
MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 1

Modeling and Evaluation of Service Composition in
Commercial Multi-Clouds using Timed Colored

Petri Nets
Reza Entezari-Maleki, Sayed Ehsan Etesami, Negar Ghorbani, Arian Akhavan Niaki,
Leonel Sousa, Senior Member, IEEE, and Ali Movaghar, Senior Member, IEEE

Abstract—The increasing demand for Web services encour-
ages commercial cloud service providers to publish their own
services with various functional and non-functional capabilities
in different cloud platforms. The aggregation of atomic services
from multiple service repositories is the main idea of the service
composition concept in multi-clouds. The cloud Web service
composition is a suitable way for satisfying users’ complex
requests by integrating services from different clouds in order to
create a new value-added composite service. The time required
to serve a composite service by a multi-cloud environment is an
important parameter, which depends on different factors, ranging
from the service composition and selection algorithm to the
number of atomic services published in the clouds. In this paper,
a model based on Timed Colored Petri Nets (TCPNs) is proposed
to evaluate the service composition in multi-cloud environments
while minimizing the number of clouds involved in serving
a composite service request. The proposed TCPN graphically
models the process of request submission, composite service
analysis, service selection, and service provisioning in a multi-
cloud environment. It also assesses both the mean response time
of the environment and the probability of dropping composite
requests. The verification of the accuracy of the proposed model
is done by comparing the results obtained from the TCPN model,
in two different scenarios, with the results from the CloudSim
framework. These results confirm that our proposed TCPN model
can appropriately model the system and evaluate its performance
more efficiently than the CloudSim.

Index Terms—Web service, service composition, multi-clouds,
modeling, colored Petri net.

I. INTRODUCTION

CLOUD computing is an elastic service provisioning
model which enables on-demand rapid access to a shared

pool of computing resources and large storage facilities [1],
[2]. It is revolutionizing the entire IT ecosystem and all
aspects of our lives. It brings not only the technical change
but also impacts enterprise business applications and busi-
ness models [3], [4]. Nowadays, cloud computing, as a Web
and Internet-based computing model, is increasingly used to

R. Entezari-Maleki is with the School of Computer Science, Institute for Re-
search in Fundamental Sciences (IPM), Tehran, Iran (e-mail: entezari@ipm.ir).

S. E. Etesami is with the Department of Computer Engineering, Sharif
University of Technology, Tehran, Iran.

N. Ghorbani is with the School of Information and Computer science,
Informatics Department, University of California, Irvine, CA.

A. A. Niaki is with the Computer Science Department, Stony Brook
University, Stony Brook, NY.

L. Sousa is with the INESC-ID, Instituto Superior Tecnico, Universidade
de Lisboa, Lisbon, Portugal.

A. Movaghar is with the Department of Computer Engineering, Sharif
University of Technology, Tehran, Iran.

provide users with software resources in the form of Web
services. This makes cloud computing a prominent platform
for providing Web services. A Web service is a modular, self-
describing, self-contained, well-defined, and Web-accessible
software component which is callable with standard Web
technologies [5]–[8]. It can be made available by a service
provider and invoked by service requesters over the Internet.
Due to the vast interest in Web services, various types of these
services have been published by providers and made available
to customers. Nowadays, most companies and organizations
prefer to keep only the main business in-house and outsource
other application services over the Internet [6], [7]. For ex-
ample, large companies such as Google, YouTube, Amazon,
Flickr, Twitter, Facebook, and eBay, have offered Web services
to provide users with access to their resources and services.
According to the statistics from ProgrammableWeb [9] and
Nordic APIs [10], two well-known Web service publication
Websites, the number of Web services has grown through
the recent years, from about 2, 500 Web services in 2010 to
about 10, 000 Web services in 2013, while there were 15, 000
available Web services reported on the Web at the end of
2016, and this number is expected to grow in the near future.
The growth among the largest cloud Web service providers
remains fast because of the revenues. Amazon Web Service
(AWS), ranked first in Gartner’s Magic Quadrant for cloud
infrastructure services in 2016 [11], followed by Microsoft,
IBM, and Google, which contributes about 35% of Amazon’s
valuation (121.8 $Bil of 349.4 $Bil). AWS is expected to
contribute to about 12% of Amazon’s total revenue by 2020,
while this amount was 8.6% in 2016 [12].

Although a Web service is beneficial for both users and
providers, in many cases, a single Web service cannot satisfy
all requirements of a complex request raised by a user. This
is the main motivation for the concept of service composition,
which focuses on the design of a new value-added coarse-
grain composite service that incorporates existing fine-grain
atomic services [2], [4], [7], [8], [13]. In this concept, service
components from different providers can be integrated into a
composite service to serve a complex request, regardless of
their locations, platforms, and performance. Determining the
atomic services required in order to satisfy a complex request,
selecting appropriate services from a service pool, addressing
service composition restrictions, considering important Quality
of Service (QoS) attributes during service composition and
service selection, and handling the rapid changes in services

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 2

and requests, are some important challenges and considera-
tions which need to be addressed in the service composition
problem to fully satisfy a user [14]–[18]. Most of the methods
proposed to solve the service composition problem assume that
all Web services found in a composition sequence, originate
from the same service repository. However, it is very common
for service providers to publish their own Web services at
different clouds, which has distinct advantages, such as adap-
tivity, scalability, and transparency of load scheduling [7], [8].
This leads to an emerging topic in Web service composition
which is referred to as service composition in multi-cloud
environments [2], [4], [7], [8], [19].

The solutions proposed to solve the problem of Web service
composition in multi-clouds should not only satisfy user
requested QoS requirements, but it should also minimize the
number of clouds involved in serving the composite request of
a user. The service composition satisfying QoS requirements
is an NP-hard optimization problem [8], [14], [15], [20],
[21], and taking the details of multi-cloud environments into
account for minimizing the number of clouds involved in
serving a composite service, makes it even more difficult
to solve. There are several approaches to solve the service
composition and service selection problems in cloud systems.
The main optimization criteria considered in the traditional
service composition problem are some QoS attributes which
are important for users (e.g, time, cost, security, reliability,
etc.) [13], [18], [19], [22], [23]. Moreover, the service compo-
sition problem in multi-clouds has been analyzed via cloud
federation. The aim of most of the research presented in
this area is to satisfy user expected QoS, while the number
of clouds involved in serving the request is minimized [2],
[4], [7], [8]. Among the approaches proposed to model the
process of service composition in clouds [13], [24], [25], none
can formally represent the process of service composition
in multi-clouds and simultaneously evaluate its performance
considering the specific characteristics of the environment.
To fulfill this requirement, a model based on Timed Colored
Petri Nets (TCPNs) is presented herein to model and evaluate
service composition in multi-clouds. TCPN is an extension
of Petri Net formalism introduced by Jensen [26], which is
suitable for modeling and analysis of distributed and concur-
rent systems. Colored Petri Nets (CPNs) provide the feature
of defining a data structure for each token type, which helps
us to distinguish tokens and conveniently model and analyze
large and complex systems. Timed extension of CPNs enable
analysis of time relationships (e.g. earlier than, later than, etc.).

The aim of the TCPN model proposed herein is to evaluate
the mean response time of a multi-cloud environment for
composite service requests, while minimizing the number of
involved clouds. To achieve this goal, we model the process
of request submission, request analysis, service selection, and
service provisioning inside a cloud within the multi-cloud
environment. In addition to computing the mean response
time, the proposed TCPN represents the workflow of service
composition and service selection in a multi-cloud environ-
ment. Using our proposed model, we can also compute the
probability of dropping requests, which may be rejected by the
system due to overloads or the lack of sufficient providers upon

request arrival. The proposed model is applied to two sample
multi-clouds and the results obtained from the CPN Tools [27],
which is used as a computer tool to analyze the proposed
TCPN model, are compared against the simulation results
obtained by the CloudSim framework [28]. The validation
results show that the proposed TCPN model can appropriately
assess both mean response time and the dropping probability
of composite services in multi-cloud environments.

