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Abstract—In this paper, performance of grid computing environment is studies in the presence of failure-repair of the resources.
To achieve this, in the first step, each of the grid resource is individually modeled using Stochastic Reward Nets (SRNs), and
mean response time of the resource for grid tasks is computed as a performance measure. In individual models, three different
scheduling schemes called random selection, non-preemptive priority, and preemptive priority are considered to simultaneously
schedule local and grid tasks to the processors of a single resource. In the next step, single resource models are combined
to shape an entire grid environment. Since the number of the resources in a large-scale grid environment is more than can
be handled using such a monolithic SRN, two approximate SRN models using folding and fixed-point techniques are proposed
to evaluate the performance of the whole grid environment. Brouwer’s fixed-point theorem is used to theoretically prove the
existence of a solution to the fixed-point approximate model. Numerical results indicate an improvement of several orders of
magnitude in the model state space reduction without a significant loss of accuracy.
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1 INTRODUCTION

G RID computing environment is composed of
many resources distributed within multiple vir-

tual organizations and administrative domains [1],
[2]. Grid enables coordinated resource sharing and
problem solving in dynamic and multi-institutional
organizations [1]. Computational grids have been
found to be very powerful environments to solve the
computational- and data-intensive problems in sci-
ence and industry. To use the tremendous capabilities
of the grid computing environment, grid users should
deliver their own tasks to the environment. To do
this, grid users interact with Resource Management
System (RMS) or Grid Manager (GM) to submit the
tasks to the environment. Afterward, RMS dispatches
the tasks to the distributed resources within the en-
vironment. Whenever a grid resource obtains a grid
task, it starts to service the task, and then, returns
results to the users [2]–[5].

In order to deliver the tasks to the grid environ-
ment, distributed resources should be available to
interact with RMS and grid users. Processors existing
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inside a resource can fail to execute a grid task at
any time. Therefore, the availability of a grid resource
to service grid tasks can be highly influenced by
processor failure. It is worthwhile to mention that
although RMS can fail during servicing the grid tasks,
basically it is considered to be a very powerful and
failure free resource in the environment [2]–[6]. On
the other hand, grid resources should service local
tasks submitted to them directly by local users in their
administrative domains. When a user existing in a
resource’s administrative domain submits a task to
the resource, the task is serviced inside that resource
along with the grid tasks submitted by grid users
[1], [7], [8]. Based on the processor management poli-
cies existing inside a resource, different scheduling
schemes can be considered to simultaneously dispatch
grid and local tasks among processors of the resource.
In some cases, a higher execution priority is assigned
to service local tasks with respect to the grid tasks,
but generally, any kind of scheduling can be applied.

In addition to the grid resource availability which
influences user perception of grid environment use-
fulness, performance of the grid is also considered
as one of the most important user satisfaction fac-
tors. Generally, performance is the key issue for any
system that services user requests and can be de-
fined considering the specification of the system and
user expectations. In grid computing environment,
performance evaluation mainly focuses on the time
to service the tasks submitted by grid and local
users. In this respect, several related measures such
as mean response time and mean waiting time of
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the grid tasks can be defined. Moreover, blocking
probability of grid task arrivals can be one of the
interesting measures in this kind of distributed com-
puting systems in which designing a system with
low blocking probability is important [3], [4], [9]–
[11]. In traditional performance evaluation, each of
these measures is assessed without any consideration
of availability/reliability of a resource. Nevertheless,
in highly distributed computing systems consisting
of many independent resources (e.g. grid computing
environments) each of the resources can fail or even
can be added to or removed from the system at any
time. Therefore, the performance of a single resource
and whole distributed system is highly dependent
on the number and processing power of the existing
resources and their processors.

Therefore, analyzing the pure performance of a grid
resource, and consequently grid environment tends
to be optimistic since it ignores the failure-repair
behavior of the processors and resources. On the other
hand, pure availability analysis tends to be conserva-
tive, since performance considerations are not taken
into account. As a result, combined performance and
availability, called performability [12], [13], evaluation
of the grid computing environment can present most
realistic view of grid system behavior, and help to
appropriately compute the mean response time of
the system for grid tasks. To achieve this, we use
Stochastic Reward Nets (SRNs) to model and evaluate
the performability of a single grid resource and the
whole grid environment, in this paper. SRN is an ex-
tension of Stochastic Petri Nets (SPNs) which has the
advantage of specifying and evaluating a real system
in a compact and intuitive way. SRN has emerged
as a powerful modeling paradigm in performance,
availability and reliability analysis of fault tolerant
computing and communication systems [14]–[23] as
it enables the automated generation and solution of
large Markov reward models.

The proposed method is discussed in two steps.
In the first step, we model a single grid resource
using SRNs and compute mean response time of
the resource to grid tasks. Three different SRNs are
proposed to model a single grid resource considering
three different scheduling schemes applied to sched-
ule grid and local tasks to the processors inside a re-
source. The first scheduling scheme does not consider
any priority between grid and local tasks, but the
next two schemes consider non-preemptive and pre-
emptive priorities for local tasks over the grid ones.
After modeling single grid resources in the first step,
the SRN models of the individual single resources
are combined and an entire grid environment is cap-
tured in the second step. Since, the number of the
resources in real grid environments is rather large, the
combined model encounters the state space explosion
problem in which the number of the states in the
underlying Markov chain of the SRN model becomes

more than can be handled by existing tools. Therefore,
the SRN resulting from combining SRN models of
single resources is not scalable, and cannot be used
to model and evaluate the performability of real grid
environments. To overcome this problem, two approx-
imate SRN models are proposed. The first approxi-
mate model uses folding technique to model whole
grid environment and the second one uses decom-
position approach and fixed-point iteration method
[20], [24], [25] to solve the sub-models. The existence
of a fixed-point is proven using Brouwer’s fixed-
point theorem. Moreover, some simple examples are
presented to show how the models can be applied to
evaluate the performability of a single grid resource
and that of a grid environment. The example provided
for modeling and evaluating entire grid environment
obviously shows that the approximate SRN models
considerably decrease the number of the states in
the underlying Markov chain of the SRNs without
any undue loss of accuracy and can be used for real
systems.

Main contribution of this paper is modeling a
single grid resource to compute the combined per-
formance and availability measure of the resource.
We model different scheduling schemes to simultane-
ously schedule grid and local tasks to the processors
of a resource. Moreover, presenting two models to
approximate the non-scalable monolithic model of an
entire grid environment to capture a real grid is an-
other contribution of the paper. The main advantage
of the approximate models presented in this paper is
their capability in modeling large scale grids without
showing any state space explosion.

The rest of the paper is organized as follows.
Section 2 introduces some related research done
in the field of grid performance and dependability
evaluation. Moreover, some research papers related
to the concept of modeling various computing sys-
tems by SRNs which use approximate models are
introduced in this section. In Section 3 and Section 4,
the proposed models for combined performance and
availability analysis of a single grid resource and
whole grid environment are presented, respectively.
Furthermore, in both Section 3 and Section 4, de-
tailed examples together with numerical results are
provided. Finally, Section 5 concludes the paper and
presents future work.

