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Abstract: Stochastic activity networks (SANs) are a well-known petri net-based formalism used for the performance

and dependability modeling of a wide range of systems. On the other hand, the growing complexity of timed systems

makes it imperative to apply formal analysis techniques in the early stages of the system’s development. Finding a

suitable framework for the modeling, evaluation, and verification of these systems is still a great challenge. In this paper,

we introduce a new formalism named timed activity networks (TANs), which are based on the activity networks that

are the nondeterministic settings of the SANs. The advantages of TANs are 2-fold: 1) allowing the construction of more

compact petri net-based models of timed systems and 2) allowing the assignment of time intervals to timed activities

where the activity completion rates are marking-dependent, which makes TANs a better model for timed systems.

Thanks to the presence of the input/output gates, TANs are capable of describing a situation whose specification using

petri net-based formalisms was not practical, due to the naivety of the enabling and firing rules in these models. In

addition, a great benefit of TANs is the similarity of their primitives and notations to ordinary SANs, which allows us

to easily obtaining these 2 models from each other. Accordingly, SANs can be used for performance, and dependability

modeling and evaluation, while TANs can be used for the model checking of timed systems. In this paper, we present the

definitions, semantics, and model checking techniques of the proposed formalism. In order to model check TAN models,

a transformation procedure is given for translating TAN models into the equivalent linear hybrid automaton, which can

then be used with the existing techniques and tools.

Key words: Timed systems, modeling and verification, stochastic activity networks, timed activity networks, polyhedral

computations

1. Introduction

Nowadays, real-time systems are widely used in a wide range of safety-critical applications. Therefore, formal

guarantees of their behavioral correctness are crucial, to ensure that all of their requirements are satisfied. The

behavioral correctness of real-time systems relies not only on the logical correctness of the operations, but also

on the time at which the operations are performed. In hard real-time systems, the completion of an operation

after its deadline is considered either a useless or even a catastrophic event. To gain confidence in the behavioral

correctness of real-time systems, formal specification methods are used for expressing these systems.

In order for specifications and verification of timed systems, several time-dependent formalisms have been

proposed, such as the timed extensions of the well-known untimed models like automata and petri nets [1–4].
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The theory of these formalisms creates the foundations of many studies in verification, control, and scheduling.

Timed automata (TA) may be the most successful model of real-time systems. Today, TA serves as

a widely used formalism for modeling time systems with a rich theoretical background and fully developed

verification tools like UPPAAL [5], HyTech [6], CMC [7], and KRONOS [8]. However, despite the powerful

modeling power of TA and its strong theoretical background, there are some subtle lacks that TA suffers from,

which will be enumerated as follows. First, because of their low-level expressiveness, the size of the models for

many practical systems might be unnecessarily huge [9]. Second, due to the explicit use of the invariants and

constraints on the clocks, during the design of a model, inadvertent deadlocks may be injected into the model.

These conditions may appear while the clocks cannot progress and no activity completion is possible [9].

With the introduction of hybrid automata [10], multirate real-valued variables can be modeled easily,

but there are still some modeling situations where we need to use other formalisms for the sake of ease. For

example, consider a situation where the 2 components of a system are modeled by 2 parallel hybrid automata

and the state transition of one component can change the other one’s evolution rate. In circumstances like

this, extra elements like observers are needed to achieve this modeling goal, which will enlarge the model size.

Fortunately, in many situations, petri net-based models can help if using the automata is not convenient.

In the context of real-time systems, time petri nets (TPNs), introduced by Merlin [11,12], are an extension

of petri nets, which provide a framework for specifying the behavior of timed systems. Bounded TPNs form

a subclass of TA, and so all of the bounded TPNs can be translated into TA [13]. Furthermore, in [13], the

authors have claimed and showed that TPNs are a proper subset of TA in the sense that there exist TA Ao ,

in which no bisimilar (even weakly) TPN exists for it. In addition, unbounded TPNs (where no limit for the

number of tokens is forced) are not suitable for automatic verification, as they are too expressive. Hence, most

of the verification techniques, as in this paper, are limited to the bounded TPNs.

Many stochastic extensions of petri nets were developed for performance, dependability modeling, and

evaluation [1,14–16]. The behavior of these models may be demonstrated by discrete state Markov processes

[17] or other stochastic processes. These powerful models have urged researchers toward further study and

development of more stochastic models. One of these extensions is stochastic activity networks (SANs) [1],

which have been supported by several powerful modeling tools (such as UltraSAN [18] and Möbius [19]).

Different settings and extensions of SANs [1,14,21–24] have been widely used for the modeling and analysis

of the functional and nonfunctional aspects of systems.

SANs have several variations and extensions:

1. The original definitions of SANs [20,21,24]: These models have been introduced in 1984, and are a

stochastic extension of petri nets. This definition was used in the UltraSAN and Möbius modeling tools.

2. New definition of SANs: These models have been introduced in 2001 to alleviate some challenges of the

original SANs and are based on a unified view of the system in 3 settings: nondeterministic, probabilistic,

and stochastic [1]. The nondeterministic setting of SANs is called activity networks. This definition

has been used in the modeling tools like SharifSAN [25], SANBuilder [14], and the Partial Differential

Equation Toolbox [26].

3. High-level extensions for SANs: SANs have 3 high-level extensions [22]. The first extension is called

hierarchical SANs (HSANs). HSANs define well-defined and encapsulated submodels, which do not limit

a modeler to some predefined structures of the hierarchy. The second extension is called colored SANs
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(CSANs). The main goal of CSANs is to enhance SANs with facilities for data manipulation and generate

more compact models. The third extension, which is called object SANs (OSANs), has integrated object-

orientation with SAN models.

The high-level expressiveness of SANs and their extensions, and their modeling power, motivated us to

propose a new extension for the activity networks for the verification of timed systems. Here, in this paper, we

introduce a new timed formalism, based on a new setting of activity networks. This new formalism, which is

called timed activity networks (TANs), has the benefit of the similarity of its basis with SAN models, which

easily allows obtaining or converting the existing SAN models into TAN models, which are appropriate for

timing analysis.

Many automaton-based and petri net-based formalisms have been proposed so far for timed and hybrid

systems, most of which help just in specific usages [27–30]. However, there are some difficulties in modeling

timed systems with automaton-based models and petri net-based formalisms, which motivated us to propose

this new activity network-based formalism. Some of these difficulties are as follows: automaton-based models

like hybrid automata are not a well-adapted formalism for the behavioral description of timed systems. By

increasing the complexity of the systems, the dimensions of the models increase dramatically. Meanwhile,

although many timed systems can be described as a network of automata, in a wide family of systems, different

system components have more sophisticated types of communications, which cannot be specified by a network

of automata and one cannot exhaustively encode all of the possible behaviors of these systems as different

locations of a single hybrid automaton.

The task progress speed in petri nets is usually fixed to one. However, the task progress speed in many

timed systems is restricted by the types of the required resources, the amounts of the available resources,

and the number of simultaneous executing tasks using those resources. The following are some examples of

such situations. In stream processing systems, where data streams are processed by the processing elements,

the progress speed may be restricted by the amount of available storage. In scheduling systems, tasks share

a single processor using a round-robin scheduling policy and the task progress speed is determined by the

number of executing tasks. In communication systems, where data packets are uploaded through a channel

with a fixed capacity, the time needed for uploading a packet depends on the number of packets being uploaded

simultaneously and the upload capacity of the channel.

In order to specify these situations, the task progress speed should be state dependent. However, petri

net-based models do not allow for marking dependent process rates. Although the approach in [27] was capable

of modeling the special case of a round-robin scheduling policy, a more general model is needed to deal with

the above-mentioned situations. On the other hand, the enabling and firing rules in petri net-based models are

very naive. However, in practical applications, we need more sophisticated enabling and firing rules to specify

that in each system’s configuration, which activities are in progress and how the progress speed of the ongoing

activities is determined according to the system’s configuration.