The remainder of this paper is organized as follows. A litera-
ture review in the field of Web service composition and service
composition in Geo-distributed clouds is given in Section II.
In Section III, the system description and some preliminaries
about service composition are provided; moreover, the main
assumptions about the reference architecture considered in this
paper are also given in Section III. Section IV proposes the
TCPN model for the cloud Web service composition with
details. Section V presents the numerical results obtained from
the CPN Tools and CloudSim framework for two different
multi-cloud environments. Finally, Section VI concludes the
paper and presents future work.

II. RELATED WORK

Cloud Web services and service composition are both
emerging topics in the field of cloud and service computing.
Most of the research efforts were devoted to the investigation
of the optimal composition and selection of Web services,
while some other research focused on the evaluation of per-
formance measures and QoS attributes.

A. Service Composition Considering QoS Attributes

Wu et al. [16] have proposed a service composition method
that maximizes the overall QoS while meeting user-specified
global QoS constraints to overcome the shortcomings of tradi-
tional methods. In [16], the concept of generalized component
services was presented for the purpose of expanding the can-
didate space for service selection in order to achieve a better
solution. Deng et al. [29] have studied the problem of service
selection and composition in mobile communications while
both clients and service providers are moving. To this end, they
first proposed a mobile service provisioning architecture, and
then presented a service composition approach. The efficiency
of the approach proposed in [29] was evaluated through a
simulation tool built by the authors. Klai et al. [30] have used
Symbolic Observation Graphs (SOG) to check the correction
of service composition in clouds regarding event- and state-
based LTL. They enriched the verification process of the
proposed model by a diagnostic that allows predicting the
elasticity of the resource provider service.

Ding et al. [31] have proposed a genetic-based algorithm
that optimally solves the service selection problem while
considering transactional properties influencing the QoS of
the transactional composite Web service. The genetic-based
service selection algorithm presented in [31] takes the execu-
tion time, price, transactional property, stability, and penalty-
factor into consideration to reach a globally optimal service
selection. According to [15], the problem of Web service
composition satisfying users QoS constraints is a core part

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 3

of the cloud manufacturing. To address this problem, Chen et
al. [15] have proposed a new method based on multi-objective
optimization to help users make a flexible decision. Therefore,
the Web service composition in cloud manufacturing system
was formulated by a multi-objective optimization model, and
then an evolutionary algorithm was developed based on this
model. Lu et al. [32] have studied knowledge-based service
composition and resource planning in a cloud manufacturing
system, with the aim of developing an integrated networking
environment to quickly allocate resources while considering
the policies imposed on requests and resources by users and
providers, respectively. The approach proposed in [32] utilizes
distributed knowledge for intelligent service composition and
adaptive resource planning, which allows accurate mapping
between distributed manufacturing resources and dynamic
service requests.

B. Service Composition in Multi-clouds

Zou et al. [7] have proposed three different methods to
select a cloud combination, not only for finding a feasible
service composition sequence but also for involving the min-
imum numbers of clouds. Experimental results show that the
proposed method based on artificial intelligence can appropri-
ately find sub-optimal cloud combinations. According to the
methods presented in [7], Kurdi et al. [2] have proposed a
combinatorial optimization algorithm for service composition
in a multiple cloud domain, which selects the cloud with the
maximum number of atomic services for providing services to
complete composite service requests with minimum overhead.
Yu et al. [8] have presented two algorithms to select service
combinations involving the minimum number of clouds from a
multi-cloud environment. The first algorithm proposed in [8] is
a greedy algorithm and the other is a heuristic algorithm based
on ant colony optimization. The results show that the heuristic
algorithm based on the ant colony optimization approach can
effectively find cloud combinations with the minimum number
of clouds.

Wang et al. [4] have proposed a composition model taking
both QoS of services and cloud network environment into con-
sideration. Moreover, they proposed a genetic-based approach
for the Web service composition problem in Geo-distributed
clouds with the aim of minimizing the Service Level Agree-
ment (SLA) violations. Li et al. [19] have investigated the
service selection problem under the service replica limitation
constraint in Geo-distributed clouds. They have proposed a
service selection algorithm that estimates the communication
latency with the network coordinate system, and then finds the
services resulting in low latency under replica limitations.

C. Modeling and Evaluation of Service Composition

Bao et al. [13] used Finite State Machine (FSM) to prescribe
the correct invokation order of Web services. Moreover, a tree-
pruning-based algorithm was proposed in [13] to create the
Web service composition tree and generate feasible execution
paths, which helps with the optimal path selection. Although
FSMs can be used to model Web service composition, they
are unable to analyze the efficiency of the composition and

require an additional algorithm to assess the performance of
each feasible composition. On the other hand, all FSMs corre-
sponding to a Web service composition should be constructed
for all possible compositions before being able to solve the
problem. Therefore, FSMs do not seem to be a good choice for
analyzing the performance of Web service composition. Liu et
al. [24] have modeled and analyzed the dynamic execution
of service compositions using Petri nets, while taking into
account the effect of reliability on performance. The proposed
model mostly uses the probabilities that an atomic service is
invoked successfully and tries to estimate the probability of a
composite service to be successfully invoked. Since transitions
of the Petri net proposed in [24] are simple transitions without
any time notion assigned, it cannot be used for quantitative
analysis. This kind of Petri nets can be used to construct
a graph showing the precedence of actions, which is useful
in modeling Web service composition, but cannot be used to
evaluate the performance by dynamically analyzing the Petri
net. Other timed and stochastic extensions of Petri nets can not
only show the order of actions, but also analyze the system
by solving the net.

Ma et al. [25] have addressed the problem of service
discovery in a cloud system by proposing a formal model
for services named Abstract State Services (ASSs), which is
based on the Abstract State Machines (ASMs) model. The
model helps users to conduct a Web search for usable services,
extract service components, and recompose the components.
The proposed ASS model contains a finite set of services, and
a service composition is a selection of atomic services among
all services existing in a database. The formalism applied in
[25] is useful for formalizing the notion of sequential and
parallel actions, but it cannot be used for the purpose of
quantitative analysis. In order to analyze the performance of
service composition, we should introduce the time notation
into the model which was not considered in [25]. Wang et al.
[33] have presented a QoS-aware service selection approach,
based on the cloud model, to guarantee reliability and real-time
requirements. It was used as the basis of a QoS-aware service
selection approach solved by mixed integer programming. The
effectiveness of the proposed approach in [33] was evaluated
by both real-world and randomly generated Web service QoS
datasets.

Abdullah et al. [34] have proposed an agent-based model
for Web service composition to construct the Service De-
pendency Graph (SDG). The model was identified as a sub-
graph of the SDG which captures the functional profile of
the web service together with its direct dependencies to other
services. Afterwards, an agent-based algorithm was proposed
to compose a Web service upon receiving a request from the
user. The number of messages transferred to serve a composite
service was introduced and evaluated as a performance mea-
sure. Chen et al. [35] have proposed a Pareto set model for
the QoS-aware Web service composition problem. Using the
proposed model, six categories of QoS attributes, according
to their different types of aggregation pattern, were studied.
Afterwards, by taking advantage of pruning candidates while
considering dominance relationships and constraint validations
at candidate level, a distributed partial selection algorithm was

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 4

proposed. This algorithm can find the optimal compositions
by partial selection and composing the potential candidates.
Ding et al. [36] have conducted the performance evaluation of
transactional composite Web services. In order to address the
performance evaluation problem, transactional properties for
both single and composite Web services were introduced, and
the performance of basic workflow patterns, i.e., sequential,
parallel, selectable, and loop, was assessed.