2 RELATED WORK

Many analytical models have been proposed to eval-
uate the performance and dependability measures
of various computing systems. Some of the models
evaluate performance and dependability measures
separately and some others simultaneously take both
of them into account. In the following, some of the
related work in this research area especially on grid
and distributed computing systems are introduced.
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Azgomi et al. [6] have presented a Colored Petri
Net (CPN) model to show the workflow of task exe-
cution in grid computing, and compute the reliability
of a grid service. Although the CPN proposed in
[6] precisely investigates the failure event of grid
resources, it ignores considering local tasks of grid
resources. Entezari-Maleki et al. [10] have proposed
a Markov chain model to compute total makespan
and mean response time for a single task in grid
computing environments. The main advantage of the
model proposed in [10] is that it considers more than
one manager for the grid environment. Grid managers
are distributed within the environment and they col-
laborate with each other to solve a task submitted to
the environment by grid user. However, the model
presented in [10] still ignores the failure-repair event
of grid resources and the performance is evaluated
purely without any consideration about dependability
issues. Parsa et al. [11], [26] have proposed queuing
network and Generalized Stochastic Petri Net (GSPN)
solutions to model and evaluate performance of grid
computing systems. Both queuing network and GSPN
models proposed in [11] only consider grid tasks sub-
mitted by grid users paying no attention to the local
tasks of the system, whereas the models proposed
in [26] consider both types of tasks, grid and local
tasks. Difficulty with all of the models proposed in
[26] and [11] is that the models can only compute
pure performance of the grid environment and they
do not handle the situation in which one or more of
the resources fail.

Longo et al. [22] have proposed an SRN model to
analyze the availability of large scale IaaS cloud. The
model is firstly presented in its monolithic form in one
level, and then, decomposed to overcome the large-
ness problem caused by the monolithic model. Depen-
dencies among sub-models of the decomposed model
are found, and then, fixed-point iteration method is
used to solve the interacting sub-models. Another
model in the same context has been proposed in [23]
by Ghosh et al. In [23], interacting stochastic sub-
models were presented to evaluate the performance
of large scale IaaS clouds while workload of the
cloud, system characteristics and management poli-
cies are taken into consideration. After using fixed-
point iteration to solve interacting sub-models, two
performance measures, mean response time and job
rejection probabilities, were computed.

Ibe et al. [27] have used GSPNs to model polling
systems and compute mean response time of such a
system in different cases. Single service, Finite pop-
ulation and finite capacity extensions of a polling
system were considered in [27]. Based on the models
presented in [27], Choi et al. [17] have proposed
approximate performance models for polling systems
which can be used to analyze the performance of such
systems when the number of nodes and their potential
customers are large. A decomposition approach was

used to solve the problem, and two sub-models were
developed to interact with each other to solve the
overall model. Fixed-point iteration method was used
to solve interacting sub-models.

Tomek et al. [18] have proposed a Markov chain
based model to analyze the availability of a large fault
tolerant system with shared repair facility. Moreover,
an SRN has been proposed to model the aforemen-
tioned system. Fixed-point iteration method has been
used to solve the problem whenever the number
of systems becomes larger than can be managed
by monolithic models. SRNs and decomposition ap-
proach to solve interacting models in the context of
channel allocation in wireless networks have been
used by Ma et al. [19]. The SRNs presented in [19] ap-
propriately model new and hand-off calls in wireless
networks and evaluate call dropping and blocking
probabilities along with call waiting times as per-
formance measures of such systems. Mainkar et al.
[20] have proposed an SRN to model and analyze
the performance of heterogeneous multiprocessor sys-
tems. The model considers non-preemptive priority
scheme between tasks and tries to solve the model
by generating underlying Markov chain of the pro-
posed SRN. After proposing a monolithic SRN model
for an assumed multiprocessor system, an approxi-
mate model with two interacting sub-models were
presented to solve the problem in the general case.
Fixed-point iteration method was exploited to solve
the interacting sub-models and compute performance
measure in the form of utilization of a processor.

Other related research in this field also can be found
in the literature. Generally, each of the methods pre-
sented in this research area has its own pros and cons.
On one side, the main problem existing in previously
proposed methods in grid context is that only a few of
them consider both local and grid tasks, and simulta-
neous execution of them inside grid resources. Some
papers that consider both types of tasks only compute
pure performance of the grid environment ignoring
failure-repair behavior of the resources. Moreover,
studying a grid resource collaborating with other re-
sources in the environment and considering the effect
of a resource on the performance of other resources
while there are some shared facilities (e.g. shared
grid queue) are still open issues. On the other side,
models proposed for other systems are not suitable
to be directly applied to grid environments, because
they do not consider the specific characteristics of
grids. Each of the models has been proposed to
solve a given system with specific input parameters
(system requirements) and particular output metrics
(performance or dependability measures) in which
both input and output parameters concretely depend
on the system under study.
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3 SRN MODELS FOR SINGLE GRID RE-
SOURCE

Three SRN models are presented in this paper to
evaluate the combined performance and availability
of a single grid resource. It should be mentioned that
we do not present the concept of SRNs here because of
the lack of the space, but for more information about
Petri nets (PNs), timed and stochastic extensions of
PNs, and finally SRNs please see [25], [28]–[31].

In this paper, three scheduling schemes for simulta-
neous execution of grid and local tasks are considered.
There are other scheduling schemes which can be
modeled using SRNs [32], [33], but the aim of this
section is only showing the possibility of modeling
different scheduling schemes using the proposed SRN
models for single resources, and then, applying our
proposed methods for combining the single models
to capture the entire model. In the first scheme, there
is no priority between grid and local tasks. So, if both
tasks request the resource, one of them is selected
randomly to be assigned to an idle processor inside
that resource. In the second and third models, a higher
priority is assigned to local tasks over the grid tasks.
So, a grid task is executed by one of the idle processors
of the grid resource only if there is no local task in
local queue of that resource. The difference between
two later models is that the second model considers
non-preemptive priority scheme in which a local task
cannot preempt a running grid task, but the third
model applies preemptive priority. In preemptive pri-
ority scheme, when a local task arrives to the resource
and finds all the processors busy, the running grid
task is preempted and the processor is given to the
newly arrived local task. The preempted grid task is
returned to the grid queue to be assigned to one of the
idle processors later. In the following, all three models
are discussed in details.

3.1 First Model
The first model is shown in Fig. 1. Input parameters
of this model are: (1) grid and local queue sizes of the
resource (MG and ML), (2) grid and local tasks arrival
rates (λG and λL), (3) number of the processors inside
the resource (N ), (4) service rate of each processor (µ),
(5) failure rate of idle and busy processors represented
by γi and γb, respectively which γi < γb, and (6) repair
rate of a failed processor (δ). It should be mentioned
that the times assigned to all timed transitions follow
exponential distribution.

As mentioned earlier, the aim of the models is to
evaluate the performance of a grid resource while
availability of the resource is taken into account. To
do this, the failure-repair behavior of the processors
in a grid resource should be considered in the models.
Places PUP and PDP represent the up and down pro-
cessors inside the resource, respectively. It is assumed
that there are N operational homogeneous processors
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Fig. 1. First SRN Model of a Single Grid Resource
(Without Priority)

TABLE 1
Guard Functions of SRN Model Shown in Fig. 1

Guard Functions Values

g1 1 if [#PGQ] < MG

0 otherwise

g2 1 if [#PLQ] < ML

0 otherwise

inside a resource when the resource starts to service
the tasks. Transition TIPF represents the failure event
of idle processors. The pound sign (#) in the arc from
the place PUP to the transition TIPF shows that the
firing rate of this transition is marking dependent. So,
the actual firing rate of transition TIPF is computed
as k.γi, where k is the number of tokens in place PUP .
Transition TR represents the repair process of a failed
processor. It is assumed that there exists only one
repairperson for all processors of a single resource.