Despite the previous stochastic settings, which are used for the performance and dependability modeling

of systems, TAN models are based on a nonstochastic setting. TANs are appropriate for the modeling and

analysis of timed systems. For the performance and dependability evaluation based on the stochastic settings

(i.e. SANs), the underlying stochastic processes are computed. However, for the model checking of the TAN

models, its symbolic state space is computed using polyhedral computations.

Using the expressive power of activity networks, which is mainly achieved by the input/output gates and

the related input/output functions, we have attempted to propose a new formalism for the compact description
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of timed systems. In addition, we will propose our approach towards the state space generation and verification

of systems based on TAN formalism.

The rest of this paper is organized as follows. Section 2 gives the informal and formal definitions of

the TAN, alongside its graphical representation. The exact usage of the TAN will further be described by an

example in this section. In Section 3, the semantics and behavior of the TAN are presented. In Section 4, we

describe how the state space of a TAN model can be computed as state class graphs. In Section 5, we focus on

the verification approaches, and especially translating TAN models into the state class hybrid automata. Next,

we prove that this generated automaton is bisimilar to the original TAN. In Section 6, some related works and

a comparison are given. Finally, some concluding remarks are given in Section 7.

2. The proposed formalism

In this section, we introduce TANs as a new formalism for compact modeling and analysis of timed systems.

To this end, we have applied some changes and refinements to activity networks to meet this goal. Before

presenting a formal definition, we begin with some informal descriptions based on the definitions of the SANs

that appeared in [1].

2.1. Informal presentation and graphical notations

In this section, we give the informal presentation and graphical notations of the TANs. TANs have a close

relation to time petri nets and activity networks; thus it will help if the reader is already familiar with these

formalisms. We try to follow the notations and graphical representations of activity networks in [1], as shown

in Table 1.

Table 1. Graphical symbols of the TAN primitives.

Instantaneous activity Timed activity Place Input gate Output gate 

   
  

TANs have the following primitives:

Activities. Like SANs, there are 2 types of activities in the TAN models: instantaneous and timed. We

represent the instantaneous activities by bars, while the timed activities are shown by rectangles. Instantaneous

activities model the actions that complete in a negligible time span, which can be considered zero, while the

timed activities model the actions that must be done within a rigid and predefined time interval. This is the

opposite of the timed activities of ordinary activity networks that assume nondeterministic completion times. A

static interval is assigned to each timed activity, representing the minimum and maximum time needed for the

completion of the activity, and a PROC function represents the processing rate of the activity as a function of

the system’s marking. The static interval and PROC function of the timed activities can be given either near

each activity or separately in a tabular format.

Places. Places in TANs have the same definition as in petri nets and are shown as circles.

Gates. The other important primitives, which have remained unchanged from the original definitions of

activity networks, are gates. Using gates, more sophisticated rules can be modeled on the enabling conditions

and impact of the activity completions on the markings. There are 2 types of gates: input and output.
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• Input gates. Input gates help the modeler to assign more sophisticated enabling conditions and com-

pletion rules to the activities. An input gate has a finite set of inputs and one output. Each input of

an input gate is connected to a place, while its only output is connected to an activity. Each input gate

is associated with an n-ary enabling predicate, which specifies the set of markings for which the gate is

enabled, and an n -ary input function, which specifies the impact of the input gate on its input places

upon completion of the relevant activity. The input function is defined for all of the markings for which

the enabling predicate is true.

• Output gates. Output gates, on the other hand, determine the impact of the activities’ completion on

their output places. An output gate has one input and a finite set of outputs. Each output of an output

gate is connected to a place, while its only input is connected to an activity. To each output gate is

associated with an n -ary output function, which specifies the impact of the output gate on its output

places by the completion of the relevant activity.

2.2. Formal definitions

Now, we formally define the TANs:

Definition 1 (TAN) A timed activity network (TAN) is a 11-tuple (P , IA, TA, IG, OG, IR, OR, D , Π ,

PROC, µ0) , where

• P= {p1, . . . , pn } is a finite set of places,

• IA is a finite set of instantaneous activities,

• TA is a finite set of timed activities. Moreover, A = (TA ∪ IA) is the set of activities.

• IG is a finite set of input gates. Each g ∈ IG is associated with the following information:

- mg, the number of inputs (with mg ≤ n),

- a function fg : Nn → Nn , called the input function of g that determines the impact of g on its

input places by the completion of the relevant activity, and

- a predicate pg : Nn → {true, false} , called the enabling predicate of g , which determines that if g

is enabled in a marking or not.

• OG is a finite set of output gates. Each g ∈ OG is associated with the following information:

- mg, the number of inputs (with mg ≤ n),

- a function fg : Nn → Nn , called the output function of g . This function determines the impact of

g on its output places after completion of the relevant activity.

• IR ⊆ P × {1, ..., |P |} × IG×A is the input relation. IR satisfies the following conditions:

- For any (p, i, g, a) ∈ IR , we have i ≤ mg ,

- For any g ∈ IG and i ∈ N, i ≤ mg , there exist a ∈ A and p ∈ P, such that (p, i, g, a) ∈ IR ,
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- For any (p, i, g1, a), (p, j, g2, a) ∈ IR, i = j and g1 = g2 .

• OR ⊆ A×OG× 1, ..., |P |} × P is the output relation. OR satisfies the following conditions:

- For any (a, g, i, p) ∈ OR we have i ≤ mg ,

- For any g ∈ OGand i ∈ N, i ≤ mg , there exist a ∈ A and p ∈ P , such that (a, g, i, p) ∈ OR ,

- For any (a, g1, i, p) , (a, g2, j, p) ∈ OR, i = j and g1 = g2 .

• D is the tuple (Dmin, Dmax) representing the static intervals of timed activities, where Dmin:TA→Q≥0

and Dmax:TA→ (Q≥0∪∞) are functions giving, respectively, the minimum and maximum time needed

for the completion of an activity . We have ∀ a∈A·Dmin(a) ≤Dmax(a).

• Π : TA × Nn → {true, false} is the reactivation predicate. This predicate means that by entering a

specific marking, the related timed activity should be reset like it has just become enabled.

• PROC : TA × Nn → Q≥0 is the process rate function, where n is defined as before. The process rate

function determines the processing rate of an enabled timed activity in the current marking.

• µ0 is the initial marking of the network.

In a graphical representation, (p, j, g, a) ∈ IR means that place p , is linked to the j th input of an input

gate g whose output is connected to activity a . p is said to be an input place of a and g is referred to as an

input gate of a . Similarly, (a, g, j, p) ∈ OR means that activity a is linked to the input of an output gate g

whose j th output is connected to the place p . g is said to be an output gate of a and p is referred to as an

output place of a .

A marking of a TAN is a function µ ∈ Nn , where n = |P | . For each place p ∈ P , µ(p) is the number of

tokens in the place p . An activity is enabled in a marking µ if in that marking all of the enabling predicates

of its input gates are true. The set of enabled activities in the marking µ is denoted by enabled(µ).

Definition 2 (Enabled activities) An activity a ∈ (TA ∪ IA) is enabled in a marking µ , if for each input

gate g of a , we have pg (µ) = true . Hence:

a ∈ enabled (µ) ⇔ ∀ (p, i, g, a) ∈ IR, pg (µ) = true.

Upon the completion of an activity a in a marking µ , first, the impact of the input gates of a is applied and

a transient marking µ′ = pre (µ, a) is obtained, then the impact of the output gates of a is applied on µ′ and

the result marking post (µ′, a) will be obtained. These 2 functions are defined as follows:

Definition 3 (pre(µ, a)) For each activity a , the impact of the input gates g1, . . . , gk of a on the marking

µ , is defined as follows:

pre (µ, a) = fg1(fg2(. . . fgk (µ) . . .)),

where fgi is the function of the input gate gi of a .
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Definition 4 (post(µ, a)) For each activity a , the impact of the output gates g1, . . . , gk of a on the marking

µ , is defined as follows:

post (µ, a) = fg1 (fg2 (. . . fgk (µ) . . .)) ,

where fgi is the function of the output gate gi of a .

