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Abstract— One of the main properties of today’s distributed and parallel systems, such as mobile ad-hoc networks and grids, is

their heterogeneity in the available resources. Further, many applications of such systems are subject to Time/Utility Function

(TUF) time constraints for jobs, unavoidable variability in job characteristics and arrivals, and statistical assurance requirements

on timeliness behaviors. In this paper, we propose an exact analytical solution for performance evaluation of dynamic policies

used for routing of TUF-constrained Firm Real-Time (FRT) jobs among parallel single-processor queues with arbitrary

processing rates and capacities. The analytical method can be used for the evaluation of the compliance of some important

statistical assurance requirements. Furthermore, we present a utility-aware dynamic routing policy to improve the expected

accrued utility of the parallel system. The policy called Maximum Expected Utility (MEU) behaves based on the information

gathered from the analytical solution. MEU is compared with some well-known Dynamic Routing (DR) policies for different TUF

shapes and both cases of homogeneous and heterogeneous processors of a two-queue system. The comparisons show the

efficiency of MEU for the former case and its good behavior in most situations for the latter case.

Index Terms— Analytical modeling, Firm real-time systems, Performance modeling, Time/utility function, Utility accrual dynamic

routing.
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1 INTRODUCTION

arallel and distributed real-time systems usually in-
clude heterogeneous nodes with different capabilities
and available resources (e.g., processing rate, buffer

capacity, energy storage, and network bandwidth). Ex-
amples include time constrained distributed systems over
wireless local-area networks, mobile ad-hoc networks,
and grid environments. However, such systems are often
used in critical and harsh environments with uncertain
properties. These uncertainties are encountered in critical
applications such as space and defense domains or in less
critical applications such as multimedia and streaming
systems. Such non-determinisms which can be observed
in the arrival pattern of jobs as well as job characteristics
(e.g., execution times and deadlines) are usually de-
scribed by stochastic models.

Applications of such systems are also becoming more
complicated in the description of the respective Quality of
Service (QoS) requirements. The classical notion of dead-
lines may not be able to exactly express them, especially,
when the applications have relatively complex soft and
possibly firm timing requirements, i.e., the time of suc-
cessful completion of a job affects the importance of the
job completion. Precise description of the timing require-
ments and accurate cognition of their effects can help us
to improve the overall performance of such systems.

1.1 Time/Utility Functions for Real-Time Systems

As indicated in [27], there exist two criteria for the execu-
tion of a real-time job; one is known as urgency and is
specified by its deadline and the other is known as impor-
tance and is determined by the time that the job com-
pletes its execution. The latter criterion is usually charac-
terized by the job’s Time/Utility Function (TUF), as pro-
posed for the first time by Jensen et al. [12]. A TUF, which
precisely specifies the semantics of Soft Real-Time (SRT)
constraints, determines the utility resulting from the
completion of a job as a function of its completion time
(possibly with respect to its arrival time). On the other
hand, the TUF-constrained systems in which jobs passing
their deadline become of no value (their TUF reaches zero
on their deadline) and are thrown away immediately are
called Firm Real-Time (FRT) [1]. Therefore, the difference
between SRT and FRT jobs is that the latter consume no
more resources (e.g., buffer or processing time) after miss-
ing their deadline.

One major goal in such systems is to complete the
TUF-constrained jobs as close as possible to their optimal
completion times. Further, the optimality criteria in the
systems are known as Utility Accrual (UA) which is based
on the accrued utility by the system or the individual
jobs. Example criteria are maximizing the job expected
attained utility or the assurance level of satisfying lower
bounds on the attained utilities.

TUFs can be classified into unimodal and multimodal
functions. Unimodal TUFs are those for which any de-
crease in the utility function cannot be followed by an
increase. Multimodal TUFs do not follow this constraint.
Irrespective of the generality of multimodal TUFs, most of
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the studies on the UA scheduling algorithms consider
simpler TUF shapes, e.g., step TUFs or special cases of
non-step unimodals. TUF for the classical deadline is a
binary-valued downward step function. A number of
sample TUF shapes for different applications are pre-
sented in [32] and the references therein. For example,
brief discussions on the Airborne WArning and Control
System (AWACS) surveillance mode tracker system and a
coastal air defense system can be found in [30]. Some
notes on TUF shapes in mobile ad-hoc network applica-
tions can also be found in [9].

1.2 Motivation and Paper Outline

This paper studies the problem of dynamic routing of
TUF-constrained FRT jobs (with no limitations on the
TUF shapes) among parallel subsystems.

As mentioned earlier, many of the today’s parallel and
distributed systems suffer from uncertainties and stochas-
tic nature of events. In such systems, dynamic load balanc-
ing techniques, which we mostly refer to as Dynamic
Routing (DR) policies throughout this paper, play impor-
tant roles in the optimization of performance measures
and resource utilizations.

Traditionally, dynamic load balancing techniques are
used to prevent overusing of a processor in a parallel or
distributed system while another processor is idle, as well
as adapting the load on different processors in proportion
to the processors speeds in the system. However, espe-
cially for TUF-constrained real-time systems with the UA
criteria, dynamic load balancing cannot follow the tradi-
tional policies. Rather, they may need quite different cri-
teria for route selections based on different TUF shapes.

In this paper, the subsystems, among which dynamic
routing is applied, are considered as single-processor FRT
queueing systems with arbitrary processing rates and
capacities. It is assumed that no migration is allowed
among the subsystems and no preemption is permitted
within a subsystem. The problem is studied for specific
stochastic properties of the parallel system through an
exact analytical modeling. Based on the modeling, several
important UA performance measures are calculated for
general DR policies in the class of policies that are aware
of only the specifications and populations of the subsys-
tems. The accurate calculation of these measures helps
with a better understanding of the effects of various TUF
time constraints on the behavior of the system. According
to the analytical solution, a utility-aware DR policy, called
Maximum Expected Utility (MEU), is also proposed,
which uses the calculated information about the system
behavior with respect to job TUFs to select the target
routes. MEU is compared to some well-known DR poli-
cies in the aforementioned class for different TUF shapes.
The numerical results show the efficiency of this policy in
most instances.

Thus, this paper's contribution includes exact analyti-
cal formulation of dynamic routing of TUF-constrained
FRT jobs among parallel heterogeneous subsystems, pres-
entation of a utility-aware DR policy which uses the ana-
lytical results, and evaluation of the effects of different
TUF shapes on the efficacy of the DR policy. To the best

of the authors’ knowledge, there exists no previous exact
analytical method for a similar system with TUF-
constrained jobs. Moreover, we know of no previous utili-
ty-aware DR policy for such a system with arbitrary TUF
shapes (except [3] for a different system model and a spe-
cific TUF shape).