III. SYSTEM MODEL

According to the definition provided by IBM, “Web ser-
vices are a set of emerging standards enabling interoperable
integration between heterogeneous IT processes and systems.
They can be considered as a new breed of a Web application
that is self-contained and self-describing, and it can provide
functionality and interoperation ranging from the basic to
the most complicated business and scientific processes” [37].
Other definitions and interpretations of a Web service can
also be found in the literature, but according to most of
the definitions, the main roles involved in Web services are
service provider, service registry, and service requester, which
correspond to publishing, finding, and invoking Web services,
respectively [6]. Although a single Web service can serve
some specific and predefined requests of a user, it cannot
fully satisfy all complex requests raised by users nowadays.
In order to respond to more complex requests, the Web
service composition technology has been proposed and widely
used by the academy and industry [6], [14], [22], [38]. Web
service composition is the process of aggregating multiple
services into a single service, which helps users to reach large-
granularity and value-added composite services [2], [6], [7],
[13], [38]. To show how to reply to a complex request using
the combination of Web services instead of using multiple
single services separately, we use the classical example of trip
planning. Suppose a user wishes to go for a trip and needs to
book a flight and train tickets. Furthermore, the user wants to
rent a taxi and book a hotel in the destination. In this scenario,
all these activities need to be checked by the user individually
using separate Web services, but a travel agent service can
satisfy the user’s request by composing different Web services
together. Fig. 1 schematically shows the composition of Web
services for this example.

Cloud computing is considered as a prominent platform
for providing Web services [4], [8], [14]. By increasing the
number of cloud service users worldwide, major cloud service
providers have been deploying and operating geographically
dispersed data centers to better serve the distributed cloud
users [4], [21]. At the same time, the Web services provided
on clouds grow rapidly. The complex requests submitted by
distributed cloud users may need to be replied by different Web
service providers in various clouds. Therefore, the concept of
multi-clouds have been introduced and recently have attracted
much attention. The concept can be found in the literature
as multiple clouds, multi-clouds, Geo-distributed clouds, or
cloud federation [2], [4], [7], [8], [13], [19], [20]. The multi-
cloud Web service composition is an emerging topic trying
to respond to complex requests of cloud users by aggregating

Composite

Service

Web Service 2

Train Ticket Book

Web Service 1

Flight Ticket Book

Web Service 4

 Rent Taxi

Web Service 3

Hotel Book

Invoke

Reply

Invoke

Reply

Invoke

Reply

Reply

Invoke

Fig. 1. A simple example of Web service composition

different Web services provided by probably different service
providers on various distributed clouds.

A simple architecture of a multi-cloud environment in which
different service providers publish their own Web services is
shown in Fig. 2. In this figure, there are four different com-
mercial cloud computing platforms, named C1, C2, C3, and
C4, and three different service providers, named A, B, and C.
Although there are connections between service providers and
clouds in real systems, they are ignored in Fig. 2 to simplify
the figure. A service provider may publish different services
in a cloud or even publish the same service in different clouds.
After publishing a service, it is required that the provider
contacts the service registry component to inform it about the
location of each service. The service registry is a repository
keeping the required information about the location and capa-
bilities of each service and its relevant provider. It can help
the cloud combiner component to find the appropriate clouds
containing the service requested. The service requesters, also
named users, first provide initial and goal descriptions of the
service composition request. Next, the composition converter
component analyzes the complex request to recognize the
required atomic services. Afterwards, it contacts the cloud
combiner to select appropriate cloud combination from the
multi-cloud environment using a predefined combinatorial
selection method. Then, the composition converter informs the
cloud combiner of the selected cloud combination, asking to
execute the service composition sequence, which can satisfy
the goals of the service composition requester.

According to the system model described above, which
is compatible with the structures given in [2], [6]–[8], [14],
[39], the assumptions considered in the proposed model are
as follows.
• The multi-cloud environment is considered as a set

of N clouds, numbered from C1 to CN , each of
which containing a set of service files denoted by
Fi = {SF 1, SF 2, · · · , SF fi} for cloud Ci. Each
service file includes a set of atomic services as it can
be seen in Fig. 2.

• It is possible for a cloud to have different copies of a
service among various service files offered by the same or
even different service providers. For example, two copies
of service S2 exist in two different service files of cloud
C1, named SF2 and SF3, in the multi-cloud shown in
Fig. 2. Hence, the set of all services provided by cloud

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 5

Cloud combiner

Service registry

Service provider A

Service provider B

Service provider C

C3

Service requesters

 (Users)

Composition converter
Requests

SF4

 S1

 S3

 S4

S5

SF6

 S4

SF5

 S1

 S2

 S3

S4

S5

SF3

 S1

 S2

SF3

 S1

 S2

SF2

 S2

 S3

 S5

SF2

 S2

 S3

 S5

SF1

 S1

 S2

 S4

SF1

 S1

 S2

 S4

SF6

 S4

SF4

 S1

 S3

 S4

S5

C
4

C
2
 C

1

Fig. 2. The architecture of Web service composition in a multi-cloud environment

Ci, without considering the concept of service file, could
be represented by SCi

= {Si1, Si2, · · · , Sisi}, where si
is the number of different service types provided in Ci.

• Since a specific service can be provided in different
service files of a cloud, there is a capacity for each service
in a cloud to represent the maximum instances of the
service provided in the cloud. We name this capacity as
qij for service Sj provided in cloud Ci. For example,
in Fig. 2, we have q12 = 2, which shows two instances
of service S2 are provided in cloud C1. It is worth
mentioning that

∑si
j=1 q

i
j is the number of all services

provided in Ci, and consequently, S =
∑N
i=1

∑si
j=1 q

i
j

denotes the number of all services provided in the multi-
cloud environment.

• There are M users in the system, each user submits
a composite request to the composition converter. The
composite request of a user (e.g., user i) is replied by K
different atomic services provided by C different clouds,
where C ≤ K.

• For the Web service composition problem considered in
this paper, the solution satisfying the composite request of
a user is a sequence of tuples, < Si, Cα >, < Sj , Cβ >,
· · · , < SK, CC >, where Si, Sj , · · · , SK are atomic
services, and Cα, Cβ , · · · , CC are their corresponding
clouds selected to serve the user.

• The only way to submit a composite request to the
environment is delivering it to the composition converter
component. This component is responsible for receiving
composite requests from users, decomposing and ana-
lyzing these requests, specifying the service composition
sequences, and contacting other relevant components of
the environment to serve the composite requests.

IV. THE PROPOSED TCPN MODEL

This section presents the TCPN proposed to model Web
service composition in multi-cloud environments. To evaluate
the proposed model, we use the well-known CPN Tools [27],
which enables modeling, verification, and analysis of CPN
models. As an industrial-strength computer tool, the CPN
Tools helps the modeler to graphically construct the models,
and to analyze them in steady-state. However, because of
the inherent constraints of the tool, the modeler needs to
change the original model to be able to make use of the CPN
Tools. Due to the tool constraints and in order to facilitate the
understanding of the model, we first introduce the model in
its abstract form in Section IV-A, and then change some parts
of it and propose the low-level model, in Section IV-B, that
can be modeled and analyzed with the CPN Tools.