As can be seen in Fig. 1, there are two different
lines of tasks’ arrivals. The first line is for grid tasks
submitted by grid users and the second line is for local
tasks which are submitted by local users inside ad-
ministrative domain of the resource. Transitions TGA
and TLA show the arrival of grid and local tasks to the
resource, respectively. There are two guard functions
in the model associated with timed transitions TGA
and TLA to reflect the grid and local queue sizes of
the resource. These functions are described in Table 1,
where MG and ML denote the sizes of grid and local
queues, respectively. Once transition TGA (TLA) fires,
a token is deposited in place PGQ (PLQ) showing a
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TABLE 2
New Guard Function of the Second Model

Guard Functions Values

g3 1 if [#PLQ] = 0

0 otherwise

grid (local) task has been submitted to the resource
and it is waiting to get service from the resource.

If there is a token in place PGQ (PLQ) and there
is at least one token in place PUP , one token from
PGQ (PLQ) together with another token from PUP
is removed and a token is put in the place PGS
(PLS) representing a grid (local) task is getting service
from the resource. It is clear that there is no priority
between grid and local tasks in the model shown in
Fig. 1. Therefore, if both immediate transitions tGS
and tLS are enabled, one of them will fire randomly
with equal probability, and an idle processor will be
assigned to a grid or local task. Firing one of the
immediate transitions tGS or tLS may cause another
transition to be disabled if the number of tokens in
place PUP reaches zero.

Transitions TGS and TLS represent the servicing of
grid and local tasks inside the resource, respectively.
The service rate of each individual processor is µ
which is multiplied by the number of grid (local) tasks
serviced by the resource to get the firing rate of the
transition. This is shown by symbol # near transitions
TGS and TLS . After firing the timed transition TGS
(TLS), a token is removed from place PGS (PLS) and
deposited into place PUP to show that one processor
has already finished its job and can be allocated to
another waiting grid/local task. The failure events
of busy processors are modeled by timed transitions
TG BPF and TL BPF for processors servicing grid
and local tasks, respectively. The firing rates of these
transitions are also marking dependent.

3.2 Second Model
In the second model, we wish to assign higher execu-
tion priority to local tasks over grid ones. According
to this mechanism, a grid task can only be assigned to
an idle processor if there is no local task in local queue
of the resource. This modification in the model can be
easily done by adding a guard function to immediate
transition tGS of Fig. 1 to prevent this transition to
fire if there is a token in place PLQ. The new guard
function is described in Table 2.

3.3 Third Model
In the third model, preemptive priority scheme is
considered to be applied to the simultaneous exe-
cution of grid and local tasks. In this scheme, if a
newly arriving local task finds all the processors busy
(there is no token in place PUP ), it checks the number

TABLE 3
New Guard Function of SRN Model Shown in Fig. 2

Guard Functions Values

g4 1 if [#PUP ] = 0

0 otherwise

of tokens in place PGS to know whether there is a
processor servicing a grid task or not. If there is, the
running grid task is preempted by the new local task
and the processor is allocated to that local task. The
preempted grid task is returned to the grid queue
to be serviced later. After servicing the local task,
processor is sent back to the pool of idle processors
which shows that it can be allocated to service another
grid/local task. The third SRN model is shown in
Fig. 2. As can be seen in this figure, in the third model,
an immediate transition is added to the second model
to handle preemptive priority scheme. Once a token
arrives to place PLQ and finds place PUP empty, it
checks the existence of at least one token in place
PGS . If there is a token in place PGS , the immediate
transition tLS2 fires and removes one token from both
places PLQ and PGS , and deposits a token into place
PLS to show a newly arriving local task preempting a
servicing grid task. Moreover, upon firing immediate
transition tLS2, a token is put in place PGQ to show
that the preempted grid task is returned into grid
queue to be scheduled on an idle processor later.
The new guard function added to the third model is
defined in Table 3.

3.4 Performance Measures

Outputs of all three models are obtained by assigning
appropriate reward rate to each feasible marking of
SRNs, and then, computing the expected reward rates
in both transient and steady state cases. Let ri denote
the reward rate assigned to marking i of the SRN
models described earlier. If πi(t) denotes the probabil-
ity for the SRN model to be in marking i at time t, then
the expected reward rate at time t can be computed
as
∑
i πi(t)ri. The expected steady state reward can

be computed using the same formula by replacing
πi(t) by πi, representing the steady state probability
for the SRN model to be in marking i. The interesting
measures in the proposed models are as follows.

Mean number of waiting grid/local tasks. The
mean number of waiting grid (local) tasks is given
by mean number of tokens in place PGQ (PLQ) rep-
resented by E[#PGQ] (E[#PLQ]). The reward rate
assigned to compute E[#PGQ] (E[#PLQ]) is #PGQ
(#PLQ) which is the number of tokens existing inside
place PGQ (PLQ).

Blocking probability of grid task arrivals. The
steady state and transient blocking probabilities of
grid task arrivals, Pb and Pb(t), can be computed by
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Fig. 2. Third SRN Model of a Single Grid Resource
(Preemptive Priority)

assigning the following reward to SRN models.

ri =

{
1, [#PGQ] ≥MG (1a)
0, otherwise (1b)

Mean response time to grid tasks. This measure is
defined as mean time from a grid task is submitted
until it has been processed that is the time from the
instant that a token is deposited into PGQ until it
is removed from PGS . Using Little’s law, the steady
state mean response time for grid tasks, E[R], can be
computed as:

E[R] =
E[#PGQ] + E[#PGS ]

λeff
(2)

where λeff denotes the effective grid tasks arrival rate
at grid resource and can be computed as:

λeff = (1− pb) · λG (3)

3.5 Numerical Results
Stochastic Petri Net Package (SPNP) [34] is used to
solve the numerical examples of the proposed SRNs.
All three models can be solved in a timely manner
for all realistic configurations of grid resources. In the
following, a sample grid resource is considered and
three aforementioned measures are computed for the
assumed resource. The configuration of the sample
grid resource is shown in Table 4.

As can be seen in Table 4, failure rate of a running
processor is four times bigger than the failure rate

TABLE 4
Sample Resource Configuration (Single Resource

Evaluation)

Parameter Values

Number of processors (N ) 4

Failure rate of an idle processor (γi) 0.05

Failure rate of a busy processor (γb) 0.2

Repair rate of a processor (δ) 2.0

Grid tasks arrival rate (λG) 10.0

Local tasks arrival rate (λL) 8.0

Service rate of a processor (µ) 3.0

Grid queue size (MG) 20

Local queue size (ML) 20

of an idle processor. Also, grid tasks arrival rate is
assumed to be larger than local tasks arrival rate,
because it is reasonable to think that a resource joins
the grid environment whenever its local load is not
significant [1], [2]. Since none of the open access
logs reported from real grid systems contain all our
required detailed information of the resources, we use
random numbers to have a fair simulation. Using
random numbers in this context is a common way
which can be seen in [3]–[6], [8], [11], [15], [17]–[20],
[26], [27], [32]. The results obtained from numerical
analysis show that first SRN model results in low
mean number of waiting grid tasks compared to two
other models. Also, the second SRN model shows low
mean number of waiting grid tasks compared to the
third SRN model. Moreover, the blocking probability
of grid tasks increases whenever higher execution
priority is applied to local tasks.