The rest of this paper is organized as follows. The
model of the parallel real-time system and the respective
performance measures are presented in Section 2. In Sec-
tion 3, the queueing model of the system, some condi-
tional parameters, and the analytical solution are de-
scribed. Then, in Section 4, three TUF-independent DR
policies besides the proposed utility-aware DR policy are
presented. Moreover, in the same section, the basic calcu-
lations are carried out for two case studies. Afterwards,
some numerical examples are presented in Section 5 for
performance evaluation of the DR policies in different
system configurations. In Section 6, we discuss the related
works. Finally, the conclusions of the paper as well as
some topics for future studies are presented in Section 7.

2 SYSTEM MODEL AND PERFORMANCE MEASURES

This section first identifies the parallel system and appli-
cation models, and then, presents the formulation of our
favorite system performance measures. Throughout this
paper, we assume statistical equilibrium and use  and 
to denote variables with values in the set of non-negative
real numbers.

2.1 The Parallel System, Job and Utility Models

We consider a system consisting of s parallel single-
processor queues (subsystems) ),(: iii KQ  numbered as
i=1,…,s, where Ki is the capacity of the i-th queue and i is
the processing rate of the respective processor. Jobs of this
system are defined as ),,,( UeaJ  , where a, e, , and U

are the job’s arrival time, execution time, relative dead-
line, and TUF, respectively. A state of the system is
shown with n=(n1,…,ns), where niKi is the number of jobs
in the i-th queue, i=1,…,s. These parameters are defined
more precisely in the following paragraphs.

The job arrival times (a) follow a state-dependent Pois-
son process with rate (|n|), where |n|= 

s

i in
1

is the
total number of jobs in the system at state n. A dispatcher
assigns an incoming job to the proper queue according to
a stationary DR policy. Upon arrival in a non-full state n,
the arriving job joins the j-th queue with a probability

)( jrn (where 1)(1  

s

j jrn
). An arriving job who finds the

system full is blocked and must leave the system imme-
diately.

Jobs entering each queue are served in the order of
their arrival, i.e., the service discipline in the subsystems
is FCFS. Migration of jobs among the queues is not per-
mitted. Each job has an exponential execution time (e)
with an expected value e . Throughout this paper, all
times are normalized with respect to e .

Further, each job has a deadline. The difference be-
tween the deadline of a job and its arrival time, referred
to as a relative deadline, is a random variable  with a
Cumulative Distribution Function (CDF) )(G . We as-
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sume that )(G is a general CDF which may have a mass
at the infinity, i.e., in general, 0)0(1)(  GP  . A
job must leave the system as soon as it misses its deadline
irrespective of whether or not it is being served, i.e., each
job has a deadline until the end of its service. Job execu-
tion times and relative deadlines form sequences of i.i.d.
random variables which are mutually independent. Giv-
en the number of jobs in the system at any time, the fu-
ture arrival process is assumed to be conditionally inde-
pendent of the past history of the system.

As indicated in Section 1, we consider TUF-constrained
FRT jobs. More precisely, the importance of meeting the
deadline of a job strongly depends on the instant of time
that the job completes its service. This importance is spe-
cified by the job’s TUF, namely ),( U as defined below:

),( U The utility of the successful service completion of a

job at time a , (1)

where  0 is the sojourn time (response time) of that
job. (We use these two terms interchangeably throughout
this paper.) (.)U is the same function for all jobs of the
system. (This assumption can simply be relaxed by consi-
dering multiclass jobs, where the jobs of each class c with
a class-specific TUF arrive according to a state-dependent
Poisson process with rate c .) The TUF of each job can
take non-zero values only between the arrival time and
deadline of that job, namely in the interval [ a , a ].

2.2 The System Performance Measures

This subsection introduces our favorite performance
measures of the system. We begin with the definition of
our principal performance variable. Let

V the time an arriving job with infinite (no) deadline must

wait before it completes its service in the long run. (2)
V is called the job offered sojourn (response) time. We

assume V if the arriving job is blocked due to full

system. We will be interested in finding the CDF of V

),()(   VPFV
(3)

or, equivalently, the probability density function (PDF)

.
)(

)(





d

dF
f V
V  (4)

More specific measures of performance may also be
defined using the CDF of V. In particular, we will be in-
terested in the probability of missing deadline, defined as,

.)()()(
0


  Vd dFGVP (5)

d represents the steady-state probability that a job
misses its deadline. Another important measure of per-
formance is the probability of blocking b , defined as,

).0(1)(  Vb FVP (6)

b is interpreted as the steady-state probability that an
arriving job is rejected due to full system. Further, the
probability of loss may be defined as





0

).()()()( VPdFGVP Vbd  (7)

 is viewed as the steady-state probability that a job is
lost due to either missing its deadline or being rejected
because of a full system. Let

 the long-run accrued utility of an arriving job. (8)
 is called the job offered accrued utility. We will be in-

terested in finding the CDF of 

),()(   PF (9)

or, equivalently, the PDF

.
)(

)(





d

dF
f 
  (10)

The job expected accrued utility  , as the main perfor-
mance measure in this paper, can then be obtained as

 
 

 






00
),(),()()( 

 VdFdxxUxgdF (11)

where (.)g is the PDF of the random variable  , i.e.,





0

)()( dxxgG .  is interpreted as the steady-state utility
which is expected to be accrued by a job. The inner
integral in the right hand side of (11) is the expected utili-
ty of a successful job with a response time  (who meets
its deadline) and the outer integral calculates the overall
expected value of the same measure. Assuming 1),( U
for all values of relative deadline  and response time

  (binary-valued, downward step TUF), the probabil-
ity of meeting deadline, i.e., 1 , can be calculated
through either (7) or (11).

As another important measure of performance, the as-
surance level of satisfying a lower bound  on the at-
tained utilities can be calculated as

).(1)()(   FPA (12)

3 QUEUEING MODEL

In this section, first a few additional notations which we
use throughout this paper are introduced. Then, in Sub-
section 3.1, the conditional performance variables re-
quired for solving the queueing model of the FRT system
under discussion are presented. Afterwards, in Subsec-
tion 3.2, a Markovian model for the analysis of the system
is presented which its long-run solution is obtained using
standard Markovian solution techniques.

Let N be the set of natural numbers (including 0) and
R+ the set of positive real numbers. Suppose
n=(n1,…,ni,…,ns) be a s-tuple of natural numbers and ei

one such s-tuple with value 0 at each coordinate except
for coordinate i at which it has a value of 1, i.e.,
ei=(0,…,1,…,0). We use the following notations:

 n+ei (n1,…,ni+1,…,ns), where i=1,…,s,

 n-kei  (n1,…,ni-k,…,ns), where ni>0, i=1,…,s, and

1kni,

 q(n) = {i: ni > 0, i=1,…,s},

 l(n) = {i: ni < Ki, i=1,…,s},

 0 = (0,…,0).

