)


j∈ℓl,¬eq(i,j) ¬dihj is reached. This scenario is matched by
a sending data action of Routing with the network constraint {} which makes eq(fin′, F).

3. Four cases can be considered for φ(sA, ℓl, ξ t), i.e. the states of Routing:
• fin : In this case no action can be performed. The same holds for InitnMidDst , since the mapping state is


i∈ℓl ¬dihi ∧

eq(sA, 1), and by summands (2) and (1), data can be sent when eq(sA, 0) or dihi for some i ∈ ℓl;
• eq(n, 0): In this case Routing can make two ({}, nsnd(data(?), ?)) transitions, either to a state with ¬fin′, or for some

h < N to a state eq(n′, h). This state is mapped from states of InitnMidDst with eq(sA, 0). The first transition of Routing
can be matched by the transitions of summand (1) such that the data sent by node A is not received by node lx
(lx ∉ ls ∨ (¬eq(slx, 0) ∨ eq(nxlx, ?))). By invariants I7,8 the hop count of each middle node is at most the number
of middle nodes participating in the route discovery. Therefore, for any value of h, this state can do some ητ actions,
due to arbitrary mobility of nodes, such that for some address lx ∈ ℓl, ¬eq(nx′

i, ?) ∧ eq(s′i, 0) ∧ eq(hp′

i, h) holds,
while the data is still held by sA. Then this state can perform a sending data action with the network constraint {} by
summand (1) for eq(lx, i) ∧ i ∈ ls such that a state with dih′

lx is reached. The second transition of Routing is matched
to these data transitions.

F. Ghassemi et al. / Theoretical Computer Science 412 (2011) 3262–3282 3281

• n > 1 ∧ ¬fin: Similar to the previous case, Routing can make two ({}, nsnd(data(?), ?)) transitions, either to a
state with ¬fin′, or for some h < N to a state with eq(n′, h). This state is mapped from states of InitnMidDst
with dihi ∧ eq(hpi, n) ∧ eq(nxi, j) for some arbitrary address j ∈ ℓl ∧ n > 0. The first transition of Routing
can be matched by the transitions of summand (2) such that the data sent by node i is not received by node j
(j ∉ ls ∨ (¬eq(sj, 0) ∨ eq(nxj, ?))). By invariants I7,8 the hop count of each middle node is less than the number
of middle nodes participating in the route discovery. Therefore, for any value of h, this state can do some ητ actions,
due to the arbitrary mobility changes of nodes, such a state with ¬eq(nx′

j, ?) ∧ eq(s′j, 0) ∧ eq(hp′

j, h) is reached, while
the data is still held by i. Then this state can perform a sending data actionwith the network constraint {} by summand
(2) for arbitrary ls such that j ∈ ls and a state with dih′

j is reached. The second transition of Routing is matched to this
data transition.

• ¬fin ∧ n = 1: In this case, Routing can perform ({}, nsnd(data(B), ?)), by which fin is set to F . By invariant I9, the
state of InitnMidDst implies that eq(dihi, T) ∧ eq(hpi, 1) ∧ eq(nxi, B) for some node i. By summand (2), InitnMidDst
can perform nsnd(data(B), ?) for some ls : LocList such that B ∉ ls, while the value of dihi is set to false. �

Corollary 1. For all sA : Nat, ℓl : LocList with nodup(ℓl), ξ t, sB, srcB, sqB and A, B ∉ ℓl such that the invariants of I1−11 are
satisfied,

({}, τ).Routing(φ(sA, ℓl, ξ t)) ≃rb ({}, τ).τM2
(∂M1

((νA)

[[Init(sA, A, B)]]A ‖ (νℓl)nMid(ℓl, ξ t) ‖ [[Dst(sB, srcB, sqB, B)]]B)).

Eq. (4) is a direct result of following corollary.