The conditions imposed on the input and output relations (IR and OR in Definition 1) imply that the

input (output) gates g1, . . . , gk of an activity a affect different places. Therefore, the ordering of gates in

Definitions 3 and 4 do not matter, i.e. different orderings produce the same pre (post) functions.

The activity’s completion is an atomic process, so it cannot be broken. Therefore, when an activity is

chosen to complete, both or none of the pre and post functions will perform. Therefore, the completion of a in

a marking µ will result in post(pre(µ, a), a), which in the rest of this paper is shortly denoted as next (µ, a).

Aside from the instantaneous activities of TANs, between any 2 activity completions, the timed activities

progress based on the PROC function. According to the PROC functions, the vector ⃗PROC can be defined,

which shows the progress rate of all of the timed activities. This definition is used for finding the state space of

the TAN in the rest of this paper.

Definition 5 (Process rate vector) The process rate vector is denoted by:

⃗PROC (µ) =
(
PROC (a1, µ) , . . . PROC

(
a|TA|, µ

))
,

where PROC (a, µ) is the process rate of the activity a at µ . We have PROC (a, µ) = 0 , if the timed activity

a is not enabled in µ .

Based on the activities’ enabling rules, more than one activity can be enabled in a marking. A marking

is called unstable if it enables at least one instantaneous activity. Since instantaneous activities have priority

over timed activities, in an unstable marking, no timed activity can complete. Another notable fact about the

completion rules of the activities is that when more than one timed activity is enabled, among simultaneously

enabled activities, in a nondeterministic manner, one will complete first, based on its static interval.

2.3. Example

As a simple example of TAN models, consider the model of Figure 1 whose static intervals, PROC functions,

and gate table are, respectively, shown in Tables 2 and 3. However, the primitives and behavior of TANs will

be explained further in the following illustrative example.

Table 2. Static intervals and PROC functions of the model in Figure 1.

Activity Static interval PROC function
a1 [0, 3] 1
a3 [1, 2] 1
a4 [4, 5] 1

Table 3. The gate table of the model in Figure 1.

Gate Enabling predicate Function
g1 µ(x1) ≥ 2 ∧ µ(x2) ≥ 1 µ(x1) = µ(x1)− 2; µ(x2) = µ(x2)− 1;
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Figure 1. Graphical representation of an example TAN model.

Example 1 (File uploading system) This example describes a file uploading system. In this system, n

parallel client machines with video capturing capabilities store the captured video packets on their local buffer

and then upload the packets to a centralized server. The server is a real-time packet receiving and storing server

with a constant download capacity ω that concurrently receives multiple data packets from different clients.

Each client alternates between 2 modes. A client ci spends [αp
i , β

p
i ] time units in the passive mode and then

switches to the active mode. When a client is active, it generates packets of data (if its local memory of size φi

(the place Pbuf, i) is not full).

The generation of each packet takes [αc
i , β

c
i ] time units to complete. After [αa

i , β
a
i ] time units, ci switches

back to the passive mode. The data packets generated by the client ci are first stored in its local memory (the

place Pbuf, i) and are then are uploaded to the server. The uploading time for each packet varies based on

ω and the number of clients that are uploading simultaneously. At the server side, the stored packets are

downloaded, compressed, and archived. If only one packet is being compressed, the compression of each packet

takes [αcomp, βcomp] time units.

If the aggregate number of compressed and uncompressed packets exceeds the size of the server’s local

memory, φserver , the uploading process in all of the clients will cease. The compressed packets are stored on

the server’s disk each packet taking [αbckup, βbckup] time units to be written.

The TAN model for the above file uploading system is shown in Figure 2. In this model, the clients, 1 to

n , are separated by dashed boxes. For the ith client, the places Pp, i and P a, i represent the passive and active

modes, respectively, while Tp, i , Ta, i and the related functions, shown in Table 4, regulate the duration of these

2 modes. The timed activity Tbuf,i models the packet generating and the place Pbuff, i models the number

of captured packets in the local memory of the ith client, which are buffered for uploading. The number of

uploading clients at each moment is kept by the place Pcounter . Once a packet is produced in ci , the number

of tokens in this place (denoted by µ(Pcounter)) is increased by one if there is no token in the place Pbuff, i

(which means it is the first time that the ith client has generated a packet). Moreover, when the last packet in

the buffer Pbuff, i is uploaded, µ(Pcounter) is decreased by one.

These rules are established using the functions of the output gate OGbuf, i and the input gate IGupl, i ,

which are shown in Table 5. On the other hand, at the server side, the place Puncomp models the recently

downloaded packets. These packets are analyzed and compressed, which takes [αcomp, βcomp] time units for

each packet. The packet compression is modeled by Tcomp . The place Pcomp represents the compressed packets.
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The predicate function of the input gate IGfull checks if the number of packets in the server’s buffer exceeds

the threshold φserver , and, if so, the instantaneous activity Ifull is activated and instantaneously a token is

put in the place Pfull . When the place Pfull contains a token (which means the server’s buffer is full), the

enabling predicates of all of the gates IGupl, i are false and the clients cannot upload their packets. The gate

IGbackup and the activity Tbackup model the backup function of the server. Based on the function of IGbackup ,

if the server’s buffer was already full, after completion of Tbackup, Pfull is reset, which means that the server’s

buffer is not full anymore and the uploading of packets can continue.

..
.

counterP

fullIG

P

uncompP compP

fullI

compT

backupIG

backupT

,1bufOG

,1pP

,1aT

,1pT

,1bufT

,1aP

,1bufP
,1uplIG ,1uplT

,buf  nOG

,p  nP

,a  nT

,p  nT

,buf  nT

,a  nP

buf, nP
upl, nIG

upl, nT

Figure 2. The TAN model of the real-time file uploading system.

Table 4. Static intervals and PROC functions of the timed activities of the model in Figure 2.

Timed activity Static interval PROC function
Ta, i [αa

i , β
a
i ] 1

Tp, i [αp
i , β

p
i ] 1

Tcrt, i [αcrt
i , βcrt

i ] 1

Tupl [αupl
i , βupl

i ] ω
µ(Pcounter)

Tcomp [αcomp, βcomp] 1
Tbckup [αbckup, βbckup] 1

As shown in the TAN model of Figure 2, the input gates connect the places to the activities, while

the output gates connect activities to the places. In addition to the explicit gates, some standard gates exist

that are depicted by a single arrow from the sources to the destinations. For example, in this model, Pa, 1 is
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connected to Tp, 1 using a simple arrow, which is a short depiction for an input gate with the enabling predicate

Pg=true iff µ(Pa, 1) > 0. The function of this standard gate decreases µ(Pa, 1) by one. As an example of the

standard output gates, consider the simple arrow connecting the activity Ta, 1 to the place Pa, 1 with the default

function, which increases µ(Pa, 1) by one.

Table 5. Gate table of the model in Figure 2.