We also use )(nE i to denote an Erlang random variable
with parameters n and i ( 0)0( iE ) and the CDF of

.0for,
!

)(
1))(()(

1

0
)(

 




 n
k

enEPF
n

k

k
ii

nE
i

i


  (13)

The following definition is also considered:
iV  the time a job with infinite (no) deadline which arrives at

the i-th processor’s queue, in the long run, must wait before it

completes its service. (14)

3.1 Conditional Performance Variables

In this subsection, we introduce some conditional para-
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meters and performance variables on the system state n
and derive the respective formulations in the long run.
First, we identify an important modeling parameter for
the queueing problem described in Section 2. Denote

),,(  nti to be the probability that a job in the i-th queue
misses its deadline during [t,t+), given there are nj jobs in
the j-th queue, j=1,…,s, at time t. Let

.
),,(

lim),(
0 




n
n

t
t

i
i


 (15)

Assuming statistical equilibrium, we have

),,(lim)( nn ti

t

i 


(16)

where (.)i is said to be the long-run conditional loss rate
function for the i-th queue, given state n.

Note that the concept of (long-run) conditional loss
rate as defined in (16) is in fact independent of the model
of job behavior considered in this paper. It may similarly
be defined for other models of job behavior, including the
case where the deadlines of jobs are effective only until
the beginning of their service, as studied in [22] for paral-
lel queues and the references therein for single queues.

However, we solve the problem for the case where the
deadlines of jobs are effective until the end of their ser-
vice. We also derive a closed-form solution for the condi-
tional PDF of the offered sojourn time of individual
queues, given the state n of the system. More formally, let

iVn  the time a job with infinite (no) deadline which arrives at

the i-th processor’s queue, in the long run, must wait before it
completes its service, given it finds nj jobs in the j-th proces-

sor’s queue, j=1,…,s. (17)
iVn

is called the conditional offered sojourn time of the i-
th processor’s queue, given the system state n. We can
show:

Lemma 1. Let i
ni

 and )1(i
ni

E represent the relative deadline

and execution time of the ni-th job waiting in the i-th queue

(i=1,…,s), respectively, in the long run. Thus, i
ni

 is a ran-

dom variable with CDF (.)G , and )1(i
ni

E is a random varia-

ble with an exponential CDF with rate
i , which is inde-

pendent of i
ni

 and i

i
V en

. Then, we have
















.1,)|)1((

,0,1
)(

1 i
i
n

ii
n

i

ii

nVEVP

ne
VP

iiii

i






enen

n
(18)

Proof: Using similar techniques as in [24], we can present
the proof. According to the CDF of exponential distri-
bution, the proof for ni=0 is immediate. Define

)(tV i  the time a virtual job with infinite (no) deadline

which arrives at the i-th processor’s queue at time t must

wait before it completes its service, (19)

)(tV i
n

 the time a virtual job with infinite (no) deadline

which arrives at the i-th processor’s queue at time t must
wait before it completes its service, given there are nj jobs in

the j-th processor’s queue, j=1,…,s. (20)
Let i

kT be the time of the k-th possible arrival of a job to
the i-th processor’s queue and i

kS the time of the k-th
possible arrival of a job who will successfully be
served to the i-th processor’s queue, k=1,2,... . For any

time t, we also use t+ and t− to denote a time imme-
diately after and before t, respectively. Clearly, we
have

),(lim 


i
k

i

k

i TVV

),(lim 


i
k

i

k

i TVV nn

where iV and iVn
are defined as in (14) and (17), re-

spectively. Define

),(lim
~

tVV i

t

i
nn


 (21)

).(limˆ 


i
k

i

k

i SVV nn
(22)

iVn

~
represents the steady-state time average of the con-

ditional offered sojourn time in the i-th processor’s
queue, given there are nj jobs in the j-th processor’s
queue, j=1,…,s. iVn

ˆ represents the steady-state condi-
tional sojourn time in the i-th processor’s queue im-
mediately after the arrival of a new successful job to
the i-th processor’s queue, given the new arrival finds

ien  jobs in system. Now, consider the system in the
long run with

ien  jobs. Suppose, a new job arrives to
the i-th processor’s queue in this system which will
successfully be served. Clearly, the offered sojourn
time before and after this new arrival, may be
represented as i

i
V en

, conditioned by the event
{ i

n
i

ii
V en

}, and iVn
ˆ , respectively. Moreover, the offered

sojourn time will increase immediately after the new
arrival by exactly the same value as the execution time
of the new job. Thus, we can write

),|)1(()ˆ( 1
i
n

ii
n

ii

iiii
VEVPVP    enenn

(23)

where )1(1
i
ni

E 
is an exponentially distributed random

variable with rate
i , representing the execution time

of the new job, which is independent of i

i
V en

and i
ni

 .
From conditional ASTA [20], we can write

( ) ( ).i iP V P V   n n
 (24)

Using the memoryless property of the execution times,
we can also have

ˆ( ) ( ).i iP V P V   n n
 (25)

From (23), (24), and (25) above, we finally get

),|)1(()( 1
i
n

ii
n

ii

iiii
VEVPVP    enenn

(26)

which completes the proof.

We now get along to derive the PDF of iVn
. Let

),()(   i

V
VPF i n

n

.
)(

)(





d

dF
f

i

i

V

V

n

n
 (27)

From Lemma 1, we have

























  1,
)(

)())(1)(1(

0,1

)(
0

)(

ii
n

i

V

x

i

V
n

VP

xdFxGe

ne

F

ii

i
i

i

i

i




 



en

enn

(28)

or, equivalently,
























.1,))(1()(
)(

0,

)(
0 i

x

Vi
n

i
i

ii

V ndxxGexf
VP

e

ne

f
i

i

i
ii

i

i

i  












en

n

en

(29)

A solution for (29) may be given as
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 























 









.1,))(1(

)(!

0,

)(

0

1 1

1

i

n

n

k

i
kn

i
ki

n

i

ii

V

nedxxG

VPn

ne

f

i
i

i

ii

i

i

i












en

n

(30)

Define )(sn to be the Laplace transform of

 ndxxG 


0
))(1( , i.e.,

 
 
0 0

.]))(1([)( 
dedxxGs sn

n
(31)

We can have the following lemmas:
Lemma 2. Let )(iV

f
n

be defined as in (27). Then

   .)(1
)(

1
)(

0




 i

i

i

i edxxGf
n

in
V


 




n

(32)

Proof: The proof is simple by noting that )(iV
f

n

is a PDF
and can also be derived as in (30).

Lemma 3. Let iVn
be the conditional offered sojourn time of the

i-th processor’s queue, given the system is in state n , as in

(17) and i
ni

 be the relative deadline of the ni-th job in the

same processor’s queue. Then
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Proof: Comparing (30) and (32), the proof is immediate.