Theorem 2. For all ℓl : LocList with nodup(ℓl), ξ t such that for all i ≤ |ℓl| the ith entry of table ξ t holds ⟨0, ?, ?, 0, 0, i, F⟩:

({}, τ).Routing(0, |ℓl|, F) ≃rb ({}, τ).τM2
(∂M1

((νA)

[[Init(0, A, B)]]A ‖ (νℓl)nMid(ℓl, ξ t) ‖ [[Dst(0, ?, 0, B)]]B)).

6. Conclusions and future work

In this paper, we enhanced and illustrated the applicability of our framework CNT, tailored for the specification and
verification of MANETs. To this aim, we examined the applicability of the CNT operational semantics, constrained labeled
transition systems, in model checking. Through model checking we can examine the behavior of a MANET for the arbitrary
mobility of nodes through one model, without the need to specify mobility changes. The constraints added to the transition
labels allow us to derive mobility scenarios for each MANET behavior. Then we extended our framework with symbolic
verification technique based on cones and foci, and demonstrated its application to the verification of MANETs with an
arbitrary number of nodes which deploy the same protocol. We aim to establish a framework for mechanical protocol
verification following the approach of [8]. Our algebraic framework is the first one that addresses the verification of networks
with an arbitrary number of nodes. In [23] an approach using a model checker (SPIN) and a theorem prover (HOL) was
presented to reason about such networks; the theorem prover uses the facts proved by model checker. However, breaking
down a proof to these facts is not straightforward. The symbolic verification approach provides a more natural proof
framework for such networks.

Our framework is applicable in wireless networks in which communication is based on non-blocking and lossy local
broadcast, if it is extended with the static location binding operator of [24] which restricts the arbitrary mobility of nodes.

Appendix. Proof of Proposition 1

Weexploit semi-branching computednetwork bisimilarity introduced in [3] to prove Proposition 1. In the next definition,

t
[(C,η)]
−−−→ t ′ denotes either t

(C,η)
−−→ t ′, or t = t ′ if η is of the form nrcv(m) or τ .

Remark 1. As axiom Ch6 explains, if t
(C1,η)
−−−→ t ′, then t

(C2,η)
−−−→ t ′ for any C1 ⊆ C2.

Definition 6. A binary relation R on computed network terms is a semi-branching computed network simulation, if t1Rt2
implies whenever t1

(C,η)
−−→ t ′1:

• there are t ′2 and t ′′2 such that t2 ⇒ t ′′2
[⟨(C,η)⟩]
−−−−→ t ′2, t1Rt ′′2 and t ′1Rt ′2.

R is a semi-branching computed network bisimulation if R and R−1 are semi-branching computed network simulations.
Computed networks t1 and t2 are semi-branching computed network bisimilar if t1Rt2, for some semi-branching computed
network bisimulation relation R.

Theorem 3. Two computed network terms are related by a branching computed network bisimulation if and only if they are
related by a semi-branching computed network bisimulation [3].

3282 F. Ghassemi et al. / Theoretical Computer Science 412 (2011) 3262–3282

To prove Proposition 1, in view of Theorem 3, instead of showing that the state mapping relation φ : D → D′ constitutes
a branching computed network bisimulation, we show that it constitutes a semi-branching computed network bisimulation
on the reachable states of D, overapproximated by the invariant I. We assume without loss of generality that D and D′ are
disjoint. Define R ⊆ D × D′ as the smallest relation such that whenever I(d) for a d : D, then dRφ(d). Then we show that
R satisfies the transfer conditions of Definition 6. Let sRt such that t = φ(s). By definition of R we have I(s).

• If s
(C,η)
−−→ s′, there are two cases to consider:

1. If η = τ , then it must be generated by application of the abstraction function τM on an action ητ ∈ IM , while hητ (s, e),
s′ = gητ (s, e) and C = Cητ (s, e) for some e : E. By matching criterion 1, φ(gητ (s, e)) = t . Moreover, I(s) and hητ (s, e)
together imply that I(gητ (s, e)). Hence, by definition of R, gητ (s, e)Rt .