Gate Enabling predicate Function
OGbuf, i if (µ (Pbuf, i) == 0)µ (Pcounter) + +, µ (Pbuf, i) + +;
IGbuf, i µ (Pa, i) > 0 ∧ µ (Pbuf, i) < φi

IGupl, i µ (Pfull) = 0 ∧ µ (Pbuf, i) > 0 µ (Pbuf, i)−−, if (µ (Pbuf, i) == 0)µ (Pcounter)−−;
IGfull µ (Puncomp) + µ (Pcomp) ≥ φserver µ (Puncomp) := µ (Puncomp) , µ (Pcomp) := µ (Pcomp) ;
IGbckup µ (Pcomp) ≥ 0 µ (Pcomp)−−, µ (Pfull) := 0;

D
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S
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D
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D
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S
IG
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T

,1b
P

,1a
P

,1b
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P

,1u
P

,2b
I

,2a
T

,2b
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,2b
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,2t
T

,2t
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P

,3b
I

,3a
T

,3b
P

,3a
P

,3b
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,3t
T

,3t
P

,3u
P

Processor 1Processor 2Processor3

Figure 3. The TAN model of the task processing system.

The file uploading system is an example of a system whose specification using the TPN formalism is not

practical. Since during the completion of an activity the process rate of that activity may change, the TPN

formalism is not suitable for describing such systems. On the other hand, the specification of this system using

the automaton-based models, like hybrid or TA, requires the encoding of a large number of states. However, as

shown in Figure 2, using the TAN model, the file uploading system can be expressed in a natural way. In our

next example, we discuss a system that can be practically described either as a TPN or a TAN model.

Example 2 (Task processing system) As our next example, consider an N -processor system whose proces-

sors alternates between 2 modes: busy and available. Each processor pi spends [αb, βb] time units in the busy

mode and [αa, βa] time units in the available mode. We aim to use the free processing cycles of the processors
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to accomplish a sequence of tasks. Each time that a task is accomplished and some processors are still in the

available mode, the next task is taken from the task sequence, divided among the available processors, and its

execution is started. However, if during the execution of a task some other processors become available, those

processors cannot be used in the execution of the current tasks. When the execution of a task is finished, each

executing processor may either switch back to busy mode (if their available duration is over) or start the next

task. Assume that all of the N processors are identical and when k processors participate in the execution of

a task, the execution of that task takes [α/k, β/k] time units.

The TAN model shown in Figure 3 describes the task processing system for N = 3. The static intervals,

PROC functions, and gate table of this model are, respectively, shown in Tables 6 and 7. Using the TAN

model, the system can be expressed in a natural way. As shown in Figure 3, in the TAN model, the processors

are separated by dashed boxes. For the ith processor, pi , the places Pa, i and P b, i represent the available and

busy modes, respectively. The transition from the busy mode to the available mode is modeled by the timed

activity Ta, i , while the timed activity Tt, i keeps track of the available duration. The marking of the place Pa, i

determines whether pi is participating in executing the current tasks or not. When the available duration of pi

is over, 2 cases are possible: if pi is not participating in executing the current tasks, the instantaneous activity

Ib,i is completed and pi is in the busy mode; otherwise, the enabling predicate of the input gate IGb, i remains

false until the execution of the current task in finished and pi is free, then Ib,i is completed and pi transitions

to the busy mode.

Table 6. Static intervals and PROC functions of the timed activities of the model in Figure 3.

Timed activity Static interval PROC function
Ta, i [αb, βb] 1
Tt, i [αa, βa] 1
TS [α, β] µ (Pu, 1) + µ (Pu, 2) + µ (Pu, 3)

Table 7. Gate table of the model in Figure 3.

Gate Enabling predicate Function
IGb, i µ (Pt, i) = 1 ∧ µ (Pu, i) = 0 µ (Pt, i) := 0;

IGD

(∨3
i=1 µ (Pa, i) = 1

)
∧
(∧3

i=1 µ (Pu, i) = 0
)

OGD for i := 1 to 3 do µ(Pua,i) := µ(Pa, i);
IGS µ (PS) = 1
OGS for i := 1 to 3 dog µ (Pu, i) := 0;

Due to the enabling predicate of IGD , when one or more processors are available, a new task is divided

among the available processors and the marking of the places Pu, 1 , Pu, 2 , and is Pu, 3 is set accordingly. As

shown in Table 6, the process rate of the timed activity depends on the number of available processors. As the

execution of the current task is completed (activity TS), the marking of the places Pu, 1 , Pu, 2 , and is Pu, 3 is

set to zero.

As shown in Figure 4, the task processing system can also be specified as a TPN model. In this model, the

marking of the place B determines if a task is currently being processed or not. The instantaneous transitions,

I001 through I111 in this model, represent the 7 possible cases for the 3 processors, with at least 1 available

processor. For the number of available processors, 3 cases are possible. In case i processors (1 ≤ i ≤ 3) are

available, the place Ni is marked, and the timed transition Ti is enabled with execution time [α/i, β/i ] .
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Figure 4. The TPN model of the task processing system.

As shown in Figures 3 and 4, thanks to the input/output gates, the models in TANs are more succinct

than the TPN models. In order to have a comparison between the TPN and TAN models, in Table 8, we

compare the size of the TPN and TAN models of the task processing system with N processors, where N

ranges from 2 to 10. The model sizes are given in terms of the number of graph nodes in each model. As shown

in Table 8, the TAN models are significantly more succinct than the TPN models. The sizes of the models are

also shown for the case of the nonidentical processors. If the processors are nonidentical in the TPN models,

additional places and transitions are needed to keep track of the set of available processors, and so on. However,

for the TAN models, the model size is the same as the identical case.

Table 8. A comparison of the size of the TPN and TAN models for the task processing system.

#Nodes #Nodes
Identical processors Nonidentical processors

N TPN TAN TPN TAN
2 27 19 22 19
3 42 25 38 25
4 61 31 62 31
5 88 37 102 37
6 131 43 174 43
7 206 49 310 49
8 345 55 574 55
9 612 61 1094 61
10 1135 67 2126 67
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3. Semantics of the TANs

After defining the basic concepts, now we concentrate on the semantics of the TAN models. A state (config-

uration) of a TAN model can be represented by a tuple (µ, v), where µ is the marking of the net and v is

the valuation of its timed activities. A valuation is a mapping v ∈ (R≥0)
TA

such that ∀a ∈ TA , v(a) is the

progress amount of the activity a since its activation. Note that v (a) is meaningful only for the enabled timed

activities. The process rate function PROC gives for each activity a the speed at which v(a) increases.

Definition 6 (State of the TAN) A state of a TAN is defined as a tuple s = (µ, v) , where µ is the marking

of the net and v is the valuation vector.

After the completion of an activity, some activities’ valuation must be reset. In order to decide the set

of timed activities whose valuation should be reset, the notion of newly enabled activities is defined as follows.

Definition 7 (Newly enabled activities) The function ↑enabled (µ, a)∈2TA denotes the set of newly enabled

timed activities after the completion of the activity a in a marking µ . The completion of a will lead to the

marking next(µ, a) . An enabled activity a′ ̸= a is newly enabled iff a′ is disabled in the marking pre (µ, a)

and is enabled in the marking next(µ, a) or its reactivation predicate at the marking next(µ, a) is true. In

addition, the activity a is always newly enabled after its completion. Therefore, we have:

a′ ∈↑ enabled (µ, a) ⇔

a′ ∈ enabled (next(µ, a)) ∧ (a′ /∈ enabled (pre (µ, a)) ∨ a′ = a ∨Π(next(µ, a), a)).

As mentioned before, Π(µ, a) is the reactivation predicate, which determines whether the activity a is reacti-

vated by reaching the marking µ . When an activity is reactivated, its corresponding progress variable is set to
zero.

Definition 8 (Semantics of the TAN) The semantics of TAN, T , is defined as the timed transition system

(TTS) [31] ST = (S, s0, →) , where

• S=NP×(R+)
TA

• s0 = (µ0, 0̄) where µ0 is the initial marking and 0̄ is the zero vector.