Because of the lack of the space, we only present the
steady state values of performance measures ignoring
the transient values. The mean number of waiting
grid tasks, blocking probability of grid tasks and
mean response time of a single resource to grid tasks,
are represented in Table 5. As can be seen in this
table, all measures get their own largest values when
preemptive priority scheme is applied (the third SRN
model). Therefore, we can conclude that preemptive
priority scheme is the worst case within three schemes
considered in this paper, in the viewpoint of grid
users.

3.6 Simulation Results

In order to cross-validate the results obtained from an-
alytic models (the results reported in Subsection 3.5),
we use discrete-event simulation to resolve all the
models described above. A simulation is an exper-
iment to determine characteristics of a system em-
pirically. It is a modeling method that mimics the
behavior of a system over time. The major advantage
of simulation is its generality and flexibility; almost
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TABLE 5
The Steady State Values of Performance Measures
obtained from numerical analysis of the proposed

SRN models

Measures Steady State Values

Model 1 Model 2 Model 3

Mean number of

waiting grid tasks 18.6566 19.0524 19.5662

Blocking probability

of grid task arrivals 0.4344 0.6679 0.6683

Mean response time

to grid tasks 3.6112 6.0489 6.2112

TABLE 6
The Steady State Values of Performance Measures
obtained from simulating the systems corresponding

to the proposed SRN models

Measures Steady State Values

Model 1 Model 2 Model 3

Mean number of

waiting grid tasks 18.6601 19.0904 19.5576

Blocking probability

of grid task arrivals 0.4350 0.6605 0.6630

Mean response time

to grid tasks 3.6137 6.0623 6.2764

any behavior of the system can be easily simulated
[31], [35], [36].

The results we obtained from analytic-numeric so-
lution of the Markov reward models underlying the
SRN models and their simulative solutions are almost
the same for all three measures. For the sake of
brevity, only the steady state values of the perfor-
mance measures gained from simulation are reported
here. Table 6 shows the steady state values of the
performance measures computed by averaging over
at least 10 to 15 simulation runs performed for each
model to generate more dependable results. The stan-
dard deviation of the results of repeated simulation
runs is less than 0.01 for all models. For example, stan-
dard deviations of the results reported for Model 1
in Table 6 are 0.007, 0.0007, and 0.005 for the mean
number of waiting grid tasks, the blocking probability
of grid tasks, and the mean response time of grid
tasks, respectively.

Comparing the results reported in Table 6 and
Table 5 shows that the results gained from analytic-
numeric solution of the proposed SRN models are
very close to the results obtained from simulating
the related grid resources. For example, the relative
error of the analytic-numeric and simulative solutions
for Model 1 which can be calculated from the first
columns of Table 5 and Table 6 are 1.88 × 10−4,
1.38 × 10−3, and 6.92 × 10−4 for the mean number

of waiting grid tasks, the blocking probability of grid
tasks, and the mean response time of grid tasks,
respectively.

4 SRN MODELS FOR ENTIRE GRID ENVI-
RONMENT

As presented in Section 3, each of the grid resources
can be modeled using an SRN and mean response
time of the resource to grid tasks can be computed
by solving the related SRN model. Although this
evaluation can be useful when a single resource is
considered in isolation, it is not applicable to real
grid environments consisting of many single resources
collaborating with each other to execute grid tasks.
In other words, when several resources are working
together to service a common task, the performance
of each of them will be different from its performance
in isolation even with the same input parameters.
Actually, in this case, the effect of other resources
to the resource under study should be considered
to be able to accurately evaluate and predict the
performance of the single resource.

In order to fulfill this requirement, we should
gather all the resources to shape a cluster, and then,
club the clusters together and form an entire grid.
In grid environments, it is assumed that there is a
RMS (or GM) which receives grid tasks from grid
users, and dispatches the tasks among grid resources.
Different gathering and dispatching mechanisms can
be assumed for RMS. The inner structure of a RMS
together with four different dispatching mechanisms
for a RMS was modeled using stochastic models in [8].
Different hierarchies can be considered for RMS and
grid resources. In one-level hierarchy, each of the grid
resources is connected to RMS, and RMS sends grid
tasks to the resources, directly. In two-level hierarchy,
we can assume that there is a RMS on top of all
clusters that receives grid tasks from grid users, and
then dispatches tasks among clusters to be executed
by the resources inside each of the clusters.

As can be seen, hierarchical topology can be easily
considered in one level, and then extended to two
or more levels. If we can solve the problem with
one-level hierarchy, we can extend it and solve for
a two-level hierarchy as well. The models presented
in Section 3, can be properly adopted to model multi-
level hierarchies. In the following, we show one-level
hierarchy model in which grid tasks are submitted to
RMS, and then dispatched among all the resources ex-
isting inside a single cluster. If this problem is solved,
then each of the grid resources could be replaced
with another cluster (set of homogeneous resources),
and therefore, the solution would be continued to
solve the problem inside that cluster. Using this way,
even more levels of hierarchy can be modeled and
evaluated, but generally, solving one-level hierarchy
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Fig. 3. Exact SRN Model of Entire Grid Environment

suffices to show the correctness and applicability of
the proposed model to the real grid environments.

4.1 Exact Model
Using single resource models presented in Section 3,
we can shape a grid environment. To do this, one
of the models should be chosen for this reason. We
use the simplest model, the First Model, to ex-
plain our method for modeling and evaluating the
performability of whole grid environment, but gener-
ally, each of them can be used for this reason. Figure 3
shows an SRN model of a one-level grid environment
with n resources.

As can be seen in this model, there is a single entry
of grid tasks for all the resources. In other words, grid
queue is shared among all of the resources and each
resource can execute a grid task whenever it has at
least one idle processor. Place PGQ in Fig. 3 represents
the grid queue of the grid environment and transition

TABLE 7
Guard Functions of the Exact Model of Entire Grid

Shown in Fig. 3

Guard Functions Values

g1 1 if [#PGQ] < MG

0 otherwise

g2i(1 ≤ i ≤ n) 1 if [#PGWi] = 0

0 otherwise

g3i(1 ≤ i ≤ n) 1 if [#PLQi] < MLi

0 otherwise

TGA represents the arrival process of grid tasks to the
environment. The guard function g1 takes care of the
size of grid queue and does not let transition TGA
to fire if the number of existing tokens in place PGQ
reaches a given threshold, MG. All guard functions of
the model shown in Fig. 3 are described in Table 7.