We are now in a position to give a closed-form solution
for the conditional loss rates as follows:

Lemma 4. Let i
n be defined as in (16). Then, we have
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Proof: The proof is very similar to a lemma presented in
[24] for the single queue case.

3.2 Model Solution

This subsection presents a Markovian model for the anal-
ysis of the system described in Section 2. Let

)(n the probability that there are ni jobs in the i-th queue,

i=1,…,s, in the long-run. (35)
We can write
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It turns out that each equation in the above system of eq-
uations is dependent and may be derived from the other
equations in the system. To have a set of independent
equations, an equation in (36) may be replaced by the
normalizing condition


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
K

0n

n ,1)( (37)

where ),...,( 1 sKKK is the vector of capacities for the
parallel queues, showing the state in which the system is
full. The resulting set of independent equations can then

be solved using standard Markovian solution techniques
to find )(n . Let )(n represent the steady-state probabil-
ity that an incoming job finds the system in state n . Thus,
we have
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Subsequently, the PDF of iV , namely the job offered so-
journ time of the i-th processor’s queue defined in (14),
can be obtained as
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where )(iV
f

n

and )(n are defined in (32) and (38), re-
spectively. Using (39), the PDF of job offered sojourn time
in the parallel system is determined as

.)()(
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 s
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Having )(Vf , one can use (5) to compute the probability
of missing deadline in the system, namely the probability
that an incoming job misses its deadline in the system in
the long run. The probability of blocking as in (6) can also
be obtained as ).(K b

With a similar interpretation to (11), the job expected
accrued utility at the i-th queue can also be derived as

  .),()()(
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
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The job expected accrued utility  defined in (11), as the
main performance measure of the FRT system under dis-
cussion, is calculated through

.1   s

i
i (42)

In order to find the value of (.)f at some specific util-
ity  , we first define a set }),(|{),(   US .
This set consists of all the relative times with respect to
the arrival time of a job with relative deadline  , at
which the accruable utility is  . For an equation of TUF

(.)U , this set may be constructed from two discrete and
continuous subsets of relative times, shown with

),(D S and ),(C S , respectively. Thus, we have

).,(),(),( CD  SSS  (43)

In this regards, the PDF of  for the discrete portion can
be calculated as
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and for the continuous portion as
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Summing these two portions together, the PDF of job of-
fered accrued utility  is calculated as

).()()( CD    fff (46)

Next, using (46) and (12), the assurance level of satisfying
a lower bound  on the accrued utility, i.e., )(A can be
calculated.

4 ROUTING POLICY AND CASE STUDIES

In this section, besides some well known DR policies, a
utility-aware DR policy is presented. The policies' deci-
sions are made according to the individual queue’s popu-
lation (given the system state n) and specifications (in-
cluding the processing rate and capacity). Afterwards, in
the following subsections, some elementary calculations
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are presented for two distributions of relative deadlines.
First, we introduce some extra notations to be able to

express the behavior of the DR policies. Suppose (.)h to
be an arbitrary function of a processor’s queue population
and specifications and (.)kh be the respective function for
the k-th processor’s queue. (.)kh is considered as the de-
cision parameter and determines how the DR policy be-
haves. Define

(.)},(.)),(|)({(.) jih hhljli  nnn (47)

where )(nl is the set of non-full queues in state n as de-
fined in Section 3. The set (.)h

n comprises all the parallel
non-full queues which maximize (.)h , given the state n. If

1(.) h
n

, namely the set consists only of a unique queue,
an arriving job joins the queue with probability 1. If the
set contains more members, ties are broken by random
selection of one of the queues in the set. More precisely,
the joining probability of the respective DR policy is de-
termined as follows:
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As an example, by the consideration of nh (.) (or
equivalently

k
k nh (.) for the k-th processor’s queue),

)( jrn
for the Joining Shortest Queue (JSQ) [10][16] DR

policy can be obtained from (48) above. According to this
policy, an arriving job joins the shortest non-full queue.
Ties are broken by random selection of one of the non-full
queues with the minimum number of jobs. JSQ for expo-
nential [21] and deterministic [23] relative deadlines is
known as an optimal DR policy for exponential homoge-
neous processors (i.e., processors with the same
processing rates). However, JSQ is not necessarily a good
policy for heterogeneous processors.

Minimum Expected Delay (MED) [19], as another well-
known DR policy, is a generalization of JSQ for heteroge-
neous processors. /)1((.)  nh (or equivalently

kk
k nh /)1((.)  for the k-th processor’s queue) is sup-

posed for this policy. Accordingly, an arriving job joins a
non-full queue in which the minimum response time is
expected for the job, assuming that the existing jobs in the
queue remain there until they finish their service. Even
though MED does not take the timing constraints of jobs
into account and isn’t designed for real-time systems; it
can provide an excellent performance in non real-time
systems with heterogeneous processors.

We also consider another DR policy called Minimum
Expected Sojourn Time (MEST) with kk Vh n(.) , where

.)(.
0
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  dfV kV

k

n
n

(49)

kVn is the expected sojourn time of a job joining to the k-th
processor’s queue that finds n as the system state before
joining. As its name indicates, MEST assigns an incoming
job to a non-full queue with the minimum expected re-
sponse time, regarding that the aforehand jobs may leave
the system due to deadline miss.

Utility-Aware Dynamic Routing: None of the above
mentioned DR policies take utility performance measures
into account for their decision makings. Meanwhile, most
such policies try to minimize the jobs' response times,

while this may be a good criteria for only some limited
TUF shapes. In the following, we present a utility-aware
DR policy called Maximum Expected Utility (MEU) to
improve the utility-related QoS measures of the parallel
systems for more TUFs.

Let (.)g be the PDF of relative deadlines and (.)U the
jobs' TUF as defined in (1). Likewise, (.)iV

f
n

as in (32), is
the PDF of the conditional offered sojourn time of the i-th
processor’s queue, given the system state n . Then, the
conditional job expected utility for the i-th processor’s
queue, given the system state n , is defined as
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The interpretation of (50) is near to that of (11). i
n speci-

fies the expected accrued utility of an arriving job in state
n that joins the i-th queue, which is a function of only the
parameters of the i-th processor’s queue. Consequently,
the state-dependent joining probability of the MEU poli-
cy, namely )( jrn

, is determined by the consideration of
kkh n(.) . According to this policy, an arriving job is ran-

domly joined to one of the parallel non-full queues with
the largest conditional expected utility.

The behavior of MEU policy for two distributions of
relative deadline and different TUF shapes is compared to
JSQ, MED, and MEST in Section 5. The remainder of this
section is designated to the required calculations for these
two distributions.