• →∈ S × (TA ∪ IA ∪R+)× S is the transition relation including continuous and discrete transitions:

- ∀t ∈ R+ the continuous transition represents the time progress:

(µ, v)
t−→ (µ, v′) ⇔

 ∀a ∈ TA ∩ enabled (µ) , v′ (a) = v (a) + PROC (µ, a)× t,
∀a ∈ TA ∩ enabled(µ) ⇒ v′ (a) ≤ Dmax (a) ,
enabled (µ) ∩ IA = ∅

- ∀ai ∈ IA the discrete transition relation is:

(µ, v)
ai−→ (µ′, v′) ⇔


ai ∈ enabled (µ) ∩ IA

µ
′
= next(µ, a)

∀a ∈ TA, v′ (a) =

{
0 if a∈↑enabled (ai, µ)
v (a) Otherwise.
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- ∀at ∈ TA the discrete transition relation is:

(µ, v)
at−→ (µ′, v′) ⇔



at ∈ enabled (µ) ∩ TA
enabled (µ) ∩ IA = ∅
µ

′
= next(µ, a)

Dmin (a) ≤ v (at) ≤ Dmax (a) ,

∀a ∈ TA, v′ (a) =

{
0 if a∈↑enabled (at, µ)
v (a) otherwise.

An enabled timed activity at ∈ TA can be completed in a state (µ, v) if and only if µ is a stable

marking and Dmin (a) ≤ v (at) ≤ Dmax (a). The impact of completion of a on the state of system is computed

as follows: the new marking of the system is µ′ = next(µ, a) and for each activity ai we have v′(ai) if ai is

newly enabled in µ′ and v′ (ai) = v (ai) otherwise.

4. State space computation of the TAN models

In this section, our approach toward the computation of the state space of TAN models will be discussed. Due

to the existence of real-valued progress variables corresponding to timed activities, the state space of a nontrivial

TAN model is an infinite and uncountable set. Therefore, the set of states of a TAN cannot be exhaustively

enumerated. However, it is possible to partition the infinite state space into a countable set of groups of states

called state classes [32].

In time petri nets, which do not feature any stopwatch and varying process rate for transitions, state

classes can be encoded using the well-known difference bound matrices (DBM) data structure [27]. However,

the presence of PROC function makes it impossible to use DBM for state space computation of TANs, and so

we have to use general polyhedral representation unless in case of over-approximation. However, in this paper,

we stick to precise analysis instead of approximation approaches. Accordingly, the states of a TAN are classified

into state classes with general polyhedral domains.

Definition 9 (State class) A state class of a TAN is a tuple C = (µ, D) , where µ is the marking and D is

the groups of valuation forming a convex polyhedron as the domain of a state class. Therefore, a domain of a

TAN is |TA|-dimensional convex polyhedron.

The symbolic state space of a TAN model is computed as a state class graph. The nodes of the state

class graph are state classes. In finding the state class graph of a TAN, after each activity’s completion, an

already found state class may be created. This state class should not be added to the state class graph if it is

exactly the same as or included in an already added one.

Definition 10 (State class inclusion) The state class C2= (µ2, D2) is included in C1= (µ1, D1) if and only

if µ1=µ2 and D2⊆D1 .

The obvious approach in finding the state class graph is to follow all possible activity completion paths

starting from the initial state class C0= (µ0, D0). Accordingly, from any given state, all activities that can be

completed should be considered.
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Definition 11 (Completability) An activity a in the state s = (µ, v) is completable if and only if:

a ∈ completable (s) ⇔ (a ∈ enabled (µ) ∩ IA) ∨

 enabled (µ) ∩ IA = ∅
a ∈ enabled (µ) ∩ TA
Dmin (a) ≤ v(a) ≤ Dmax (a)

Moreover, an activity a is completable in the state class C = (µ, D) if and only if a ∈ completable (s) for some

state s ∈ C .

From a given state or state class a set of states can be reached by letting time progress toward the process

rate vector ⃗PROC . Based on this concept, the time closure of a state class is defined as follows:

Definition 12 (Time closure) Given a state class C = (µ, D) , (forward) time closure TC(C) of C is a

class of states which are obtained by letting time progress from a state in C :

s′ = (µ, v′) ∈ TC (C) ⇔ ∃s = (µ, v) ∈ C ·

 ∃t∈R+.v′ = v+t× ⃗PROC (µ)
enabled (µ) ∩ IA = ∅
v′ ∈

∩
a∈ enabled(µ)∩TA [[v(a) ≤ Dmax (a)]]

Based on the concepts of time closure and completability, the whole state class graph can be obtained by

computing all successor state classes from the initial state class using a breadth first search algorithm. As

described before, in each moment, 2 types of system transitions can happen: continuous and discrete. With

regard to continuous transitions, from the state class C = (µ, D), if no instantaneous activity is enabled, by

letting time progress a state class C ′ = TC (C) = (µ, D′) is obtained and added to the state space. From

the state class C ′ , given the completable timed activity a (among all completable activities in this state class)

after completion of a , state class C” = (µ′, D′) is obtained. This state class is computed by the function

Successor(C ′, a). In the related state class graph, this transition is denoted by the edge C ′ a−→ C” with the

label a from the class C ′ to C”.

Definition 13 (Successor(C, a)) If from a state class C = (µ, D) , the timed activity a is completable then

the successor state class of C by completion of a , (µ′, D′) = Successor(C = (µ, D), a) is computed by following

these steps:

• µ′=next(µ, a)

• D
′
is found from D by:

– ∀ a ∈ enabled (µ)− enabled (µ′) , set v(a) = 0

– ∀ a ∈ enabled (µ)∩ ↑ enabled (µ, a) , set v(a) = 0

Accordingly, the state space generation of TAN from the initial state C0 = (µ0, 0⃗ ) is performed by

algorithm 1 presented in Figure 5. In the following, we briefly discuss the correctness and complexity of the

state space computation algorithm. The algorithm computes the set of reachable states by means of a forward

depth-first search in the state class graph. Let us assume that the system is initially in the state (µ0, 0⃗) . The

algorithm starts with an initial state class C0 = (µ0, {⃗0) containing only the state (µ0, 0⃗) . In line 4 of the
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algorithm, an already obtained state class in popped from the stack and its future states are computed. In line

9 of the algorithm, if no immediate activity is enabled from the current class, the time closure of the current

class is computed according to Definition 12. However, if some immediate activities are enabled from a class,

in lines 10 and 11 of the algorithm, the successor state class of the current class with respect to the completion

of each of those activities are obtained according to Definition 13 and put on stack for further processing.

Figure 5. State class graph computation algorithm.

When a new state class in computed, in lines 7 and 8, and 17 and 18 of the algorithm, if it is not already

contained in the state class graph, it is added to the state class graph. In lines 15 and 16 of the algorithm,

according to Definition 11, the set of completable activities from the time closure class is obtained and the
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successor state class of the current class with respect to completion of each of those activities is obtained. In

order to do this, for the class (µ, D), the successor of the following class is obtained:

C
′
:= Successor ((µ, (D ∩ [[Dmin(a) ≤ v (a) ≤ Dmax(a)]])) , a) ,

which restricts the class (µ, D) to a subset of the valuation domain, D , where the activity is completable.

In generating the state class graph of TANs, the Parma polyhedra library (PPL) [33,34] for demonstrating

and the required operations on the polyhedral domains, such as forward time closure, and successor, can be

used. Convex polyhedra can be represented either as the set of solutions of a conjunction of linear inequalities

or in a polar representation, called the system of generators [34]. As any operation on convex polyhedra may

require a conversion from one representation to the other, all operations have a cost exponential with respect

to the number of variables, both in terms of time and memory. Therefore, the complexity of computing each

state class of the state class graph is at least exponential in the number of enabled activities. However, the

complexity of the semi-algorithm is at least n times the complexity of computing a single state class, where n

is the number of state classes in the state class graph.