Timed transition TGTi is considered for each re-
source i to model the time needed to transfer required
data of a grid task from RMS to resource i. Once
a token is deposited into place PGQ, existence of a
token in place PGWi is checked. If there is no token
in place PGWi, timed transition TGTi is enabled. It
is worthwhile to mention that if we remove place
PGWi and immediate transition tGSi from all of the
resources, and then connect place PUPi to the time
transition TGTi in each of the resources, the model
will consider higher priority to local tasks over the
grid tasks inside each resource. The SRN shown in
Fig. 3 can be used to model any grid environment
with any number of grid resources with different
configurations. However, when it is applied to model
a grid environment even with a small number of
resources, it encounters the largeness problem and
the number of the states in underlying Markov chain
becomes more than can be managed and solved by
existing tools and packages. The number of the states
increases drastically as the grid queue size, number
of processors and local queue size of each of the
resources increase. As an example, assume a grid
environment with four resources and each resource
with only one processor. Also consider a single grid
queue for all resources with the size equal to five
and a separate local queue inside each of the resources
with size of one task. If the SRN model shown in Fig. 3
is used to solve this problem, the number of the states
in the underlying Markov chain will be 781, 926. Now,
if we add one more resource to this environment, the
number of the states exceeds 10, 000, 000! It shows
that although this SRN can be used to model and
evaluate the performability of a grid environment, it
is impossible to use it for modeling real grids with
a large number of resources. In order to cope with
this difficulty, two different approximate models are
presented in next two subsections.
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4.2 Folded Approximate Model

Considering SRN model presented in Fig. 3, it can be
concluded that the structure of all of the single re-
sources is the same. Hence, one possible approximate
model consists of 1 arbitrarily chosen tagged-resource
sub-model and a sub-model for the remaining (n− 1)
resources folded together as shown in Fig. 4. In
this model, resource 1 is considered to be a tagged-
resource and all the remaining resources (resource 2
to resource n) are shown with the subnet named Sub.
It is assumed that all the resources are homogeneous
and have the same number of processors and local
queue seizes. As mentioned earlier, this assumption
can be removed when the one-level hierarchy is ex-
tended to a two-level hierarchy.

Places PGW , PGS , PUP , PDP , PLQ and PLS corre-
spond to places PGWi, PGSi, PUPi, PDPi, PLQi and
PLSi (2 ≤ i ≤ n) of exact model, respectively. The
number of tokens inside place PUP is N = (n−1) ·N1

where N1 is the number of tokens in PUP1 that is
number of processors inside resource 1. Furthermore,
grid tasks transmission rate (τ), local tasks arrival
rate (λL), local queue size (ML) and processor repair
rate (δ) of the sub-model Sub are τ = (n − 1) · τ1,
λL = (n−1)·λL1, ML = (n−1)·ML1 and δ = (n−1)·δ1
where τ1, λL1, ML1 and δ1 are the corresponding
parameters of resource 1. Since the failure rates of idle
and busy processors (γi and γb) and service rate of the
processors (µ) depend on the number of processors,
we do not multiply these numbers by (n−1), because
the number of processors (N) has been multiplied
by (n − 1) already. It is worthwhile to mention that
multiplying the parameters of a single resource by
(n − 1), and associating them to the corresponding
parameters of the subnet Sub is only to approximate
the required metrics. However, exact estimation of
these parameters (especially the rates) is a difficult
task since there are some interconnected factors here.
The guard functions g2 and g3 can be written as guard
functions g2i and g3i described in Table 7 by replacing
[#PGWi] = 0 with [#PGW ] = 0 and [#PLQi] < MLi

by [#PLQ] < ML.
The folded SRN shown in Fig. 4 can be used to

approximate the SRN shown in Fig. 3, properly. This
model encounters largeness problem much later than
the exact model, but the scalability problem still exists
in this model. As an example, consider the sample
grid mentioned in Subsection 4.1. If we increase the
number of the resources to 10, the number of the
states in the underlying Markov chain of SRN model
shown in Fig. 4 will be 5, 019, 235. If we add only one
resource to the environment, the number of the states
will increase to 7, 380, 516. As can be seen, this model
still is not appropriate for very large-scale grids with
large number of resources; however it provides a good
improvement over the exact model regarding to the
number of states in the underlying Markov chain. It
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Fig. 4. Folded SRN Model of Entire Grid Environment

should be noted that the exact model cannot handle a
system with more than 4 or 5 resources, but the folded
model can handle a small system with about 15-20
resources (like a cluster). But, the scalability problem
would be much severe if the number of the processors
inside each of the resources and grid (local) queue size
of the environment (resource) increase.

4.3 Fixed-point Approximate Model
In order to deal with the largeness problem of the
folded model and to refine the model one step further
to be able to solve large-scale grids, a better ap-
proximate model based on fixed-point iteration [17]–
[20], [24], [25] is presented. The fixed-point iteration
method is known as a good solution for analyzing
a system with some interrelated subsystems. Each
subsystem is analyzed with the remainder of the sys-
tem represented in a simplified manner. The method
acts iteratively and the parameters of the simplified
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complement of a subsystem are modified after the
other subsystems are analyzed. The subsystem is then
re-analyzed with new input parameters to produce
new inputs for other subsystems. This procedure is
repeated till the difference between two successive
iterations is below a certain tolerance level.

We divide the whole model into two groups; a
tagged-resource together with grid arrivals (RMS)
sub-model and a sub-model for remaining (n − 1)
resources. Since the remaining (n − 1) resources act
as delay with respect to the other sub-model, we can
replace it with a single timed transition in the overall
model. Figure 5 shows one tagged-resource together
with RMS in which the (n−1) remaining resources are
approximated with a single timed transition named
TD. All the rates, probabilities, the number of tokens
and guard functions existing in SRN shown in Fig. 5
are the same as their corresponding values in the
model of Fig. 4. To be able to evaluate mean response
time of a grid resource to grid tasks, we should
solve this model with an appropriate firing rate for
transition TD (α). Since we do not know how long
this delay is, we cannot solve the SRN model shown
in Fig. 5 directly. Instead, we solve it using an iterative
method by exploiting the SRN presented in Fig. 6
modeling (n− 1) remaining resources.

In Fig. 6, place PGQ contains M tokens where
1 ≤ M ≤ MG and MG is the grid queue size. The
grid tasks transmission rate (τ), local tasks arrival
rate (λL), local queue size (ML) and processor repair
rate (δ) of SRN model represented in Fig. 6 are
τ = (n− 1) · τ1, λL = (n− 1) · λL1, ML = (n− 1) ·ML1

and δ = (n − 1) · δ1 where τ1, λL1, ML1 and δ1 are
the corresponding parameters of the tagged-resource
existing in SRN of Fig. 5.

As can be seen in Fig. 6, a new place PT is added
to the SRN to trap all the grid tasks submitted to
the system after their successful execution or failure
of the processor assigned to execute them. Therefore,
if there are M tokens in place PGQ, after a specific
amount of time, all these tokens will be moved to
place PT . If we define suitable guard functions for
all the transitions of this model, we can make the
underlying Markov chain as an absorbing Markov
chain. The guard functions of SRN model of Fig. 6
are described in Table 8.

Applying the guard functions described in Table 8,
we can make sure that the underlying Markov chain
of SRN model presented in Fig. 6 is an absorbing
Markov chain. Therefore, we can compute the mean
time to absorption of this SRN. Define MTTAi as
mean time to absorption of SRN shown in Fig. 6 when
M is equal to i. Also, let π(PGQ = i) denote the steady
state probability of there being i tokens in place PGQ
of SRN model of Fig. 6 which is computed using the
steady state analysis of SRN model of Fig. 5. Hence,
the mean time to absorption of the SRN shown in
Fig. 6 (MTTA) can be computed as:
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TABLE 8
Guard Functions of SRN Model Shown in Fig. 6

Guard Functions Values

g1 1 if [#PGW ] = 0

0 otherwise

g2 1 if [#PLQ] < ML and [#PT ] < M

0 otherwise

g3 1 if [#PT ] < M

0 otherwise
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MTTA =

MG∑
i=1

MTTAi · π(PGQ = i) (4)

Once we compute MTTA, we can compute firing
rate of timed transition TD as (5) which represents
the firing rate due to all resources other than tagged-
resource.