4.1 Deterministic Relative Deadline

In this subsection, the deterministic distribution for job
relative deadline is considered. For this distribution, we
obtain the formulations of i

n and )(iV
f

n

as the basic pa-
rameters for the computation of the DR policies perfor-
mance measures and i

n for the setup of the MEU policy.
The PDF of relative deadline θ with deterministic dis-

tribution is given by
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where  is a constant denoting the mean job relative
deadline and )( is a Dirac delta (impulse) function.
Using (31), we get
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nE iF is defined as in (13). Using (34), we find
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Further, the PDF of the conditional offered sojourn time
of the i-th processor’s queue, )(iV

f
n

, is given by
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using (32) and (51). The conditional expected utility of the
i-th processor’s queue, as defined in (50), which is used in
the determination of the state-dependent joining proba-



MEHDI KARGAHI AND ALI MOVAGHAR: UTILITY ACCRUAL DYNAMIC ROUTING IN REAL-TIME PARALLEL SYSTEMS 7

bilities of the MEU policy, can also be obtained as
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for this distribution. Subsequently, using (48) to calculate

)( jrn
for an arbitrary DR policy such as JSQ, MED, MEST,

and MEU, and then, following the solution method pre-
sented in Subsection 3.2, the other performance measures
and parameters for the DR policy can be calculated.

4.2 Exponential Relative Deadline

In this subsection, we consider the exponential distribu-
tion for job relative deadline and follow a scenario similar
to Subsection 4.1. The PDF of relative deadline θ with ex-
ponential distribution is given by
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where  is the mean job relative deadline. Then, using
(31) and (34) respectively, we obtain
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Likewise, the PDF of the conditional offered sojourn time
of the i-th processor’s queue, )(iV

f
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, is derived as
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The conditional expected utility of the i-th processor’s
queue, as defined in (50), which is used in the determina-
tion of the state-dependent joining probabilities of the
MEU policy, can then be obtained as









ddxxUeee
n

k
x

n

i

n

k i
n

i ii

ii

)),(()1(
!

)(

0

0

1




 


 






n
(60)

for the exponential relative deadline.
The other performance measures and parameters for

an arbitrary DR policy can then be calculated through the
solution method presented in Subsection 3.2. More tangi-
ble results for the deterministic and exponential relative
deadlines are presented in Section 5.

5 NUMERICAL EVALUATION

In this section, through numerical examples, a compara-
tive study for four DR policies in a parallel system is car-
ried out under different parameter settings. The study is
done for the job expected accrued utility, namely  , as
one important performance measure in TUF-constrained
FRT systems. In the following subsections, first the para-
meter settings are specified, and then, the numerical re-
sults are evaluated.

5.1 Sample Configurations

The studies have been done for two parallel queues with
different capacities, namely Q1:(K1=5,1) and Q2:(K2=4,2).
Further, both cases of homogeneous and heterogeneous

TABLE 1
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processors are investigated. More precisely, for the case of
homogeneous processors, the processing rates are consi-
dered as 1=2=1. Also, for the case of heterogeneous pro-
cessors, they are assumed as 1=2 and 2=1.

Job arrivals to the system follow a Poisson process of
constant rate    n . Two distributions of relative dead-
line are studied, i.e., deterministic and exponential, for
which the elementary calculations are described in Sub-
sections 4.1 and 4.2, respectively. We assume 4 as the
mean relative deadline for both distributions. The studies
have been done for five different types of TUFs, namely
binary-valued downward step, non-increasing, non-
decreasing, bell-shaped, and two-bell functions, referred
to as Types I, II, III, IV, and V, respectively. TUF Type I is
the classic al deadline. AWACS tracker [30] is an example
for functions similar to TUF Type II. As examples for TUF
Type III, we can refer to many forecasting systems (e.g.,
weather, earthquake, stock price, etc.) that the time at
which the results are needed is the deadline, after which
the forecasting is of no utility. Further, as the time goes
ahead, the gathered information for the forecasting are
more accurate and updated, and therefore, the results are
more valuable. The coastal air defense system [30] is also
an example for functions with one peak, similar to TUF
Type IV. TUF Type V is also a sample for the most gener-
al shape of such functions, namely multimodal TUFs.
More details about the functions considered in the expe-
riments of this section are summarized in Table 1. All the
functions are supposed to take only values in the range of
[0, 1].

Thus, we study the behavior of the four stationary DR
policies defined in Section 4, namely JSQ, MED, MEST,
and MEU. The comparative study presented in this sec-
tion, which also validated by extensive simulations, show
the relative behavior of these four policies with respect to
variations of TUF and traffic intensity for both homoge-
neous and heterogeneous configurations.

5.2 Numerical Results

As defined in Section 4, (.)kh is the elementary function
used to determine the joining probabilities (.)nr for a spe-
cific DR policy. The values of this function for the deter-
ministic relative deadlines and both homogeneous and
heterogeneous configurations are shown in Tables 2 and
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3, respectively. Similar values for the exponential relative
deadlines are shown in Tables 4 and 5. Since the values
for MEU differ for various TUF types, the respective val-
ues for each TUF type are represented separately, speci-
fied as MEU-I to MEU-V.

First, we consider the homogeneous configuration. Ac-
cording to the information presented in Tables 2 and 4, it
is obvious that JSQ, MED, and MEST policies have exactly
the same behavior for the case of homogeneous proces-
sors. (Thus, we consider JSQ as the indicator.) It is also
obvious that MEU for TUF Types I and II behaves exactly
as these policies. According to this fact, the respective
curves are not presented for these TUF types. However,
TUF Types III, IV, and V are discussed: As can be seen in
Figs. 1(a), 1(b), and 1(c), for the deterministic distribution
and the latter TUF types, MEU accrues considerable more
utility than JSQ for low to moderate traffic intensities and
almost the same utility as JSQ for moderate to high traffic
intensities. Similar behaviors with smaller differences
between MEU and JSQ can be observed for the exponen-
tial distribution, as shown in Figs. 2(a), 2(b), and 2(c).

The justifications for these behaviors can be drawn
from Tables 2 and 4. One can simply infer that a success-
ful DR policy is the one that with higher probabilities (n)
puts the system into states n in which the routes with the
high expected utilities could be selected. First, we discuss
on low to moderate traffic intensities wherein the ex-
pected queue populations are oftentimes less than three.
In the tables, noting to the differences between the ex-
pected utilities of queue populations nk at which the utili-
ties are higher and those of their adjacent populations, we
find that for TUF Type IV, the difference is trenchant for
deterministic distribution and milder for exponential dis-
tribution. Following the behavior of MEU for this TUF
type based on the values, we find that, in spite of the for-
mer distribution, the behavior of MEU for the latter dis-
tribution is very close to JSQ. Also, wherever it deviates
trivially from JSQ, the expected benefit is small. Accor-
dingly, JSQ behaves analogous to MEU for the exponen-
tial distribution. Almost similar justifications can also be
provided for TUF Type V. On the other hand, for heavy
traffic intensities, the chances of finding the queues in the
states with the high expected utilities as well as the choic-
es for route selections are more limited, and therefore,
both DR policies converge together.