The output of Algorithm 1 is a graph of all possible state of the system. Nodes of this graph are

connected via edges labeled by activities. Therefore, untimed language of the TAN model can be extracted

from this graph. Activities and state classes comprise the language’s alphabets of a bounded TAN. If the notion

of time is eliminated from the state space representation, we will not be able to model check timed reachability

properties [27]. In order to illustrate this limitation, consider the TAN model of Figure 1. In this model, based

on the state class graph, it can only be found out that the system has 7 state classes and the firing sequence

a2 , a1 , (a3 , a4 or a4 , a3) as shown in Figures 6 and 7. After the completion of a2 , a1 can be completed

at any time between 0 and 3. If it is completed at 0 the only possible completion sequence is a3 , a4 . If a1 is

completed at 3, both a3 , a4 and a4 , a3 can happen. Therefore, based on the created graph, timed properties

like this cannot be checked. Hence, an additional method should be utilized for further checking. The idea is

to keep track of all progress variables such that no time information is lost.
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Figure 6. The state class graph of the TAN model in Figure 1.
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Figure 7. Computing the first state classes of the TAN model in Figure 1.

In Figure 7, the procedure for obtaining the first state classes of the TAN model in Figure 1 is shown.

5. Verification of TAN models

In this section, we describe possible verification and analysis techniques for TAN models. Two basic approaches

can be employed for checking the time properties on an activity network based model: overloading and

translation into automaton-based models. The former is done by using observers. The observer can be defined

as a model that does not modify the behavior of the initial model, but changes the time properties checking

issues to reachability checking concerns [35]. The important problem that hinders the use of observers is that

for checking any property a specific observer is needed [36].

Therefore, in order to have a general approach for the verification of quantitative time properties

(quantitative liveness and TCTL [6] properties), the translation approach remains useful. Especially when

using TCTL as the verification framework, we are forced to translate our formalism into hybrid automata

for which the existing model checking tools can be used. Translation notion can be used in 2 ways: structural

translation and state space computation based translation [37]. In the case of the former method, different efforts

have been conducted to translate various types of petri net-based formalisms, like TPN, into automaton-based

models.

Cassez and Roux proposed a structural translation for TPN into TA that keeps the behavioral semantics

unchanged [35]. In their approach, they have modeled each transition with one clock timed automaton, and

so after translation we have the same number of simple automata as the number of transitions in the original

TPN. The state of each transition is represented by the state of the corresponding timed automaton. The initial

state of all automata is determined by the initial marking M0 of TPN. The result is a composition of parallel

automata supervised by an additional automaton. This automaton regulates state transition and behavior

of all of the other automata. Moreover, other translation methods exist in the literature like Gu and Shin’s

method [38]. They have used time petri nets for modeling event-driven real-time systems, and have performed

subsequent analysis via model checking by a translation into TA.

There exist other works done so far in this field, most of which have special purposes. Due to the

similarity of TAN models to TPNs, the idea of the 2 methods mentioned above can be a useful inspiration

for our translation, but these methods suffer from the large number of produced clocks. In the best case, the
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number of clocks is the same as the number of activities. However, our focus is on state space based translation,

especially the method firstly introduced by Lime and Roux in [32] and further completed in [7]. In their

method, the state class graph is transformed into a hybrid automaton that accepts the same timed language

as the original TPN. The most important advantage of this method is its simplicity and general usage, where

translation is done once and all verifications can be done on it by using the existing techniques and tools.

We have employed the Parma polyhedral library in implementation of a tool for computation of the

state class graph. All of the potential states that can be reached by the model are achieved, and so marking

reachability along by time space reachability analyses can be done on its result by using untimed CTL. However,

beside reachability analysis we are more interested in checking temporal properties that can be expressed by a

standard temporal logic like LTL, CTL*, or TCTL. Using this notion we succeeded in translating our formalism

into hybrid automata and exploit the existing tools like HyTech [6].

Our approach towards using this method will be fully explained in the next section. Due to the similarity

of TAN models with TPNs, based on the claimed experimental results of Lime and Roux, we expect to have

much lower number of clocks than in the direct translation.

5.1. Verification using state class hybrid automata

In this subsection, we present our solution for model checking of TAN models using the state class hybrid

automata notion introduced by Lime and Roux [32]. In the presence of the PROC function, the state class

graph is translated into a time bisimilar linear hybrid automaton. Before going through it, let us have a glance

at the definition of hybrid automaton and the required notations and concepts.

5.1.1. Linear hybrid automata

A hybrid automaton is a formal model for mixed discrete-continuous systems [10]. Indeed, hybrid automata are

extensions of standard automata that add continuous variables to the original model.

Definition 14 (Hybrid automata) A hybrid automaton H consists of the following elements [10]:

• Variables. A finite set X = {x1, x2, . . . , xn} of real variables. n is called the dimension of H .

Ẋ = {ẋ1, ẋ2, . . . , ẋn} is the set of derivatives of the variables in X representing the rate at which

they change.

• Control modes or locations. There is a finite set of locations denoted by L .

• Initial, invariant, and flow conditions. These 3 functions assign to each location l ∈ L , the following

3 predicates:

◦ The 2 predicates init(l) and inv(l), whose free variables are from X , determine the initial valuation

of variables and the condition on the valuation of variables in location l , respectively.

◦ The predicate flow(l), whose free variables are from X ∪ Ẋ, determines the rate at which the

variables change while the control mode is l.

• Events. A finite set Σ of alphabets of H .
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• Control switches or edges. E ⊂ L × ς(X) × Σ×2X×XX×L is a finite set of edges. If e =

(l, δ, α, Υ, ρ, l′) is an edge of H from l to l′ , then δ is its guard function, also know as the jump

condition, α is relevant event occurred by this jump, Υ determines the set of clocks to be reset and ρ is

the clock assignment function.

A hybrid automaton, H , is linear if the following conditions are met:

1. The predicates init and inv in each location l ∈ L of H are Boolean combination of the linear inequalities.

2. The flow conditions governing the evolution of the variables X in each location l ∈ L can be written as

AẊ ≤ B , where A is a real matrix and B a real vector.

Since in the proposed model, based on the definition of the PROC function, the evolution of continuous variables

depend only on the marking and ranges over Q+ , then the flow predicate and also other constraints on

continuous variables can be represented by linear expressions, independent of X and Ẋ . Therefore, we are

dealing with linear hybrid automata.

Definition 15 (Semantics of hybrid automata) The semantics of a hybrid automaton H is defined as a TTS

SH = (Q, Q0,
a−→) , where Q ⊆ L× Rn is the set of states and Q0 ⊆ Q is the set of initial states of H , such

that ∀ (l, v) ∈ Q, inv(l, x) is true and ∀(l, v) ∈ Q0 both inv(l, v) and init(l, v) are true. Finally,
a−→ is the

transition function with the label a ∈ Σ∪R+ , where

• (l, v)
σ−→ (l′, v′) for σ ∈ Σ if and only if there exists an edge(l, δ, σ, Υ, ρ, l′) ∈E such that:

– δ (v) is true,

– v
′
= v [Υ] [ρ] , and

– inv
(
l
′
, v

′
)

is true,

• (l, v)
t−→ (l, v′) for each nonnegative real number t , where

– ∀x∈X;v
′
(x)=v (x)+t×ẋ, and

– inv
(
l, v

′
)

is true.

5.1.2. State class hybrid automata

In order to model check a TAN model, we keep the track of the time and variables’ evolution in the generated

state class graph. This idea is implemented via a linear hybrid automaton bisimilar to the original model, in

which each location contains the corresponding location of the original graph information and other additional

requirements. These additional requirements are the location’s clocks and invariants of the related automata,

which have the task of keeping the trace of time. Consequently, the extended state classes and the other related

concepts should be mentioned and redefined here.
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Definition 16 (Extended state class) An extended state class is a 4-tuple (µ, D, X, trans), where µ and

D are the the marking and the domain, respectively. X = XT ∪ {xI} is the set of clocks, where XT represents

the set of clock corresponding to the enabled time activities and xI is a virtual clock used for the enabled

instantaneous activities. Finally, trans ∈ (2
TA∪IA

)
X

is a mapping from X to the power set of TA ∪ IA .