α =
1

MTTA
(5)

This value (α) is used when we solve the SRN
model shown in Fig. 5 at the next iteration. After
solving SRN model of Fig. 5, the new steady state
probability of there being i tokens in place PGQ is
computed, and then used in (4) to calculate the new
value of α. This procedure continues till the difference
between two successive values of α reaches a given
threshold. Two sub-models are represented in Fig. 5
and Fig. 6 and their interactions are shown as an
import graph in Fig. 7.

4.4 Numerical Results

In order to compare the results obtained from three
SRN models proposed for an entire grid, a sample
grid environment with different number of resources
is considered in this subsection. Configuration param-
eters of the system are shown in Table 9. The values
shown in Table 9 are random numbers which can be
easily replaced with the corresponding numbers of
real systems. They are used only to show how the
SRN models work. As mentioned in Subsection 3.5,
this is a common way to show the applicability of
the models to real systems. We apply the exact model
(Fig. 3), folded approximate model (Fig. 4) and fixed-
point approximate model (Fig. 5 and Fig. 6) to evalu-
ate the sample grid environment.

The comparison of the steady state mean response
time of grid tasks between exact model and two
other approximate models, folded and fixed-point,
are presented in Table 10. Moreover, the steady state
blocking probability resulted from the exact and two
approximate models are presented in Table 11. As can

be seen in Table 10, the steady state mean response
time of grid tasks obtained from all models are very
close to each other. Also, the differences between the
results reported in Table 11 show that our proposed
approximate models (especially fixed-point model)
can appropriately estimate the steady state blocking
probability of the exact model. It should be mentioned
that running the exact model for only 5 grid resources
produces more than 10, 000, 000 states and cannot
be solved in a timely manner. Therefore, we only
compare the performance measures of the models
with 2 to 4 numbers of resources.

Similar to the SRN models proposed for a single
grid resource, and in order to validate the results
obtained from exact model and compare it with the
results obtained from approximate models, we simu-
late the grid environment mentioned above. Because
of the lack of the space, we do not present the simu-
lation results here, but as a short report, it should be
mentioned that the relative errors between the results
of exact model and the average simulation runs for
blocking probability of grid tasks are 1.48 × 10−4,
1.77 × 10−4, and 4.54 × 10−5 for N = 2, 3, and 4,
respectively. In addition to validate the results of the
exact model, one of the most important advantages
of simulation is being able to simulate a grid environ-
ment with a more number of grid resources and com-
paring the results with the approximate models which
show the proposed folded and fixed-point models
appropriately approximate a real environment.

The numbers of the states and non-zero entries of
the Markov chain matrix generated by three exact,
folded and fixed-point approximate SRN models are
shown in Table 12 and Table 13, respectively. The
numbers reported for fixed-point approximate model
are only the numbers generated by SRN model shown
in Fig. 6, because the numbers of the states and non-
zero entries of the underlying Markov chain of SRN
model of Fig. 5 are fixed numbers for all settings.
As can be seen in Table 12 and Table 13, numbers

TABLE 9
Sample Resource Configuration (Entire Grid

Evaluation)

Parameter Values

Number of processors in each resource (N1) 1

Failure rate of an idle processor (γi1) 0.05

Failure rate of a busy processor (γb1) 0.1

Repair rate of a processor (δ1) 2.0

Grid tasks arrival rate (λG) 20.0

Grid tasks transmission rate (τ1) 4.0

Local tasks arrival rate (λL1) 7.0

Service rate of a processor (µ1) 3.0

Grid queue size (MG) 5

Local queue size (ML1) 2
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TABLE 10
The Steady State Mean Response Times From the

Exact and Approximate Models

Number of SRN Models

resources Exact Folded Fixed-point

2 2.176898651 2.176898651 2.173223694

3 1.430419422 1.377265141 1.419331918

4 1.054943360 0.996678592 1.084381780

TABLE 11
The Steady State Blocking Probability of Grid Tasks

From the Exact and Approximate Models

Number of SRN Models

resources Exact Folded Fixed-point

2 0.856938653 0.856938653 0.856724326

3 0.785753252 0.778123897 0.784162732

4 0.714924782 0.700370246 0.721953578

reported for fixed-point approximate model are much
less than those for two other models. It shows that
we can use this SRN (and sometimes folded SRN) to
model real grid environments.

In the experiments mentioned above, the initial
value for firing rate of timed transition TD (α) is
set to 0.2. After some iterations, it converges to the
suitable value in each experiment based on the input
parameters. Figure 8 shows the convergence of this
parameter to the final value based on the number of
iterations only for 5 successive iterations. As can be
seen in Fig. 8, the proposed fixed-point approximate
model converges to the final value very fast. In all

TABLE 12
Number of the States in the Underlying Markov Chain

of the Exact, Folded and Fixed-point Approximate
Models

Number of resources SRN Models

Exact Folded Fixed-point

2 2,166 2,166 92

3 41,154 10,716 295

4 781,926 33,060 651

TABLE 13
Number of the Non-zero Entries in the Underlying

Markov Chain Matrix of the Exact, Folded and
Fixed-point Approximate Models

Number of resources SRN Models

Exact Folded Fixed-point

2 15,105 15,105 287

3 413,345 91,458 1,275

4 10,254,205 314,566 3,268

Fig. 8. Convergence of Delay Rate of Timed Transition
TD to Its Final Value in Fixed-point Approximate Model

our experiments with SRN models given in Fig. 5 and
Fig. 6, we have seen very good convergence behavior
as shown in Fig. 8.

4.5 Existence of a Fixed-point
In theory, we should provide a proof to show that
a fixed-point always exists when a decomposition of
this form is made. To do this, the following proof is
presented.

Define yi = π(PGQ = i) where π(PGQ = i) is the
steady state probability of there being i tokens in
place PGQ and 1 ≤ i ≤ MG. Considering the SRN
model shown in Fig. 5 and its underlying Markov
chain, it is obvious that for some function h we can
write yi = h(α) where α is the firing rate of timed
transition TD. On the other hand, this rate is obtained
by computing mean time to absorption in SRN shown
in Fig. 6 for i number of tokens inside place PGQ
where 1 ≤ i ≤ MG. As discussed earlier, using (4)
and (5), we can write 1

α =
∑MG

i=1 MTTAi · π(PGQ = i)
where MTTAi is mean time to absorption of SRN
shown in Fig. 6 when number of the tokens in place
PGQ is equal to i. Let the vector ~y = (y1, . . . , yMG

), so
for some function f we can write ~y = f(~y).

Now, Brouwers fixed-point theorem [24] is used to
show that f(~y) = ~y has a solution. This theorem states
that if there exists a compact, convex set C ⊂ Rn and
there exists a continuous function f such that f(~y) ∈ C
for all ~y ∈ C then there exist a solution to equation
f(~y) = ~y.