Second, we discuss the heterogeneous configuration.
As can be observed in Figs. 1(d) and 1(e) for TUF Types I
and II, MEU, MEST, and MED behave almost similar to
each other for the deterministic relative deadline. Also,
they behave better than JSQ for light traffics. However,
according to Fig. 1(f), MEU considerably outperforms the
other policies for TUF Type III, especially for low to mod-
erate arrival rates. For large arrival rates, due to the li-
mited choices of route selections, all the policies converge
together. Figs. 2(d), 2(e), and 2(f) show the relative beha-
vior of these policies for the exponential distribution and
TUF Types I, II, and III, respectively. For TUF Type I, the
behaviors of MEU and MED are exactly the same (see also
Table 5). For Types II and III of TUFs, MEU performs bet-
ter than the other policies, whereas, the difference is tren-

chant for Type III of TUFs. It should be noted that trying
to reduce the response time, as is done by JSQ, MED, and
MEST, is consistent with accruing more utility for TUF
Types I and II, not for Type III. Conversely, for the latter
type, it is desired to complete the service of a successful
job as late as possible. Hence, in spite of these three poli-
cies, MEU exposes an excellent behavior for TUF Type III.

The relative performance of the policies is different for
Types IV and V of TUFs. As can be seen in Fig. 1(g) for
TUF Type IV and the deterministic relative deadline, for
light to moderate traffics, MEU outperforms the other
policies, whereas for heavy traffics, it converges to MED
and MEST. The same behavior for light to moderate traf-
fics is iterated for the exponential relative deadline. How-
ever, for moderate to heavy traffics, MEST and then MED
absolutely outperform MEU (see Fig. 2(g)). Considering
TUF Type V, for the deterministic relative deadline, MED,
MEST, and then JSQ utterly get ahead of MEU for mod-
erate to heavy traffics (Fig. 1(h)). On the other hand, for
the exponential relative deadline, MEST and then MED
almost converge to MEU for heavy traffics (Fig. 2(h)).

These relative behaviors of the DR policies can better
be explained by the information presented in Tables 3 and
5. However, we pay attention to the relative behavior of
MED and MEU. (Similar discussions can be presented for
MEST and MEU.) As indicated above, for the determinis-
tic distribution and TUF Type V as well as the exponen-
tial distribution and TUF Type IV, for some specific
ranges of traffic intensity, MED absolutely outperforms
MEU. Substantially, wherever MEU behaves weak, it in-
frequently leads the system to the states n in which high-
er conditional utilities are expected. By the consideration
of the respective values of (.)kh in Tables 3 and 5, and
due to the fact that MEU is a greedy DR policy, the arriv-
ing jobs to the empty system start to join the 2nd queue
(Q2) and almost fill out all the capacity of this queue be-
fore starting to join the 1st queue (Q1). However, these
selected routes lead to only trivial amounts of extra utili-
ty. Whereas, partial drift from this routing could result in
considerable higher accrued utilities if some jobs were
joined to Q1 and subsequent jobs could be expected to see
at least 1 job in that queue. However, it is obvious that the
validity of such an expectation is completely affected by
the arrival rate of the real-time jobs . Therefore, it is not
anticipated to propose an arrival-rate independent op-
timal DR policy for general TUFs.

In summary, for homogeneous processors and all the
TUF types as well as heterogeneous processors and TUF
Types I, II, and III, a routing policy such as MEU, may
show quite good results irrespective of the arrival rate.
However, due to the greedy nature and arrival-rate inde-
pendence of MEU, it may deviate from an optimal solu-
tion for some TUFs. Further, we can conclude from the
results that the efficiency of MEU as well as the other pol-
icies can be affected by various distributions of relative
deadlines.

6 RELATED WORK

In this section, we first present an overview on some
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TABLE 2

THE VALUES OF hk(.) FOR A HOMOGENEOUS SYSTEM WITH 1=1, 2=1 AND DETERMINISTIC RELATIVE DEADLINE

kn

(.)kh

JSQ MED MEST MEU-I MEU-II MEU-III MEU-IV MEU-V

k=1 k=2 k=1 k=2 k=1 k=2 k=1 k=2 k=1 k=2 k=1 k=2 k=1 k=2 k=1 k=2

0 0 0 -1 -1 -0.908 -0.908 0.982 0.982 0.755 0.755 0.227 0.227 0.527 0.527 0.446 0.446
1 -1 -1 -2 -2 -1.552 -1.552 0.925 0.925 0.537 0.537 0.388 0.388 0.687 0.687 0.504 0.504
2 -2 -2 -3 -3 -1.871 -1.871 0.839 0.839 0.371 0.371 0.468 0.468 0.645 0.645 0.436 0.436
3 -3 -3 -4 -4 -1.949 -1.949 0.744 0.744 0.256 0.256 0.487 0.487 0.539 0.539 0.373 0.373
4 -4 -4 -5 -5 -1.896 -1.896 0.655 0.655 0.181 0.181 0.474 0.474 0.431 0.431 0.326 0.326
5 -5 ---- -6 ---- -1.789 ---- 0.579 ---- 0.132 ---- 0.447 ---- 0.343 ---- 0.284 ----

TABLE 3

THE VALUES OF hk(.) FOR A HETEROGENEOUS SYSTEM WITH 1=2, 2=1 AND DETERMINISTIC RELATIVE DEADLINE

kn

(.)kh

JSQ MED MEST MEU-I MEU-II MEU-III MEU-IV MEU-V

k=1 k=2 k=1 k=2 k=1 k=2 k=1 k=2 k=1 k=2 k=1 k=2 k=1 k=2 k=1 k=2

0 0 0 -0.5 -1 -0.498 -0.908 0.999 0.982 0.875 0.755 0.125 0.227 0.375 0.527 0.356 0.446

1 -1 -1 -1 -2 -0.987 -1.552 0.997 0.925 0.751 0.537 0.247 0.388 0.627 0.687 0.560 0.504

2 -2 -2 -1.5 -3 -1.441 -1.871 0.989 0.839 0.629 0.371 0.360 0.468 0.763 0.645 0.573 0.436
3 -3 -3 -2 -4 -1.826 -1.949 0.971 0.744 0.515 0.256 0.456 0.487 0.801 0.539 0.516 0.373
4 -4 -4 -2.5 -5 -2.111 -1.896 0.940 0.655 0.412 0.181 0.528 0.474 0.767 0.431 0.469 0.326
5 -5 ---- -3 ---- -2.288 ---- 0.898 ---- 0.326 ---- 0.572 ---- 0.693 ---- 0.444 ----