The function trans (x) returns a set of enabled activities that are mapped onto the clock x ∈ X. Indeed,

trans assigns a set of activities to each x ∈ X , where x keeps the elapsed time for all of the activities in

trans(x) that have the same enabling time offset and progress rates. Considering that instantaneous activities

have a zero completion time, by the completion of any instantaneous activity, a state class with a zero life time

will exist. Accordingly, we add the clock xI to our clocks; hence we have trans (xI) ∈ 2IA . This clock covers

our need for instantaneous jumps in the bisimilar linear hybrid automata.

If in the original state class graph, 2 state classes, C and C ′ , are connected via a labeled edge ea,

and then there exist equivalent states and edges in the corresponding extended state class graph. Therefore,

from the state class C= (µ,D,X, trans) via the edge ea, C
′ will be reached, where C ′ = (µ′, D′, X ′, trans′) is

computed by Algorithm 2 and is shown in Figure 8.

Figure 8. Computing the extended state class C′ achieved by the completion of activity a from C .

Since timed activities can have different rates, the sets of activities that are mapped to a single clock

should have the same rate. Accordingly, if the timed activities in trans(x) have m different rates, we create

m− 1 new variables with the smallest possible indices and add the related activities to the function trans.
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In the following, we briefly discuss the correctness and complexity of Algorithm 2. As the elapsed time for

all of the disabled activities is not needed, in line 2 of the algorithm, for each disabled activity, its information

is removed from the values of trans of all of the variables. In addition, the set of newly enabled activities are

removed from the values of trans of all of the variables, and later in lines 5 through 10, all of the newly enabled

activities are associated to a variable with valuation zero. Two cases can occur: in line 6, if a variable with

valuation zero exists, all of the newly enabled activities are associated to that variable; otherwise, in line 10 of

the algorithm, such a variable is added, and all of the newly enabled activities are associated to it. As for each

variable x ∈ X , all of the activities in trans(x) must have the same process rate. If after the completion of an

activity, the timed activities in trans(x) are partitioned into m > 1 groups, each with a different evolution rate,

in lines 11 and 12 of the algorithm, m− 1 new variables are added and each of the m variables are associated

with the activities in 1 group.

In computing the new valuation domain D′ , in line 1 of the algorithm, the polyhedral operations are used.

Therefore, the complexity of computing the new valuation domain is exponential in the number of activities.

Consequently, since the rest of the algorithm is polynomial, the complexity of Algorithm 2 is exponential in the

number of activities. However, since the translation procedure requires a repetitive application of Algorithm 2

(for each state class), it has n times the complexity of Algorithm 2, where n is the number of state classes of

the state class graph.

Definition 17 (Clock similarity) Two extended state classes C = (µ, D, X, trans) and C ′ = (µ
′
, D

′
, X

′
trans′)

are clock-similar if they have the same marking and the same number of clocks that can be mapped by the fol-

lowing one-to-one function between them:

C ≈ C ′ ⇔



µ = µ′

|X| =
∣∣∣X ′

∣∣∣
trans (xI) = trans (x′

I)

∀x ∈ XT , ∃x′ ∈ X ′
T ;


trans (x) = trans′(x′)
ẋ = ẋ′

init (x) = init
(
x

′
)

,

where init(x) is the value of xat the moment that the state class C is created.

Definition 18 (Extended state class inclusion) C ′ = (µ
′
, D

′
, X

′
trans′) is included in C= (µ,D,X, trans)

and is shown by C ′⊆C , if and only if D
′⊆D and C≈C ′ .

After this definition and having extended the state class graph, we are ready to present the method for

the creation of the state class hybrid automata for TANs.

Definition 19 (State class hybrid automata) A state class hybrid automaton is 7-tuple H= (L, l0, X, Σ, E, Inv, F low) ,

where

• L is the set of locations obtained from the set Cext (the set of all of the extended state classes),

• l0=C0=(µ0, D0, X0, trans0) is the initial location,

• X=
∪

C=(µ, D, X, trans)∈Cext

X,
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• Σ = TA ∪ IA.

• E is the set of edges, where

∀Ci = (µi, di, Xi, transi) , Cj = (µj , dj , Xj , transj) ∈ Cext,

∃e = (li, δ, σ, Υ, ∅, lj) ∈ E ⇔


δ =

{
xI = 0, a ∈ IA
transi

−1(a) ≥ Dmin (a) , a ∈ TA
σ = a
Υ =trans−1 (↑ enabled (µi, a))

Ci
a−→ Cj

.

• ∀ l=(µ,D,X, trans) :

inv (l)=

{ ∧
∀x∈X, a∈trans(x) (x≤Dmax(a)), trans (xI) ̸= ∅

xI= 0, otherwise
.

• ∀ l=(µ,D,X, trans) :

∀x ∈ X ,̇ ẋ = Flow (l) (x) =

{
PROC (a, µ) , x∈XT∧∃a∈trans (x)
1, x =xI∧ trans (xI) ̸= ∅ .

Configuration of the state class hybrid automata can be represented by (l = (µH , DH , XH , transH), vH),

where the vector vH shows the values of the clocks.

5.2. Soundness of the translation

In this section, we prove the soundness of the translation from the TANs into a bisimilar hybrid automaton.

For this purpose, in the following, we will show that the original TAN model is bisimilar with its corresponding

state class hybrid automaton.

Definition 20 (Bisimulation) Let S1= (Q1, Q
1
0,

a−→1 ) and S2= (Q2, Q
2
0,

a−→2 ) be 2 timed transition

systems and let R be a binary relation over Q1×Q2 . We write q1Rq2 for (q1, q2) ∈R , where q1∈Q1 and

q2∈Q2 . R is a bisimulation if:

• q1Rq2 and q1→q1
′ implies that ∃q2′ ∈Q2 , where q2→q2

′and q
′

1Rq
′

2 .

• Symmetrically, if q1Rq2, ∀q′2∈Q2 , where q2→q2
′ implies that ∃q1′ ∈Q1 , where q1→q1

′ and q
′

1Rq
′

2 .

Theorem 1 (Bisimulation of TAN and the state class HA) Let QT be the set of states of a TAN T and

let QH be the set of states of its corresponding state class hybrid automaton H = (L, l0, X, Σ, E, Inv, F low).

We define a binary relation R over QT × QH . Such that for all qT = (µT , vT ) ∈ QT and qH = (l =

(µH , DH , XH , transH) , vH) ∈ QH , qTRqH , if and only if:

1. µH = µT .

2. ∀a∈enabled (µT )∩IA, a∈trans(xI).

3. ∀a∈enabled (µT )∩TA, ∃x∈XT , vT (a)=vH (x) and Flow (l) (x) =PROC(µT , a).

R is bisimulation.
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Proof Based on the previous definition, the proof of bisimulation is a 2 way procedure. Suppose that qτRqH ,

then:

Step 1. If qT
σ−→ q′T , ∃q′H , where qH

σ−→ q
′

H and q′TRq′H .

• If σ=t∈R+ , so it is a continuous transition in the TAN (µT = µ′
T ), so enabled (µ) ∩ IA = ∅ and

∀a∈enabled (µT ) ·(vT (a)+ t×PROC(µT , a)) ≤ Dmax(a). Hence:

- ∀a∈enabled (µT ) ·vT (a)=vH (x) ⇒ v
′

H (x) = (vH (x)+ t×PROC(µT , a)) ≤ Dmax(a) ⇒ inv
(
l, vH+Ẋ×t

)
=

true.

- Hence, H can have a continuous transition with the time elapse t . Due to the fact that H is evolving

in the same location, the extended state is the same, and so is the related marking (µH = µ
′

H).