2. Ifη ≠ τ , then hη(s, e), s′ = gη(s, e) andC = Cη(s, e) for someη ∈ Actc\IM and e : E. Bymatching criterion 2, eitherη is
a receive action such thatφ(gη(s, e)) = t , or there is an ⟨η⟩ such that h′

⟨η⟩
(t, e), fη(s, e) = f ′

⟨η⟩
(t, e),C ′

⟨η⟩
(t, e) ⊆ Cη(s, e)

and φ(gη(s, e)) = g ′

⟨η⟩
(t, e). Moreover, I(s) and hη(s, e) together imply I(gη(s, e)). In the former case, by definition

of R, gη(s, e)Rt . In the latter case, by Remark 1 and ⟨(Cη(s, e), η)⟩ = (C⟨η⟩(s, e), ⟨η⟩), t
⟨(Cη(s,e),η)⟩

−−−−−−−→ g ′

⟨η⟩
(t, e) and

consequently gη(s, e)Rg ′

⟨η⟩
(t, e).

• If t
η

−→C t ′, then h′
η(t, e), t

′
= g ′

η(t, e) and C = C ′
η(t, e) for some η ∈ Actc \ IM and e : E. By matching criterion 3,

either η is a receive action such that t = t ′, or there is an s∗ : D such that s
ητ1
−→C1 . . .

ητn
−→Cn s∗ with ητ1 , . . . , ητn ∈ IM

and h⟨η⟩(s∗, e), f⟨η⟩(s∗, e) = f ′
η(t, e), C⟨η⟩(s∗, e) ⊆ C ′

η(t, e) and φ(g⟨η⟩(s∗, e)) = g ′
η(t, e) in the CLTS for Imp. Invariant I

and matching criterion 1 hold for all states on this ητ -path. Repeatedly applying matching criterion 1, we get φ(s∗) =

φ(s) = t . The former case is straightforward since I(s∗), and by definition of R, s∗Rt . In the latter case by Remark 1

and ⟨(C ′
η(t, e), η)⟩ = (C ′

⟨η⟩
(t, e), ⟨η⟩), s ⇒ s∗

⟨(C′
η(t,e),η)⟩

−−−−−−−→ g⟨η⟩(s∗, e). Moreover, I(s∗) and h⟨η⟩(s∗, e) together imply
I(g⟨η⟩(s∗, e)). So by definition of R, s∗Rt and g⟨η⟩(s∗, e)Rg ′

η(t, e).

Concluding, R is a semi-branching computed network bisimulation.

References

[1] F. Ghassemi, W. Fokkink, A. Movaghar, Restricted broadcast process theory, in: Proc. 6th Conference on Software Engineering and Formal Methods,
SEFM’08, IEEE, 2008, pp. 345–354.

[2] F. Ghassemi, W. Fokkink, A. Movaghar, Equational reasoning on ad hoc networks, in: Proc. 3rd Conference on Fundamentals of Software Engineering,
FSEN’09, in: Lecture Notes in Computer Science, vol. 5961, Springer, 2009, pp. 113–128.

[3] F. Ghassemi, W. Fokkink, A. Movaghar, Equational reasoning on mobile ad hoc networks, Fundamenta Informaticae 103 (2010) 1–41.
[4] J.F. Groote, A. Mathijssen, M. Reniers, Y. Usenko, M. van Weerdenburg, The formal specification language mCRL2, in: Proc. Methods for Modelling

Software Systems, MMOSS’06, in: Dagstuhl Seminar Proceedings, vol. 06351, Schloss Dagstuhl, 2006.
[5] H. Garavel, R. Mateescu, F. Lang, W. Serwe, CADP 2006: A toolbox for the construction and analysis of distributed processes, in: Proc. 19th Conference

on Computer Aided Verification, CAV’07, in: Lecture Notes in Computer Science, vol. 4590, Springer, 2007, pp. 158–163.
[6] J.F. Groote, J. Springintveld, Focus points and convergent process operators: A proof strategy for protocol verification, Journal of Logic and Algebraic