TABLE 4

THE VALUES OF hk(.) FOR A HOMOGENEOUS SYSTEM WITH 1=1, 2=1 AND EXPONENTIAL RELATIVE DEADLINE

kn

(.)kh

JSQ MED MEST MEU-I MEU-II MEU-III MEU-IV MEU-V

k=1 k=2 k=1 k=2 k=1 k=2 k=1 k=2 k=1 k=2 k=1 k=2 k=1 k=2 k=1 k=2

0 0 0 -1 -1 -1.000 -1.000 0.800 0.800 0.598 0.598 0.202 0.202 0.414 0.414 0.342 0.342

1 -1 -1 -2 -2 -1.800 -1.800 0.667 0.667 0.422 0.422 0.245 0.245 0.444 0.444 0.353 0.353

2 -2 -2 -3 -3 -2.467 -2.467 0.571 0.571 0.322 0.322 0.250 0.250 0.414 0.414 0.314 0.314
3 -3 -3 -4 -4 -3.038 -3.038 0.500 0.500 0.258 0.258 0.242 0.242 0.374 0.374 0.274 0.274
4 -4 -4 -5 -5 -3.538 -3.538 0.444 0.444 0.214 0.214 0.231 0.231 0.337 0.337 0.240 0.240
5 -5 ---- -6 ---- -3.983 ---- 0.400 ---- 0.182 ---- 0.218 ---- 0.305 ---- 0.212 ----

TABLE 5

THE VALUES OF hk(.) FOR A HETEROGENEOUS SYSTEM WITH 1=2, 2=1 AND EXPONENTIAL RELATIVE DEADLINE

kn

(.)kh

JSQ MED MEST MEU-I MEU-II MEU-III MEU-IV MEU-V

k=1 k=2 k=1 k=2 k=1 k=2 k=1 k=2 k=1 k=2 k=1 k=2 k=1 k=2 k=1 k=2

0 0 0 -0.5 -1 -0.500 -1.000 0.889 0.800 0.725 0.597 0.164 0.202 0.373 0.414 0.316 0.342

1 -1 -1 -1 -2 -0.944 -1.800 0.800 0.667 0.575 0.422 0.225 0.245 0.464 0.444 0.391 0.353

2 -2 -2 -1.5 -3 -1.344 -2.467 0.727 0.571 0.476 0.322 0.252 0.250 0.481 0.414 0.394 0.314
3 -3 -3 -2 -4 -1.708 -3.038 0.667 0.500 0.405 0.258 0.262 0.242 0.471 0.374 0.373 0.274
4 -4 -4 -2.5 -5 -2.041 -3.538 0.615 0.444 0.351 0.214 0.265 0.231 0.452 0.337 0.347 0.240
5 -5 ---- -3 ---- -2.349 ---- 0.571 ---- 0.309 ---- 0.262 ---- 0.429 ---- 0.320 ----

studies on QoS-aware distributed non real-time and
deadline-based real-time systems. Then, some of the
most related works to the application model of the cur-
rent study are reviewed. These studies include sche-
duling algorithms for TUF-constrained single-
processor and Symmetric MultiProcessor (SMP) real-

time systems. Afterwards, some existing studies on
distributed TUF-constrained real-time systems are dis-
cussed. Finally, we have made a review on some ef-
forts on modeling and analysis of DR policies in non
real-time and deadline-based real-time systems.

Providing better routing policies to improve some
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Fig. 1. Job expected accrued utility for the deterministic relative deadline, (a) homogeneous and TUF Type III, (b) ho-
mogeneous and TUF Type IV, (c) homogeneous and TUF Type V, (d) heterogeneous and TUF Type I, (e) heterogene-
ous and TUF Type II, (f) heterogeneous and TUF Type III, (g) heterogeneous and TUF Type IV, (h) heterogeneous and
TUF Type V.
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Fig. 2. Job expected accrued utility for the exponential relative deadline, (a) homogeneous and TUF Type III, (b) homo-
geneous and TUF Type IV, (c) homogeneous and TUF Type V, (d) heterogeneous and TUF Type I, (e) heterogeneous
and TUF Type II, (f) heterogeneous and TUF Type III, (g) heterogeneous and TUF Type IV, (h) heterogeneous and TUF
Type V.
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specific QoS criteria (e.g., criteria related to load balanc-
ing, security, energy, etc.) in distributed systems has been
thoroughly addressed using heuristic approaches. For
example, in [29], MELISA and LBA have been proposed
as adaptive load balancing algorithms for migratory non
real-time heterogeneous grids. In [8], a distributed dy-
namic load balancing technique with migration among
heterogeneous nodes with different computing and
communication delays is proposed. The method is based
on analytical characterization of the average overall com-
pletion time in a distributed system. Although this work
is based on a rigid foundation, however, no explicit dead-
lines have been considered for the workload. In [39],
AdaptLoad as an adaptive policy for load balancing of
non real-time traffics among homogeneous clustered Web
servers is presented.

Most studies on real-time systems focus on deadline-
based algorithms, i.e., algorithms whose main target is
meeting jobs’ deadlines. Examples of such algorithms for
single-processor systems are EDF and RM [17]. Similarly,
the literature on distributed real-time systems is often
concentrated on this kind of timing constraints. For ex-
ample, [11] presents a polynomial-time distributed multi-
cast routing algorithm which works according to the
available bandwidth to satisfy the constraints of end-to-
end delay and inter-destination delay variation. In [28], a
dynamic repartitioning algorithm is suggested that dy-
namically balances the periodic real-time task loads of
multiple homogeneous cores of a processor (via migra-
tion) to optimize dynamic power consumption during
execution. In [38], two CPU allocation schemes are pre-
sented for a cluster of processors with a centralized queue
for the admitted jobs. The algorithms take the jobs’ timing
and security requirements into account for processor as-
signments. The first algorithm, TAPADS, is applied to
communicating jobs with precedence constraints which
run on homogeneous clusters. Whereas, the other algo-
rithm, SHARP, works for parallel jobs with no precedence
constraints and no communications which run on hetero-
geneous clusters.