Since ~y = (y1, y2, . . . , yMG
) and each yi = π(PGQ =

i) representing the steady state probability of there be-
ing i tokens in place PGQ is bounded below by 0 and
above by 1, each yi is bounded in range [0, 1]. Hence,
C is defined to be the set of points (y1, y2, . . . , yMG

)
where each yi ∈ [0, 1]. Consider the function f over
C by defining yi = π(PGQ = i) and yi = f(yi),
1 ≤ i ≤MG. Since the probability of being in a subset
of a Markov chain is always bounded below by 0 and
above by 1, therefore yi ∈ [0, 1] for all i.
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Now C will be shown to be a convex set. A set
C ⊂ Rn is convex if λ~x + (1 − λ)~y ∈ C whenever ~x
and ~y are n-vectors ∈ C and λ ∈ [0, 1]. Let’s consider
one equation: zi = λxi + (1− λ)yi. zi ≥ 0 since λ ≥ 0,
xi ≥ 0, (1− λ) ≥ 0, and yi ≥ 0. Since zi is maximized
when xi = yi = 1 (since λ ≥ 0 and (1 − λ) ≥ 0) to its
maximum value 1, zi ≤ 1.

Finally, we will show that f is continuous over C.
Function f(~y) is continuous if for each point ŷ ∈
C, lim~y→ŷ f(~y) = f(ŷ). As f(~y) is a vector valued
function, this is equivalent to saying lim~y→ŷ fk(~y) =
fk(ŷ) for k ∈ {1, 2, . . . ,MG} and ŷ ∈ C. By defin-
ing lim~y→ŷ fk(~y) = lim~y→ŷ

[
[MTTA1 · π(PGQ =

1)] + . . . + [MTTAMG
· π(PGQ = MG)]

]
we can

derive lim~y→ŷ fk(~y) = lim~y→ŷ
[
[MTTA1 · y1] + . . . +

[MTTAMG
· yMG

]
]
. Since yi = π(PGQ = i) is the prob-

ability of being in a subset of the states of a Markov
chain, limyi→ŷi yi = ŷi. Since each term of the summa-
tion converges to its (finite) value at ŷ, lim~y→ŷ fk(~y) =
fk(ŷ) and therefore lim~y→ŷ f(~y) = f(ŷ).

5 CONCLUSION AND FUTURE WORK

Isolated performance and availability evaluation of a
grid resource may cause undependable results since
these two factors influence each other in many cases.
Therefore, to reach a more realistic analysis and more
dependable results, the performance and availability
of a grid resource should be evaluated simultane-
ously. To do this, SRNs are used in this paper to
model and analyze the composite performance and
availability of a single grid resource. The proposed
SRNs consider three different scheduling schemes to
simultaneously schedule grid and local tasks among
the processors existing in a single resource. After
successful evaluation of performability of a single grid
resource, the SRN models are combined to capture an
entire grid environment. Since the general SRN model
encounters the largeness problem, two approximate
models are proposed to solve this problem. Using the
approximate models, large scale grid environments
can be modeled and evaluated properly. Some illus-
trative examples are given to show the application
of the proposed SRNs to actual systems. Therefore,
the proposed models can be appropriately used in
the analysis and design phases of real grid systems
to evaluate the performability of the systems before
implementation and development. Furthermore, the
models can be used to evaluate the performability of
currently running grids and study the behavior of the
system when some changes are made.

There is a number of research issues remaining
open for future work. One of the most interesting
issues is using the single resource performability mod-
els to design a scheduling algorithm to dispatch grid
tasks among the resources. Using these models, we
can compute the probability and its corresponding
effective service rate of a single resource to grid

tasks. Having these measures for all the resources
existing in the grid environment, we can use heuristic
algorithms to dispatch grid tasks to the resources to
optimize the general performability of a grid service.
To do this, a new measure for general performability
should be defined. One possible measure would be
used here is the expected service time given that the
service does not fail. This is what we are working
on currently. As another open problem in this field,
one can use the SRN models to find response time
distribution in a grid environment. In this paper, we
compute mean response time of a grid resource to grid
tasks, but finding the distribution of response time is
more useful. Applying more sophisticated scheduling
algorithms between grid and local tasks is another
open problem in this area.

ACKNOWLEDGMENT

The authors would like to thank Dr. Xiaoyan Yin,
Ms. Maryam Bagheri and Ms. Saeedeh Mehri for their
support and time given in working with us.

REFERENCES

[1] I. Foster and C. Kesselman, The Grid 2: Blueprint for a New
Computing Infrastructure, 2nd ed. Morgan Kaufmann, 2004.

[2] K. Krauter, R. Buyya, and M. Maheswaran, “A taxonomy and
survey of grid resource management systems for distributed
computing,” Software: Practice and Experience, vol. 32, no. 2, pp.
135–164, 2002.

[3] Y.-S. Dai and G. Levitin, “Reliability and performance of
tree-structured grid services,” IEEE Transactions on Reliability,
vol. 55, no. 2, pp. 337–349, 2006.

[4] G. Levitin and Y.-S. Dai, “Service reliability and performance
in grid system with star topology,” Reliability Engineering and
System Safety, vol. 92, no. 1, pp. 40–46, 2007.

[5] Y.-S. Dai and G. Levitin, “Optimal resource allocation for
maximizing performance and reliability in tree-structured grid
services,” IEEE Transactions on Reliability, vol. 56, no. 3, pp.
444–453, 2007.

[6] M. A. Azgomi and R. Entezari-Maleki, “Task scheduling mod-
elling and reliability evaluation of grid services using coloured
Petri nets,” Future Generation Computer Systems, vol. 26, no. 8,
pp. 1141–1150, 2010.

[7] E. Caron, V. Garonne, and A. Tsaregorodtsev, “Definition,
modeling and simulation of a grid computing scheduling
system for high throughput computing,” Future Generation
Computer Systems, vol. 23, no. 8, pp. 968–976, 2007.

[8] R. Entezari-Maleki and A. Movaghar, “Availability model-
ing of grid computing environments using SANs,” in The
19th International Conference on Software, Telecommunications and
Computer Networks (SoftCOM 2011), Split, Croatia, September
2011, pp. 1–6.

[9] R.-S. Chang, C.-Y. Lin, and C.-F. Lin, “An adaptive scoring
job scheduling algorithm for grid computing,” Information
Sciences, vol. 207, no. 1, pp. 79–89, 2012.

[10] R. Entezari-Maleki and A. Movaghar, “A probabilistic task
scheduling method for grid environments,” Future Generation
Computer Systems, vol. 28, no. 3, pp. 513–524, 2012.

[11] S. Parsa and R. Entezari-Maleki, “Task dispatching approach
to reduce the number of waiting tasks in grid environments,”
The Journal of Supercomputing, vol. 59, no. 1, pp. 469–485, 2012.

[12] J. F. Meyer, “On evaluating the performability of degradable
computing systems,” IEEE Transactions on Computers, vol. C-29,
no. 8, pp. 720–731, 1980.

[13] R. M. Smith, K. S. Trivedi, and A. V. Ramesh, “Performability
analysis: measures, an algorithm and a case study,” IEEE
Transactions on Computers, vol. 37, no. 4, pp. 406–417, 1988.



MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING (TDSC) 14

[14] D. M. Nicol, , W. H. Sanders, and K. S. Trivedi, “Model-based
evaluation: From dependability to security,” IEEE Transactions
on Dependable and Secure Computing, vol. 1, no. 1, pp. 48–65,
2004.

[15] O. C. Ibe, H. Choi, and K. S. Trivedi, “Performance evaluation
of client-server systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 4, no. 11, pp. 1217–1229, 1993.

[16] G. Ciardo and K. S. Trivedi, “A decomposition approach for
stochastic reward net models,” Performance Evaluation, vol. 18,
no. 1, pp. 37–59, 1993.