A. Abstract View of the Proposed TCPN Model

The high-level TCPN model proposed for the cloud Web
service composition is shown in Fig. 3. As it can be seen in
this figure, each component of the system, corresponding to the
components shown in Fig. 2, is surrounded by a dashed line
box. The left most component is the service requester, which
models the arrival process of requests to the environment. The
place PStart represents the potential requests from the clients.
There are M tokens in this place at the beginning, which
shows the number of potential users who can submit composite
requests. The existence of a token in place PStart enables
timed transition TArrive. After enabling, it takes some time
for transition TArrive to fire. The firing time of this transition,
which shows the inter-arrival time of composite requests,
is considered to follow an exponential distribution with the
rate λ. The assumption of considering exponential distribution

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 6

𝑃𝑆𝑒𝑟𝑣𝑖𝑐𝑒11

𝑃𝑆𝑒𝑟𝑣𝑖𝑐𝑒21

𝑃𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠11

𝑇𝑆𝑒𝑟𝑣𝑖𝑐𝑒11

𝑇𝑆𝑒𝑟𝑣𝑖𝑐𝑒21

𝑇𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠11

𝑃𝑆𝑒𝑟𝑣𝑖𝑐𝑒12

𝑃𝑆𝑒𝑟𝑣𝑖𝑐𝑒22

𝑃𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠22

𝑇𝑆𝑒𝑟𝑣𝑖𝑐𝑒12

𝑇𝑆𝑒𝑟𝑣𝑖𝑐𝑒22

𝑇𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠22

𝑃𝑆𝑒𝑟𝑣𝑖𝑐𝑒1𝑁

𝑃𝑆𝑒𝑟𝑣𝑖𝑐𝑒2𝑁

𝑃𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠𝑁𝑁

𝑇𝑆𝑒𝑟𝑣𝑖𝑐𝑒1𝑁

𝑇𝑆𝑒𝑟𝑣𝑖𝑐𝑒2𝑁

𝑇𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠𝑁𝑁

Service requester

Composition converter

Cloud combiner (Part 1)
Cloud C1

Cloud C
2

Cloud C
N

𝑃𝑆𝑒𝑟𝑣𝑖𝑐𝑒1

𝑃𝑆𝑒𝑟𝑣𝑖𝑐𝑒2

𝑃𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠

𝑃𝐹𝑖𝑛𝑎𝑙 𝑇𝐶𝑜𝑚𝑝𝑜𝑠𝑒 𝑃𝐶𝑜𝑚𝑝𝑜𝑠𝑒 𝑇𝐴𝑟𝑟𝑖𝑣𝑒 𝑃𝑆𝑡𝑎𝑟𝑡

𝑡𝐷𝑒𝑙𝑖𝑣𝑒𝑟1

𝑡𝐷𝑒𝑙𝑖𝑣𝑒𝑟2

𝑡𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑆

𝑃𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑟

𝑇𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟1

𝑇𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟2

𝑇𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑁

Cloud

combiner (Part 2)

λ µ 𝛼2

𝛼1

𝛼𝑁

µ1
1

µ2
𝑁

µ𝑠1
1

µ1
2

µ2
2

µ2
1

µ𝑠2
2

µ1
𝑁

µ𝑠𝑁
𝑁

𝑞1

𝑞2

𝑞𝑠

𝑞𝑠2
2

𝑞2
2

𝑞1
2

𝑞𝑠1
1

𝑞2
1

𝑞1
1

𝑞1
𝑁

𝑞2
𝑁

𝑞𝑠𝑁
𝑁

Fig. 3. The high-level TCPN model of cloud Web service composition

for the inter-arrival time between two consecutive requests is
an acceptable assumption, adopted in many research work in
this area [40]–[45]. In addition to the inter-arrival times of
requests, the service time of requests and data transmission
time are considered to follow exponential distributions, which
is also compatible with the previously presented analytical
models in the related art [40]–[44].

Once timed transition TArrive fires, a token is removed
from place PStart and deposited into place PCompose, which
means a request is submitted to the composition converter.
As mentioned in Section III, the component composition
converter is responsible for receiving and analyzing users’
composite requests in order to specify the number/types of
atomic services of each composite service. This component’s
task is modeled by timed transition TCompose. The firing
time of this transition follows an exponential distribution
function with the mean 1/µ, which represents the mean time
of serving a composite service request which is defined as
the time to analyze the composite request and recognize the
atomic services required for satisfying the composite request.
Suppose that a composite request requires K different services
named S1, S2, · · · , SK to be served. To model this, transition
TCompose removes a token from place PCompose and puts K
tokens in places PService1 to PServiceK , a single token per
place. As shown in Fig. 3, there is an inhibitor arc from each

place PServicej , 1 ≤ j ≤ S, to transition TCompose. These arcs
correspond to the maximum instances of each service type
provided by the environment. For example, the number q1,
specified as the multiplicity of the inhibitor arc between place
PService1 and transition TCompose, represents that there are in
total q1 instances of service S1 in the multi-cloud environment.
More precisely, q1 =

∑N
i=1 q

i
1, where N is the number of all

clouds in the environment. If there are more than q1 requests
for service S1 in a time instant, q1 requests are dispatched
among the clouds and the remaining are dropped from the
system. It is worth mentioning that dropping only one atomic
service of a composite service causes the whole composite
service to be dropped. Therefore, the dropping probability of
composite services can be computed by counting the number
of tokens dropped at this point.

The existence of a token in place PServicej shows that the
service Sj should be served by one of the clouds offering
this service. By adding a token to each place PServicej , its
related immediate transition, named tDeliverj , is enabled and
can fire. The firing time of an immediate transition is zero, so
these types of transitions are used to model immediate actions.
Once transition tDeliverj fires, a token is removed from place
PServicej , and deposited into place PCombiner. This process
shows that the composition converter component has finished
its task, and delivered the specification of the required services

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 7

to the cloud combiner component. Therefore, there will be K
tokens with different colors (services) inside place PCombiner,
which should be dispatched among the clouds providing the
services. The cloud combiner has enough information about
the specification of the services provided in each cloud. Hence,
it can figure out the proper cloud to select for serving the
requested service.

Without loss of generality, we assume that the clouds
C1, C2, · · · , CN shown in Fig. 3 are sorted descendingly
according to the number of service types they provide, i.e.
the number of the service types provided in cloud Ci is
greater than or equal to that of cloud Ci+1. Considering this
assumption, if both clouds Ci and Ci+1 offer the service
Sj , we assign higher priority to Ci. This simple assumption
helps us to straightforwardly model the system and find the
set of required services with the minimum number of clouds
involved. According to the description given above, assume
there is a request for service Sj in place PCombiner, and this
service is provided by both Ci and Ci+1. In this case, both
timed transitions TTransferi and TTransferi+1

are enabled.
If the numbers of waiting requests for service Sj in Ci and
Ci+1 do not exceed the maximum number of service instances
provided by these clouds, called qij and qi+1

j respectively,
cloud Ci is selected to host the new request based on the
priority mechanism mentioned above. However, if the capacity
of the waiting queue of service Sj in Ci is saturated, cloud
Ci+1 is selected to provide this service to the user. The
number of all instances of service Sj provided by cloud Ci
is modeled by an inhibitor arc with multiplicity qij . These
numbers correspond to the numbers used as arc multiplicities
in part composition converter in which qj =

∑N
i=1 q

i
j for all

j, 1 ≤ j ≤ S.

Assuming that cloud Ci is selected to provide service Sj ,
timed transition TTransferi fires and puts a token in place
PServiceij . The time assigned to transition TTransferi , which
follows an exponential distribution with rate αi, represents the
time required to redirect the service request to the selected
cloud, and transfer the required data. This process is done for
all K tokens in PCombiner, until all tokens of a composite
request are sent to appropriate clouds. The existence of a
token in place PServiceij enables timed transition TServiceij that
models providing service Sj in cloud Ci. The time assigned
to transition TServiceij follows an exponential distribution with
mean 1/µij . After finishing service Sj by cloud Ci, a token
is removed from place PServiceij and put into place PFinal.
Logically, this place is located inside the component cloud
combiner, so the cloud combiner is specified as two parts in the
model. When all K tokens of a composite service request reach
the place PFinal, the multi-cloud environment finishes serving
the composite request, and the user can exit the system. In this
case, after measuring the time taken by each of the K atomic
services belonging to a composite service, the maximum time
is reported as the response time of the multi-cloud environment
for the composite service. This represents the total time a
composite service request spends in the system (sojourn time).
Serving all M users and computing the response time of the
multi-cloud environment for M composite requests, we can

compute the mean response time of the environment for a
composite service.