The studies on TUF-constrained real-time jobs mainly
concentrate on single-processor systems and their respec-
tive scheduling. For independent jobs with step TUFs in
an overloaded system, Dover is shown to have the optimal
competitive factor [13], even though its average perfor-
mance is quite poor for random jobs [14]. DASA without
Dependency [7] also considers step TUFs and overloads.
DASA allows jobs to mutually exclusively share non-CPU
resources under the single-unit resource request model.
The first publicized UA scheduling algorithm that con-
siders almost arbitrary TUF shapes for preemptable inde-
pendent jobs is LBESA [18]. Assume a metric called Po-
tential Utility Density (PUD) for a job as the ratio between
the job expected utility and the remaining job execution
time [18][37]. LBESA examines jobs in an EDF order and
performs a feasibility check where it rejects jobs with
lower PUDs until the schedule is feasible. Non-step TUFs
are also studied by GUS [14] and RUA [34] algorithms
which both use the concept of PUD. GUS allows resource
sharing among jobs with arbitrary TUFs. RUA considers

preemptable jobs in a FRT system subject to arbitrarily
shaped TUFs and concurrent sharing of non-CPU re-
sources. Despite GUS that assumes single-unit resource
request model, RUA considers the multi-unit resource
request model. As another study, the S-UA algorithm [15]
provides probabilistic bounds on the task-level accrued
utilities. Several more UA scheduling algorithms such as
CMA [4], UPA [30] (which is shown to have higher ac-
crued utility than EDF and CMA), and CUA [33] have
also been developed. The CMA and UPA algorithms
which require the knowledge of job execution times con-
sider non-increasing TUFs in the context of non-
preemptive scheduling of independent jobs. Among these
studies, only CMA and UPA consider non-preemptable
jobs. Further, few of them present analytical solutions to
their proposed algorithms (see [15], [35], and [36] for non-
increasing TUFs). Meanwhile, they all have concentrated
on single-processor systems.

In the context of multiprocessor scheduling, Cho et al.
[5] present a non-quantum-based, migratory optimal
scheduling algorithm called LLREF for step TUFs, period-
ic arrivals, and under-loads. LLREF works for SMP sys-
tems, i.e., systems with a single queue and homogeneous
processors. The first UA multiprocessor real-time sche-
duling algorithm for non-step TUFs, gMUA [6], is also
presented for SMP systems. The algorithm considers an
application model with FRT jobs which are subject to
non-increasing TUFs, variable execution time demands,
and resource overloads, where the total job utilization
demand exceeds the total capacity of all processors.
gMUA, which again permits job migration, probabilisti-
cally satisfies lower bounds on individual job’s accrued
utility, as well as the system-wide total accrued utility.

In the realm of TUF-constrained distributed systems,
[3] considers distributable threads in multi-hop networks
which are subject to non-increasing TUFs. Thus, in the
system, minimizing the path-distance (hop-count) is con-
sistent with maximizing a thread utility. The paper pro-
poses some heuristics to check the channels for minimum
hop-count for distributable threads which is shown
through simulation that significantly outperform OSPF.
As another study, RTQoS [2] is proposed as a stateless
scalable policy-based QoS architecture in the core routers
of IP internetworks for SRT traffics with non-increasing
TUFs. [37] at first categorizes UA scheduling algorithms
based on their key decision-making metrics such as PUD
(e.g., DASA and GUS) and deadline (e.g., LBESA). Then,
for each class, presents class-appropriate TUF decomposi-
tion techniques that map the TUFs of distributable
threads into sub-TUFs of the threads’ segments and eva-
luates their effectiveness on the system QoS. In fact, [37]
does not provide a routing algorithm for TUF-constrained
distributable threads. The aforementioned algorithms for
TUF-constrained distributed systems neither consider
general TUFs nor present analytical solutions. However,
they can be used to improve the QoS of specific distri-
buted real-time systems.

Analytical modeling of multi-queue systems is also the
concentration of some other studies. However, the litera-
ture on the analysis of dynamic routing of real-time jobs
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among a number of parallel queues is quite limited. To
the best of our knowledge, most of the reported analytical
studies on dynamic assignment of jobs to parallel queues
consider non real-time jobs and especially the JSQ DR
policy [25][26]. The importance of the JSQ policy is due to
its optimality for non real-time systems with homogene-
ous processors [10][31]. Moreover, JSQ is a natural load
balancing mechanism to minimize the average job re-
sponse time. In [16], Lin and Raghavendra presented an
accurate analytical model to estimate the performance of
JSQ in terms of average response time of a system with
homogeneous processors. On the other hand, a generali-
zation of JSQ, namely MED DR policy has been analyzed
in [19] in order to estimate the mean response time of
jobs. The MED policy can provide an excellent perfor-
mance in non real-time queueing systems with heteroge-
neous processors. However, when jobs are real-time, the
problem becomes more complex. Among the few studies
on the dynamic assignment of real-time jobs to parallel
queues, Zhu in [40] presents an idea for approximating
the performance of JSQ policy in a SRT system with the
homogeneous configuration. In [21], it has been shown
that even in a FRT system, JSQ is optimal in assigning
jobs with exponentially distributed relative deadlines to a
system with homogeneous exponential servers and finite
capacity. In [23], it has also been shown that for jobs with
deterministic relative deadlines in the same conditions,
JSQ policy is again optimal. Moreover, in [22], an analyti-
cal method for the analysis of general DR policies for as-
signment of state-dependent Poisson arrival non TUF-
constrained FRT jobs to a number of parallel queues is
presented. The method works for the case of deadlines
until the beginning of service, generally distributed rela-
tive deadlines, and exponential servers. In the paper, JSQ
is also evaluated as a case study.

The main differences between this work and the above
mentioned studies can be summarized as follows. None
of the above methods presents an exact analytical solution
for dynamic routing of TUF-constrained FRT jobs among
parallel heterogeneous queues. Further, none of them
presents a utility-aware dynamic routing policy for a sim-
ilar system with arbitrary TUF shapes (except [3] for a
different system model and only non-increasing TUFs).
The few previous studies on assignment of TUF-
constrained jobs to parallel subsystems/processors have
some limitations from one or more of the following as-
pects: 1) they are evaluated by simulation, not based on
analytical methods, 2) they have been presented for li-
mited TUF shapes, 3) they work for SMP systems, and 4)
they require job migration among processors.

7 CONCLUSIONS AND FUTURE WORK

This paper proposes an exact analytical method for per-
formance evaluation of DR policies in parallel TUF-based
FRT systems with general distribution of relative dead-
lines. The DR policies make their decisions based on the
queues’ specifications and populations. Using the analyti-
cal method, some classical performance measures as well
as some utility-related ones are calculated for the real-

time systems. Further, a utility-aware DR policy, namely
MEU, is proposed which is based on the conditional ex-
pected accrued utility of jobs on assignments to the indi-
vidual queues of the parallel system.

The comparative study of MEU with respect to JSQ,
MED, and MEST for a two-queue system and different
TUF shapes show the efficiency of MEU in the homoge-
neous configuration as well as its good performance in
most situations for the heterogeneous configuration. Ac-
cording to our results, policies other than MEU behave
well for only specific TUFs. Meanwhile, it is shown that
the distribution of relative deadlines can affect the rela-
tive efficacy of the DR policies. Further, analysis of the
results shows that we cannot have an optimal utility-
aware DR policy for arbitrary TUFs without the consider-
ation of traffic intensity of the overall system.

Investigation of adaptive utility-aware DR policies
with respect to the dynamics of workload characteristics
is one idea that we are working on as a future study.
Another idea is to study the effects of utility-aware sche-
duling algorithms on the behavior of utility-aware DR
policies.
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