Therefore, Flow (l) (x)=PROC(µT , a) stays unchanged and results in q′TRq′H .

• σ = a ∈ IA, so an instantaneous activity a is enabled in qT . That means a ∈ trans(xI) and

inv (l) = [[xI = 0]] , so:

- ∃q′H ·qH
σ−→ q

′

H . Since qT and qH have the same marking and have the same rules for finding new a

marking from the same activity completion, then q
′

H and q′T have the same marking (µ′
T = µ′

H).

- Based on Algorithm 2, after the completion of a if ∃a′ ∈↑ enabled(µT , a) ∩ IA , then trans′(xI) =

trans(xI) ∪ a′ , so: ∀a∈enabled (µ′
T )∩IA, a∈trans′(xI).

– ∀a′ ∈↑ enabled(µT , a) ∩ TA, a′ is assigned to a clock x′ ∈ XT with the same value and progress

rate (v′T (a′)=vH (x) and Flow
(
l
′
)
(x′) =PROC(µ

′

T , a
′)).

- As a result of this, we have q′TRq′H .

• σ = a ∈ TA, so a timed activity a is enabled in qτ (and enabled (µ) ∩ IA = ∅), so the edge e with

the jump condition trans−1(a) ≥ α (a) exists in H that led to q
′

H . Since the approach for finding the

marking, the clock’s rate, and the values does not differ for a ∈ TA or a ∈ IA , like before, it can be

easily proved that q′TRq′H .

Step 2. In this step, it should be proved that if qH
σ−→ q

′

H then ∃q′

T , qT
σ−→ q′T and q′TRq′H .

• σ=t∈R+, so it is a continuous transition in H (µH = µ′
H and so µ′

H = µT ). Based on the definition

of the state class hybrid automata, we have:

- enabled (µ) ∩ IA = ∅

- inv
(
l
′
)
= true ⇒ ∀a∈enabled (µ′

H = µT ) ∩ trans(x)·v′

H (x) = (vH (x)+ t×Flow (l) (x)) ≤ Dmax(a)
Flow (l) (x)=PROC (a, µ′

H = µT )
qTRqH ⇒ ∀a∈enabled (µT ) ∩ trans (x) ·vH (x) = vT (a)
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⇒ ∀a∈enabled (µT ) ·(vT (a)+ t×PROC(µT , a)) ≤ Dmax(a), which means that T can have a con-

tinuous transition with the time elapse t . In other words, ∃q′

T , qT
σ=t−→ q′T . Based on the definition

of continuous transition in the TAN, µT = µ′
T and obviously µ′

T = µ′
H .

- In addition, enabled (µT ) = enabled (µ′
T ), which means XT stays unchanged, so condition 3 of

Theorem 1 is also satisfied, and accordingly q′TRq′H .

• a ∈ IA, so based on the definition of the state class hybrid automata, we have: ∃Ci
a−→ Cj ·a ∈ IA .

Hence:

- ∃a ∈ IA ∩ enabled (µH = µT ) ⇒ ∃qT
σ=a−→ q′T . Since qT and qH have the same marking and have

the same rules for finding new markings from same activity completion, then q
′

H and q′T will have

the same marking (µ′
T = µ′

H).

- Based on Algorithm 2, after the completion of a , if ∃a′ ∈↑ enabled(µT , a)∩ IA , then: trans′(xI) =

trans(xI) ∪ a′ , so: ∀a∈enabled (µ′
T )∩IA, a∈trans′(xI).

- ∀a′ ∈↑ enabled(µT , a) ∩ TA, a′ is assigned to a clock x′ ∈ XT with the same value and progress

rate, which means:

∀a′ ∈ enabled(µ
′

T )·∃x
′
;v′T (a′)=vH (x′) and Flow

(
l
′
)
(x′) =PROC(µ

′

T , a
′).

- As a result, we have q′TRq′H .

• σ = a ∈ TA, so based on the definition of the state class hybrid automata ∃Ci
a−→ Cj ·a ∈ TA , so the

edge e with the jump condition trans−1(a) ≥ α (a) exists in H , which leads to q
′

H . Since the approach

for finding the marking, clock’s rate, and values from state qT does not differ for a ∈ TA or a ∈ IA , like

before, it can easily be proved that q′TRq′H .

In this section, we proved that using the proposed approach, a given TAN model can be translated into

a bisimilar hybrid automaton that accepts the same timed language. The resulting automata can be used for

the further checking of timed properties, which was impossible for the original TAN.

6. Related works and comparison

TA [4] may be the most successful model of real-time systems. An extension of TA, stopwatch automata (SWA)

are TA augmented with stopwatches that can be stopped and resumed. In [39], the expressive power of SWA

with an unobservable behavior was investigated and it was proved that it has the same expressive power as

linear hybrid automata (LHA) in the sense that any finite or infinite timed language accepted by an LHA is

also acceptable by a SWA.

Suspension automata [28] are another extension of TA with a bounded subtraction, in which the clocks

may be updated by subtractions within a bounded zone. If all of the suspension durations are fixed and integral,

the model is a decidable class of TA. The approach of suspension automata is further extended in task automata
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[29]. Task automata are extensions of TA for the schedulability analysis of real-time systems with nonuniformly

recurring computation tasks that are triggered by events. A task is an executable program characterized by its

best-case and worst-case execution time, deadline, priority, and so on.

Several extensions of petri nets have been used for specifying timed systems [27,40,41]. Time petri net

(TPN) [40] is a classical timed extension of petri nets, in which a firing interval is associated with each transition.

This extension takes into account the scheduling of the software tasks that are assigned to the processors of a

multiprocessor system. Moreover, in [27,32], a scheduling-TPN for schedulability verification was proposed that

is appropriate for specifying different scheduling policies. In [27], when n tasks with the same priority share

a single processor in a round-robin policy, the evolution rate of the corresponding variables was 1/n . In order

to model round-robin scheduling easily, in the approach proposed in [42], groups of transitions were defined

together with execution speeds. The transitions in a group can be executed at the same time and each rate is

divided by the sum of the execution speeds.

TANs inherit all of the advantages of petri nets, such as the ability to capture behaviors, including

concurrency, synchronization, priorities, and conflicts. Due to the usage of the input and output gates, the

TAN models, proposed in this paper, are more flexible than the petri net-based models mentioned above. In

addition, due to the marking-dependent process rate functions of TANs, these models are more flexible than

the models introduced in [27,32,42].

7. Conclusions

In this paper, we introduced TANs, based on the well-known SANs, for the modeling and verification of a timed

system. We presented the informal and formal definitions, semantics, and analysis techniques of TAN models.

TANs take the advantages of activity networks, which are using the input/output gates to construct more

compact petri net-based models for timed systems. In addition, TANs allow the assignment of time intervals to

timed activities. Despite petri net-based timed formalisms, TANs are capable of the easily modeling of systems

where the activity process rates are state dependent. Examples of such systems are stream processing systems

and scheduling systems. On the other hand, due to the naivety of the enabling and firing rules in petri net-based

models, describing many systems using TAN models is much easier than petri net-based formalisms. Thanks to

the presence of the input/output gates in TANs, this formalism is capable of modeling systems with complicated

enabling rules and state-dependent activity completion rates. These features make TANs a better model for

timed systems.

A great benefit of this formalism is the similarity of its basis with SAN models, which allows easily for

obtaining or converting the existing SAN models to TAN models, which are appropriate for timing analysis.

As we presented in this paper, TAN models can be translated into LHA. Therefore, the existing model

checking techniques and tools can be employed with TAN models after their transformation into LHA models.

We are currently developing a tool for the direct model checking of TANs. In future, we intend to extend

TANs with some other useful features, such as time-dependent activity rates, for better application on modeling

timed systems.
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