The abstract TCPN model presented in Fig. 3 cannot be
evaluated in this form because the data structures (colors)
should be defined, and each request should be assigned with
an ID so that we can track it and compute its corresponding
response time. Moreover, some details should be added to
the model for gathering data from the tokens circulating in
the model and analyzing it. The capacity of each cloud for
providing a specified service, and the mechanism which occurs
for each condition should be also defined clearly. Therefore,
we need to refine the model one step further to reach an
analyzable version.

B. The Concrete TCPN Model

The model presented in this section is based on the high-
level model proposed in Fig. 3, with some important details
appended to it in order to satisfy the tool constraints and to
analyze the model. At the beginning, we need to define data
structures for the colors. In describing the model shown in
Fig. 3, we only mentioned tokens without referring to their
colors or data types. However, one of the main strengths of
the model proposed in this paper is to use different token
types, which helps us distinguish various composite service
requests and atomic services. Using TCPN formalism and
CPN Tools, we can define different token types and change
the types or their values when a token transits through a
timed/immediate transition. In addition to the token types, each
token in TCPN has a time attribute. When the global time of
CPN tools is equal or greater than the token time attribute, the
corresponding transition is enabled and can fire.

In the first step, two parts of the model labeled service
requester and composition converter in Fig. 3 are modified as
depicted in Fig. 4. At the beginning, place PStart contains a
token with token type (color) named REQSET including three
numbers: an integer to keep the ID of each composite request
(id); a real number to store the arrival time of the request (t);
and another real number to save the total time a request spends
in the system (T). The initial values of these parameters are
id = 1, t = 0.0, T = 0.0 , which show a composite service
request with ID number 1 is submitted to the multi-cloud
environment at time 0.0, and the sojourn time of the request
is 0.0 at the beginning. The timed transition TArrive models
the inter-arrival times of composite requests and is responsible
for loading parameter T in token type REQSET. Upon firing
this transition, a token of the type REQSET named request is
removed from place PStart and a token with the same type is
deposited into place PCompose by applying function addTime.
This function loads parameter T of the token request with a
real number generated by an exponential distribution function
with rate λ. As it can be seen in Fig. 4, there exists only one
token in place PStart at each time instant. However, we need to
analyze the model when the number of potential users isM, as
shown in Fig. 3. To model this, transition TArrive is connected
to place PStart with an output arc which puts a new token of
the type REQSET in this place when it fires. The value of the
parameter named id of tokens, which are deposited into place

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 8

 1

Service requester

Composition converter

 t
Check

𝑃𝐶𝑜𝑚𝑝𝑜𝑠𝑒

𝑅𝐸𝑄𝑆𝐸𝑇

𝑃𝑆𝑡𝑎𝑟𝑡

𝑟𝑒𝑞𝑢𝑒𝑠𝑡

𝑛𝑒𝑥𝑡𝑅𝑒𝑞𝑢𝑒𝑠𝑡ሺ𝑟𝑒𝑞𝑢𝑒𝑠𝑡ሻ

ሾ𝐺𝑢𝑎𝑟𝑑1ሿ expሺ𝜆ሻ

𝑇𝐴𝑟𝑟𝑖𝑣𝑒

𝑎𝑑𝑑𝑇𝑖𝑚𝑒ሺ𝑟𝑒𝑞𝑢𝑒𝑠𝑡ሻ

𝑅𝐸𝑄𝑆𝐸𝑇

𝑟𝑒𝑞
𝑢
𝑒𝑠𝑡

expሺµሻ

𝑇𝐶𝑜𝑚𝑝𝑜𝑠𝑒

𝑐𝑜𝑚𝑝𝑜𝑠𝑒ሺ𝑟𝑒𝑞𝑢𝑒𝑠𝑡ሻ
𝐶𝑂𝑀𝑆𝐸𝑇

𝑃𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒𝑆𝑒𝑟𝑣𝑖𝑐𝑒

𝑠𝑒𝑟𝑣𝑖𝑐𝑒
𝑐𝑎
𝑝
𝑇
𝑜
𝑘
𝑒
𝑛

𝑛
𝑒𝑤

𝐶
𝑎
𝑝
𝑎
𝑐𝑖
𝑡𝑦
ሺ 𝑠
𝑒𝑟
𝑣
𝑖𝑐
𝑒
,𝑐
𝑎
𝑝
𝑇
𝑜
𝑘
𝑒𝑛

ሻ

𝐶𝐴𝑃𝑆𝐸𝑇

𝑃𝑡𝑜𝑡𝑎𝑙𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

ሾ𝐺𝑢𝑎𝑟𝑑2ሿ

𝑢𝑛𝑝𝑎𝑐𝑘ሺ𝑠𝑒𝑟𝑣𝑖𝑐𝑒, 𝑐𝑎𝑝𝑇𝑜𝑘𝑒𝑛ሻ
𝑆𝐸𝑅𝑆𝐸𝑇

𝑃𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑟

𝑟𝑒𝑡𝑢𝑟𝑛𝑆𝑒𝑟𝑣𝑖𝑐𝑒ሺ𝑎𝑡𝑜𝑚𝑖𝑐𝑅𝑒𝑞, 𝑐𝑎𝑝𝑇𝑜𝑘𝑒𝑛𝑘ሻ

𝑐𝑎𝑝𝑇𝑜𝑘𝑒𝑛𝑘

Fig. 4. The concrete TCPN model: the service requester and the composition converter

PStart by transition TArrive, is increased by one. We define
a guard function for transition TArrive, named Guard1, to
control the number of firings of the transition to accept only
M composite service requests. The guard function Guard1 is
represented in Table I.

The existence of a token in place PCompose enables timed
transition TCompose. Upon firing this transition, a token of
the type REQSET named request is removed from PCompose
and a new token of the type COMSET is deposited into
place PCompositeService by applying function compose. The
token type COMSET extends the type REQSET by introducing
a new variable named Serv[] in order to save the atomic
services of a composite service request. The new token in place
PCompositeService contains the atomic services of a composite
service in the form of Serv[], which are randomly determined
from the set of service types provided by the multi-cloud
environment. Moreover, the time parameter T in token type
REQSET is updated by adding a real number obtained from
an exponential function with rate µ when a token transits
through TCompose. Since the concept of the inhibitor arc is
considered as an extension to the basic definition of Petri nets,
some tools (e.g., CPN Tools) do not provide support for it. To
model this concept in CPN Tools, we add a new place named
PtotalCapacity to the original model. The data structure of the
tokens inside place PtotalCapacity, named CAPSET, represents
the capacity of the multi-cloud environment in providing each
service. This token type contains two integer numbers: the
first integer, called j, shows the ID of each service type
provided in the multi-cloud environment 1 ≤ j ≤ S, and the
second integer number shows the capacity of the environment
in providing service j, which is the maximum instances of
service j provided in the environment (qj in Fig. 3).