[17] H. Choi and K. S. Trivedi, “Approximate performance models
of polling systems using stochastic Petri nets,” in The Eleventh
Annual Joint Conference of the IEEE Computer and Communica-
tions Societies (INFOCOM ’92), Florence, Italy, May 1992, pp.
2306–2314.

[18] L. A. Tomek and K. S. Trivedi, “Fixed point iteration in
availability modeling.” in Fault-Tolerant Computing Systems, ser.
Informatik-Fachberichte, M. D. Cin and W. Hohl, Eds., vol.
283. Springer, 1991, pp. 229–240.

[19] Y. Ma, J. J. Han, and K. S. Trivedi, “Channel allocation with
recovery strategy in wireless networks,” European Transactions
on Telecommunications, vol. 11, no. 4, pp. 395–406, 2000.

[20] V. Mainkar and K. S. Trivedi, “Approximate analysis of prior-
ity scheduling systems using stochastic reward nets,” in The
13th International Conference on Distributed Computing Systems
(ICDCS ’93), Pittsburgh, Pennsylvania, USA, May 1993, pp.
466–473.

[21] H. Sun and K. S. Trivedi, “A stochastic reward net model for
performance analysis of prioritized DQDB MAN,” Computer
Communications, vol. 22, no. 9, pp. 858–870, 1999.

[22] F. Longo, R. Ghosh, V. K. Naik, and K. S. Trivedi, “A scalable
availability model for infrastructure-as-a-service cloud,” in The
41st IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN 2011), Hong Kong, June 2011, pp. 335–346.

[23] R. Ghosh, F. Longo, V. K. Naik, and K. S. Trivedi,
“Modeling and performance analysis of large scale IaaS
clouds,” Future Generation Computer Systems, In Press, DOI:
http://dx.doi.org/10.1016/j.future.2012.06.005, 2012.

[24] V. Mainkar and K. S. Trivedi, “Sufficient conditions for exis-
tence of a fixed point in stochastic reward net-based iterative
models,” IEEE Transactions on Software Engineering, vol. 22,
no. 9, pp. 640–653, 1996.

[25] J. K. Muppala and K. S. Trivedi, “Composite performance and
availability analysis using a hierarchy of stochastic reward
nets,” in Computer Performance Evaluation, Modelling Techniques
and Tools, G. Balbo and G. Serazzi, Eds. Elsevier Science
Publishers B.V. (North-Holland), 1992, pp. 335–349.

[26] S. Parsa and R. Entezari-Maleki, “A queuing network model
for minimizing the total makespan of computational grids,”
Computers and Electrical Engineering, vol. 38, no. 4, pp. 827–
839, 2012.

[27] O. C. Ibe and K. S. Trivedi, “Stochastic Petri net models of
polling systems,” IEEE Journal on Selected Areas in Communica-
tions, vol. 8, no. 9, pp. 1649–1657, 1990.

[28] J. L. Peterson, Petri Net Theory and the Modeling of Systems,
1st ed. Prentice Hall, 1981.

[29] F. Bause and P. S. Kritzinger, Stochastic Petri Nets: An Introduc-
tion to the Theory, 2nd ed. Vieweg+Teubner Verlag, 2002.

[30] M. Ajmone Marsan, G. Conte, and G. Balbo, “A class of gen-
eralized stochastic Petri nets for the performance evaluation
of multiprocessor systems,” ACM Transactions on Computer
Systems, vol. 2, no. 2, pp. 93–122, 1984.

[31] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and
G. Franceschinis, Modeling with Generalized Stochastic Petri Nets,
1st ed. John Wiley and Sons, 1995.

[32] J. K. Muppala, K. S. Trivedi, V. Mainkar, and V. G. Kulkarni,
“Numerical computation of response time distributions using
stochastic reward nets,” Annals of Operations Research, vol. 48,
no. 2, pp. 155–184, 1994.

[33] S. Jafar, A. Krings, and T. Gautier, “Flexible rollback recovery
in dynamic heterogeneous grid computing,” IEEE Transactions
on Dependable and Secure Computing, vol. 6, no. 1, pp. 32–44,
2009.

[34] G. Ciardo, J. K. Muppala, and K. S. Trivedi, “SPNP: stochastic
Petri net package,” in The 3rd International Workshop on Petri
Nets and Performance Models (PNPM ’89), Kyoto, Japan, Decem-
ber 1989, pp. 142–151.

[35] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi, Queue-
ing Networks and Markov Chains: Modeling and Performance
Evaluation with Computer Science Applications, 2nd ed. John
Wiley & Sons, 2006.

[36] K. Kant and M. M. Srinivasan, Introduction to Computer System
Performance Evaluation, 1st ed. McGraw-Hill, 1992.

Reza Entezari-Maleki is currently a Ph.D.
student in Computer Engineering (Software
discipline) at the Department of Computer
Engineering in Sharif University of Technol-
ogy, Tehran, Iran. He received his B.S. and
M.S. degrees in Computer Engineering (Soft-
ware discipline) from Iran University of Sci-
ence and Technology (IUST), Tehran, Iran
in 2007 and 2009, respectively. He is also
a member of Iranian National Elite Foun-
dation. His main research interests are grid

computing, performance evaluation, performability and dependability
modeling, and task scheduling algorithms.

Ali Movaghar is a Professor in the Depart-
ment of Computer Engineering at Sharif Uni-
versity of Technology in Tehran, Iran and
has been on the Sharif faculty since 1993.
He received his B.S. degree in Electrical
Engineering from the University of Tehran in
1977, and M.S. and Ph.D. degrees in Com-
puter, Information, and Control Engineering
from the University of Michigan, Ann Arbor,
in 1979 and 1985, respectively. He visited
the Institut National de Recherche en Infor-

matique et en Automatique in Paris, France and the Department of
Electrical Engineering and Computer Science at the University of
California, Irvine in 1984 and 2011, respectively, worked at AT&T
Information Systems in Naperville, IL in 1985-1986, and taught at
the University of Michigan, Ann Arbor in 1987-1989. His research
interests include performance/dependability modeling and formal
verification of wireless networks and distributed real-time systems.
He is a senior member of the IEEE and the ACM.

Kishor S. Trivedi received the M.S. and
Ph.D. degrees in computer science from the
University of Illinois, Urbana. He holds the
Hudson Chair with the Department of Electri-
cal and Computer Engineering, Duke Univer-
sity, Durham, NC. Since 1975, he has been
with the Duke faculty. He is the author of
the well-known text entitled Probability and
Statistics with Reliability, Queuing and Com-
puter Science Applications (Prentice-Hall); a
thoroughly revised second edition (including

its Indian edition) of this book has been published by John Wiley.
He is also the author of two other books, one entitled Perfor-
mance and Reliability Analysis of Computer Systems (Kluwer) and
the other entitled Queuing Networks and Markov Chains (John
Wiley). He has published more than 500 papers and has super-
vised 45 Ph.D. dissertations. He works closely with industry in
carrying reliability/availability analysis and providing short courses
on reliability, availability, performability modeling, and development
and dissemination of software packages such as SHARPE and
SPNP. His research interests are reliability, availability, performance,
performability, and survivability modeling of computer and communi-
cation systems. Dr. Trivedi is a Fellow of the IEEE and is a Golden
Core Member of the IEEE Computer Society. He was the recipient
of the IEEE Computer Society Technical Achievement Award for his
research on software aging and rejuvenation.