Programming 49 (1–2) (2001) 31–60.
[7] W. Fokkink, J. Pang, Cones and foci for protocol verification revisited, in: Proc. 6th Conference on Foundations of Software Science and Computational

Structures, FoSSaCS’06, in: Lecture Notes in Computer Science, vol. 2620, Springer, 2003, pp. 267–281.
[8] W. Fokkink, J. Pang, J. van de Pol, Cones and foci: A mechanical framework for protocol verification, Formal Methods in System Design 29 (1) (2006)

1–31.
[9] J.F. Groote, J.v. Wamel, The parallel composition of uniform processes with data, Theoretical Computer Science 266 (1–2) (2001) 631–652.

[10] W. Fokkink, Modelling Distributed Systems, Springer, 2007.
[11] H. Ehrich, J. Loeckx, M. Wolf, Specification of Abstract Data Types, John Wiley, 1996.
[12] J.F. Groote, A. Ponse, µCRL: a base for analysing processes with data, in: Proc. 3rd Workshop on Concurrency and Compositionality, in: GMD-Studien,

vol. 191, 1991, pp. 125–130.
[13] J.F. Groote, A. Ponse, Syntax and semantics of µCRL, in: Workshop on Algebra of Communicating Processes, in: Workshops in Computing, Springer,

1995, pp. 26–62.
[14] F. Ghassemi, W. Fokkink, A. Movaghar, Verification of mobile ad hoc networks: an algebraic approach, Tech. Rep., Computer Engineering Department,

Sharif University of Technology.
[15] J. Bergstra, J.W. Klop, Process algebra for synchronous communication, Information and Control 60 (1–3) (1984) 109–137.
[16] B. Luttik, Choice quantification in process algebra, Ph.D. Thesis, University of Amsterdam, 2002.
[17] C.E. Perkins, E.M. Belding-Royer, Ad-hoc on-demand distance vector routing, in: Proc. 2ndWorkshop onMobile Computing Systems and Applications,

WMCSA’99, IEEE, 1999, pp. 90–100.
[18] O. Wibling, J. Parrow, A. Pears, Automatized verification of ad hoc routing protocols, in: Proc. 24th IFIP WG6.1 International Conference on Formal

Techniques for Networked and Distributed Systems, FORTE’04, in: Lecture Notes in Computer Science, vol. 3235, Springer, 2004, pp. 343–358.
[19] R. Mateescu, M. Sighireanu, Efficient on-the-fly model-checking for regular alternation-free mu-calculus, Science of Computer Programming 46 (3)

(2003) 255–281.
[20] D. Obradovic, Formal analysis of routing protocols, Ph.D. Thesis, University of Pennsylvania, 2001.
[21] Y. Usenko, Linearization in µCRL, Ph.D. Thesis, Eindhoven University of Technology, 2002.
[22] M. Bezem, J.F. Groote, Invariants in process algebra with data, in: Proc. 5th International Conference of Concurrency Theory, CONCUR’94, in: Lecture

Notes in Computer Science, vol. 836, Springer, 1994, pp. 401–416.
[23] K. Bhargavan, D. Obradovic, C.A. Gunter, Formal verification of standards for distance vector routing protocols, Journal of the ACM 49 (4) (2002)

538–576.
[24] J.C. Godskesen, A Calculus for mobile ad-hoc networks with static location binding, Electronic Notes in Theoretical Computer Science 242 (1) (2009)

161–183.

	Verification of mobile ad hoc networks: An algebraic approach
	Introduction
	Concepts
	Formal framework: computed network theory
	Data types
	Computed network terms
	Rooted branching computed network bisimilarity
	Axioms

	Case study: a simple routing protocol
	Protocol specification
	Protocol analysis

	Symbolic verification
	Linear computed network equations and invariants
	Equivalence checking by using state mappings
	Linearization of uniform MANETs
	Verification of the improved routing protocol

	Conclusions and future work
	Proof of prop::matching
	References