The immediate transition tCheck removes a token of the
type COMSET from place PCompositeService, called service,
together with another token of the type CAPSET from place
PtotalCapacity, called capToken, and puts K tokens of the type
SERSET into place PCombiner by applying the unpack func-
tion. Each token in PCombiner represents an atomic service
which should be provided in order to respond the composite

service. A guard function, named Guard2 in Fig. 4, is assigned
to transition tCheck to check the availability of an atomic
service when requested. The pseudocode of this guard function
is shown in Table I. As mentioned earlier, if a composite
service request needs an atomic service that is not available at
that time instant (the capacity parameter of that atomic service
in type CAPSET is 0), the composite service is dropped. We
compute the dropping probability of composite requests by
counting the number of composite requests dropped by tran-
sition tCheck and diving it by the total number of composite
requests submitted to the composition converter. The token
type SERSET inherits parameters id, t and T from the type
COMSET, and considers two new parameters named Num
and Flag. The Num parameter is an integer number showing
the number of atomic services required to serve the current
composite service (the size of vector Serv[] in type COMSET),
and Flag is the ID of each atomic service. Since it is assumed
that a composite service request contains K atomic services,
we assign Num = K. Upon firing transition tCheck, tokens
in place PtotalCapacity are updated by decreasing the capacity
parameter of each service sent to place PCombiner, by using
the function newCapacity. It is worth mentioning that the
capacity of each atomic service, which is decreased upon firing
tCheck, is increased when the service is provided, as will be
discussed later.

The concrete model of the cloud combiner together with one
of the clouds is shown in Fig. 5. To simplify the description
of the model, we only represent the interaction between the
component cloud combiner and cloud Ci, ignoring other
clouds in the multi-cloud environment because the connections
between other clouds and the cloud combiner are the same as
those shown in Fig. 5. The decision about sending a service
request to a cloud is made by the cloud combiner, according to
the mechanism mentioned in Section IV-A in which the clouds
are checked based on their indexes; the lower index shows the
higher priority. If a cloud with higher priority is offering the
requested atomic service and it has enough capacity to host
the service request, the request is assigned to it. Regarding
this mechanism, suppose that the cloud combiner decides to

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 9

TABLE I
GUARD FUNCTIONS OF THE CONCRETE TCPN MODEL

Guard Relevant transition Function

[Guard1] TArrive

guardFunc Guard1(request:REQSET){
if request.id <= M
return true;

else
return false;}

[Guard2] tCheck

guardFunc Guard2(service:COMSET, capToken:CAPSET){
x = true;
for i=1:K

for each (id, num) in capToken
if (id = service.Serv[i]) && (num > 0) then
x=true;

else
x=false;

end for
end for
return x;}

[Guard3] TTransferi

guardFunc Guard3(atomicReq:SERSET, capTokeni:CAPSET){
for each (id, num) in capTokeni

if (id = atomicReq.Flag) && (num > 0) then
return true;

else
return false;}

[Guard4] TTransferi

guardFunc Guard4(atomicReq:SERSET, capTokenj:CAPSET){
for each (id, num) in capTokenj // 1 ≤ j ≤ i-1

if (id = atomicReq.Flag) && (num > 0) then
return false;

else
return true;}

assign service Sk to cloud Ci. In this case, timed transition
TTransferi removes a token of the type SERSET from place
PCombiner, named atomicReq in which the Flag parameter
of atomicReq is equal to k, and searches for a relevant token
of the type CAPSET in place PCapacityi named capTokeni.
The place PCapacityi keeps track of the available services
provided in cloud Ci. Its functionality in this part of the
model is similar to the functionality of place PtotalCapacity
in the sub-model presented in Fig. 4. The token type in place
PCapacityi is the same as the one used for PtotalCapacity.
In order to model the aforementioned mechanism, timed
transition TTransferi is equipped with two guard functions,
named Guard3 and Guard4, as shown in Table I. The guard
function Guard3 checks the capacity of the current cloud, Ci,
for providing the requested atomic service, Sk, while Guard4
checks the clouds with higher priorities, C1 to Ci−1, to make
sure that none of them have the capacity to provide service
Sk. If both guard functions are evaluated to true, transition
TTransferi fires and moves a token of the type SERSET,
named atomicReq, from place PCombiner to place PServiceik .
When the token transits thorough TTransferi , the parameter T
of the token is updated by adding a random number obtained
from an exponential distribution function with rate αi. It
should be noted that the target place PServiceik is selected
by the functions sendService which are associated with the
arcs connecting transition TTransferi to places PServiceij
∀j, 1 ≤ j ≤ si, according to the Flag parameter of token
atomicReq. Therefore, we only load the place PServiceik with
a token upon firing TTransferi in Fig. 5, since it is assumed

that service Sk is sent to cloud Ci.
The existence of a token in place PServiceik enables timed

transition TServiceik modeling the process of providing service
Sk by a service provider in cloud Ci. As can be seen in
Fig. 5, the firing time of this transition follows an exponential
distribution with rate µik. This transition moves a token of the
type SERSET from place PServiceik and puts a token with the
same type into place PFinal, while updating the parameter T
of the token named atomicReq. It is worthwhile to note that all
transitions TServiceij , 1 ≤ j ≤ si act as transition TServiceik ,
moving a SERSET token from their own input places, and
depositing another SERSET token into their output place,
PFinal. However, the focus in Fig. 5 is on providing service
Sk by cloud Ci, so we do not explain other services provided
by this cloud. In addition to moving a token from PServiceik
to PFinal, transition TServiceik is responsible for returning the
service Sk back to both places PtotalCapacity and PCapacityi ,
which is done by the function returnService that increases
the capacity parameter of tokens capTokenk by one upon
firing TServiceik .

The place PFinal acts as a repository, which collects all
tokens representing atomic services of a composite service
provided by various clouds. Since we assign a unique ID to
a composite service request at the beginning and keep the
numbers of all atomic services of the composite request inside
token type SERSET, named id and Num respectively, we can
compute the time a composite service is completely served. To
model this, we use a timed transition named TFinal with an
exponential firing distribution. The firing rate of this transition

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 10

Cloud

combiner (Part 2)

 𝑃𝑆𝑒𝑟𝑣𝑖𝑐𝑒1𝑖

𝑇𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑖

𝑃𝑡𝑜𝑡𝑎𝑙𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑃𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑟

𝑃
𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑘

𝑖

𝑃
𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠𝑖

𝑖

𝑇𝑆𝑒𝑟𝑣𝑖𝑐𝑒1𝑖

𝑇
𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑘

𝑖

𝑇
𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠𝑖

𝑖

𝑃𝐹𝑖𝑛𝑎𝑙
𝑎𝑡𝑜𝑚𝑖𝑐𝑅𝑒𝑞

𝑆𝐸𝑅𝑆𝐸𝑇

𝐶𝐴𝑃𝑆𝐸𝑇

𝑆𝐸𝑅𝑆𝐸𝑇
𝑆𝐸𝑅𝑆𝐸𝑇

𝑆𝐸𝑅𝑆𝐸𝑇

𝑆𝐸𝑅𝑆𝐸𝑇
𝑎𝑡𝑜𝑚𝑖𝑐𝑅𝑒𝑞

Cloud C
i

Cloud combiner

 (Part 1)

 exp(𝛼𝑖)

exp(µ𝑠𝑖
𝑖)

exp(µ1
𝑖)

exp(µ𝑘
𝑖)

𝑇𝐹𝑖𝑛𝑎𝑙

𝒔𝒆𝒏𝒅𝑺𝒆𝒓𝒗𝒊𝒄𝒆 {𝒂𝒕𝒐𝒎𝒊𝒄𝑹𝒆𝒒, 𝒄𝒂𝒑𝑻𝒐𝒌𝒆𝒏𝒊, 𝒌} 𝑎𝑡𝑜𝑚𝑖𝑐𝑅𝑒𝑞

𝑎𝑡𝑜𝑚𝑖𝑐𝑅𝑒𝑞

𝑓
𝑖𝑛
𝑖𝑠
ℎ
𝑆
𝑒𝑟
𝑣
𝑖𝑐
𝑒
(𝑟
𝑒𝑝
𝑙𝑦
)

𝑟𝑒𝑝
𝑙𝑦

𝑟𝑒𝑡𝑢𝑟𝑛𝑆𝑒𝑟𝑣𝑖𝑐𝑒(𝑎𝑡𝑜𝑚𝑖𝑐𝑅𝑒𝑞, 𝑐𝑎𝑝𝑇𝑜𝑘𝑒𝑛1)

𝑟𝑒𝑡𝑢𝑟𝑛𝑆𝑒𝑟𝑣𝑖𝑐𝑒(𝑎𝑡𝑜𝑚𝑖𝑐𝑅𝑒𝑞, 𝑐𝑎𝑝𝑇𝑜𝑘𝑒𝑛𝑘)

𝑟𝑒𝑡𝑢𝑟𝑛𝑆𝑒𝑟𝑣𝑖𝑐𝑒(𝑎𝑡𝑜𝑚𝑖𝑐𝑅𝑒𝑞, 𝑐𝑎𝑝𝑇𝑜𝑘𝑒𝑛𝑠𝑖)

𝑐𝑎𝑝𝑇𝑜𝑘𝑒𝑛1

𝑃𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖

𝐶𝐴𝑃𝑆𝐸𝑇

𝑐𝑎𝑝𝑇𝑜𝑘𝑒𝑛𝑘

𝑐𝑎𝑝𝑇𝑜𝑘𝑒𝑛𝑠𝑖

𝑟𝑒𝑡𝑢𝑟𝑛𝑆𝑒𝑟𝑣𝑖𝑐𝑒(𝑎𝑡𝑜𝑚𝑖𝑐𝑅𝑒𝑞, 𝑐𝑎𝑝𝑇𝑜𝑘𝑒𝑛1)

𝑐𝑎𝑝𝑇𝑜𝑘𝑒𝑛1

𝑐𝑎𝑝𝑇𝑜𝑘𝑒𝑛𝑘

𝑟𝑒𝑡𝑢𝑟𝑛𝑆𝑒𝑟𝑣𝑖𝑐𝑒(𝑎𝑡𝑜𝑚𝑖𝑐𝑅𝑒𝑞, 𝑐𝑎𝑝𝑇𝑜𝑘𝑒𝑛𝑘)

𝑐𝑎𝑝𝑇𝑜𝑘𝑒𝑛𝑠𝑖
𝑟𝑒𝑡𝑢𝑟𝑛𝑆𝑒𝑟𝑣𝑖𝑐𝑒(𝑎𝑡𝑜𝑚𝑖𝑐𝑅𝑒𝑞, 𝑐𝑎𝑝𝑇𝑜𝑘𝑒𝑛𝑠𝑖)

𝑐

𝑟𝑒𝑝𝑙𝑦𝑆𝑒𝑟𝑣𝑖𝑐𝑒(𝑎𝑡𝑜𝑚𝑖𝑐𝑅𝑒𝑞)

𝑐𝑎
𝑝
𝑇
𝑜
𝑘
𝑒𝑛

𝑖

ሾ𝐺𝑢𝑎𝑟𝑑3ሿ

𝑛
𝑒𝑤

𝐶
𝑎
𝑝
𝑎
𝑐𝑖𝑡 (𝑎

𝑡𝑜
𝑚
𝑖𝑐𝑟𝑒𝑞

,𝑐𝑎
𝑝
𝑇
𝑜
𝑘
𝑒𝑛

𝑖)

Cloud C
j
 , 𝟏 ≤ 𝒋 ≤ 𝒊 − 𝟏

𝑐𝑎
𝑝
𝑇
𝑜
𝑘
𝑒𝑛

𝑗
 𝑐𝑎

𝑝
𝑇
𝑜
𝑘
𝑒𝑛

𝑗

ሾ𝐺𝑢𝑎𝑟𝑑4ሿ

Fig. 5. The concrete TCPN model: the cloud combiner and cloud Ci

is a constant number named c, which can be set to any number,
since it is not added to the parameters of token type SERSET.
This is a dummy transition for the purpose of emptying place
PFinal. It only counts the number of tokens with the same
id queued in PFinal and, if the number reaches K, it fires
and removes all K tokens with the same id from PFinal.
Once transition TFinal fires, the maximum value saved in
parameter T among all K tokens with the same id is reported
as the time a composite service request spent in the multi-cloud
environment to receive all its requested services. By obtaining
these maximum times for all M composite service requests,
we can compute the mean response time of the multi-cloud
environment for composite service requests.

V. NUMERICAL RESULTS

In this section, numerical results obtained by the proposed
TCPN model are reported. As mentioned earlier, the aim
of the proposed TCPN is to model the process of service
composition and selection in multi-cloud environments and
evaluate both the mean response time and the dropping
probability of composite service requests. In order to study
different combinations and service varieties in the clouds, we
consider two scenarios in this section. In the first scenario,
given in Section V-A, a small multi-cloud environment with
three clouds and a limited number of services is studied, while
in the second scenario, given in Section V-B, a larger system
with higher number of clouds and services is considered. In
order to validate the results obtained from the TCPN models,

we simulate the sample systems considered in both scenarios
with the CloudSim framework [28]. CloudSim is a Java based
development platform which supports the simulation of large-
scale cloud computing environments. It provides users with
the ability to extend the existing functions and introduce new
ones to satisfy the requirements of the system under study.
We extend the CloudSim framework by defining appropriate
functions to model the multi-cloud environment and reducing
the minimum period between events to increase the precision
of the results. The results gained from the CloudSim toolkit
are presented and compared with the results obtained using
the CPN Tools for each scenario.

A. First Scenario

In this scenario, a multi-cloud environment with three
clouds and five different service types is considered (N = 3
and S = 5). The number of service instances provided in each
cloud qij , and their related rates µij (1 ≤ i ≤ 3, 1 ≤ j ≤ 5) are
shown in Table II. Using the information provided in Table II,
we can compute the number of all instances of a given service
existing in the environment (qj =

∑3
i=1 q

i
j , 1 ≤ j ≤ 5).

The rate of the exponential functions assigned to transitions
TTransferi , 1 ≤ i ≤ 3, which model the times required to
redirect a service request to the clouds and transfer the required
data between the cloud combiner and clouds, are set to 20,
30, and 25 req/sec for clouds C1, C2, and C3, respectively
(α1 = 20, α2 = 30, and α3 = 25). Moreover, the mean time
for serving a composite request to analyze it and recognize

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 11

Fig. 6. The graphical representation of the proposed TCPN model for the first scenario obtained by the CPN Tools

TABLE II
THE SERVICE TYPES AND THE NUMBER OF INSTANCES PROVIDED IN EACH

CLOUD WITH THEIR RELATED RATES IN THE FIRST SCENARIO

Clouds Services Number (qij) Rate (µi
j) (req/sec)

C1
S1 2 20

S2 1 15

C2

S2 2 10

S3 1 30

S5 3 25

C3 S4 2 35

its atomic services is set to 1/50 sec (µ = 50 req/sec). The
arrival rate of composite requests and the number of potential
users are set to 10 req/sec and 100, 000 users, respectively
(λ = 10 and M = 100, 000). All these numbers are selected
randomly and can be replaced by any other values.

The above-mentioned scenario is modeled by the CPN Tools
and simulated by the CloudSim framework, and the mean
response time of the multi-cloud environment for composite
service requests and the dropping probability of them are
evaluated. Fig. 6 shows the proposed TCPN model established

with the CPN Tools. As shown in this figure, the clouds
are sorted according to the number of service types provided
in each of them. Cloud C2 is the one with highest priority
and C3 the lowest one. As noted before, the total number
of composite service requests which should be served by the
environment is considered to be M = 100, 000 requests. To
make sure that the transient state of the system and the initial
conditions do not affect the final results and to reach more
dependable results, we take the first 5, 000 requests away and
compute the steady-state mean response time and dropping
probability for the remaining 95, 000 requests. Fig. 7 and
Fig. 8 show the mean response time and dropping probability
of composite service requests for the first 5, 000 requests,
respectively. These figures show that the results converge to
the steady-state values after serving a few number of requests
in both the TCPN model and CloudSim.

Table III shows the mean response time of the considered
multi-cloud for composite service requests and the dropping
probability of composite requests obtained both using the CPN
Tools and CloudSim in the steady-state. As it can be seen in
this table, the relative errors between the values obtained with
the proposed model and simulation are 1.85% and 0.62% for

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 12

Fig. 7. The convergence of the mean response time to the steady-state value
in the first scenario

Fig. 8. The convergence of the dropping probability to the steady-state value
in the first scenario

the mean response time and dropping probability, respectively.
Hence, we can conclude that the proposed TCPN model allows
to appropriately model and evaluate the service composition
in the small multi-cloud environment considered in the first
scenario.

B. Second Scenario

In the scenario with a larger multi-cloud environment, 10
clouds and 15 different service types are considered (N = 10
and S = 15). Table IV shows the number of instances of
each service type provided in each cloud and its related rate,
which are randomly chosen in the ranges [1, 10] and [1, 100],
respectively. Each cell in Table IV contains a tuple (qij , µ

i
j),

where qij is the number of instances of service Sj provided in
cloud Ci and µij is its related rate, where 1 ≤ i ≤ 10 and 1 ≤
j ≤ 15. The notation NA, in row i column j of Table IV, means
that cloud Ci does not provide service Sj . The dimension of all
rates and times are req/sec and sec, respectively. The rate of
the exponential functions assigned to transitions TTransferi ,
1 ≤ i ≤ 10, are randomly selected between 200 and 500
resulting in α1 = 237, α2 = 305, α3 = 226, α4 = 487,
α5 = 398, α6 = 473, α7 = 350, α8 = 360, α9 = 489, and
α10 = 497. Moreover, the mean time of splitting a composite
service into atomic services is considered to be 1/1000 sec
(µ = 1000 req/sec). The total number of composite service
requests is set to 100, 000 (M = 100, 000). Similar to the
first scenario, we eliminate the first 5, 000 requests from the

TABLE III
THE STEADY-STATE MEAN RESPONSE TIME AND DROPPING PROBABILITY
OF COMPOSITE SERVICE REQUESTS RESULTED FROM THE TCPN MODEL

AND CLOUDSIM IN THE FIRST SCENARIO

Measures CPN Tools CloudSim Error

Mean Response Time (sec) 0.1538 0.1510 1.85%

Dropping Probability 0.1618 0.1608 0.62%

results and compute the mean response time and the dropping
probability of requests for the remaining 95, 000 requests to
reach the steady-state.

In order to study the impact of inter-arrival time of com-
posite service requests on the final results, we vary the arrival
rates from 100 to 500 req/sec with incremental step 50, and
study the behavior of output measures. Fig. 9 and Fig. 10
show the mean response time and the dropping probability of
composite service requests, respectively. As shown in these
figures, the proposed TCPN model can appropriately evaluate
the system and reach the results obtained with the CloudSim.
Moreover, it can be concluded from Fig. 10 that the blocking
probability of composite requests increases with the increase
of the arrival rate of requests. This is a reasonable conclusion
since the capacity of the multi-cloud environment in providing
service is fixed. Hence, more requests will be dropped when
they enter the environment more frequently.

Although the results obtained from the proposed TCPN
model and the simulation framework are very close, as shown
in Fig. 9 and Fig. 10, the time required to reach the steady-
state results are very different in CPN Tools and CloudSim
framework, emphasizing the power of the proposed modeling
approach in analyzing complex systems. For example, in the
above-mentioned setting if we set λ = 500 andM = 100, 000,
the time required to serve all requests in the CPN Tools and
CloudSim will be around 2 min and 97 min, respectively.
Furthermore, the proposed TCPN model is scalable with
respect to the number of total composite requests served in
the environment, which allows us to set the population of
the system to a large number in all experiments, but the
limiting factor is the simulation with CloudSim which takes
much more time to get results. For example, if λ = 500 and
M = 1, 000, 000, it takes about 10 min for the TCPN model
to serve all requests, while CloudSim needs more than 12
hours to finish. It is worth mentioning that all experiments
are conducted on a Linux Server with Intel® Xeon® CPU
E5-2690 v2 @ 3.00 GHz and 256 GB of RAM running 64-bit
Ubuntu 14.04.1.

VI. CONCLUSION AND FUTURE WORK

Multi-cloud environments provide users with a variety of
services published by different service providers with different
Quality of Services (QoS). In these environments, different
services from Geo-distributed clouds come together to respond
to composite service requests raised by users. A composite
service request is first analyzed by the cloud broker, and then
redirected to the clouds to be served. A composite service
request is served when all its atomic services are provided by

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 13

TABLE IV
THE NUMBER OF SERVICES AND THEIR RELATED RATES IN THE SCENARIO WITH A LARGER MULTI-CLOUD ENVIRONMENT

Clouds
Services

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15

C1 (6, 40) NA (10, 87) NA NA NA NA NA (10, 80) NA NA NA (9, 95) NA NA

C2 (10, 39) NA NA NA (1, 55) NA NA (10, 12) NA NA (2, 67) NA (9, 18) NA NA

C3 NA (1, 18) (3, 96) NA NA (10, 25) NA NA NA NA NA NA (6, 53) NA (8, 85)

C4 NA (6, 14) NA NA NA NA NA (4, 10) (6, 59) (3, 31) NA (2, 35) NA NA NA

C5 (5, 82) NA NA NA (8, 95) NA (9, 66) NA (1, 88) (4, 85) NA NA NA (10, 99) (6, 4)

C6 NA (7, 95) (3, 91) (10, 96) NA NA (4, 56) NA (6, 62) (3, 20) (1, 27) NA (8, 19) (8, 4) NA

C7 NA NA (1, 33) NA NA NA NA NA NA NA (5, 64) NA (5, 47) (4, 11) (6, 1)

C8 NA (4, 92) (3, 22) (8, 69) (1, 55) (4, 66) (2, 13) NA NA (9, 33) (3, 1) NA (3, 79) (6, 56) (7, 30)

C9 (2, 80) NA (7, 52) (7, 83) NA NA NA (4 57) NA (9, 98) NA (3, 43) NA NA (5, 31)

C10 NA (3, 90) NA NA NA (2, 19) NA NA (4, 31) NA NA NA (2, 79) (9, 63) (6, 53)

Fig. 9. The mean response time of the multi-cloud environment considered
in the second scenario for composite service requests

the multi-cloud environment. In order to formally model the
procedure of request submission to a multi-cloud and service
provisioning in each cloud, we proposed a Timed Colored Petri
Net (TCPN) model in this paper. We simulated the system
under study using the CloudSim framework and compared
the results obtained from the proposed TCPN model with the
results achieved from the CloudSim. We concluded that our
proposed model can appropriately assess the performance in
a very short time compared to CloudSim.

The previously presented approaches in this area mostly
focused on finding the semi-optimal composition of services
in order to achieve better QoS while ignoring any formal
modeling or analysis of the system [2], [4], [7], [8], [15],
[16], [19], [29], [31], [32], [35]. Since the nature of the Web
service composition and selection problem is NP-complete,
most of the approaches used heuristics to solve the above-
mentioned problem [4], [15], [16], [29], [31], [32]. On the
other hand, some of the previous methods focused on modeling
the problem of the Web service composition without taking
into account any performance measures [13], [24], [25]. These
models, which have basically used different extensions of state
machines and Petri nets, can represent the workflow of the
system and composition of atomic services to serve a complex
service, but they fail in evaluating the performance of real
world systems. However, the model proposed in this paper
not only can graphically represent the structure and workflow
of serving a composite request, but it can also analyze the
system and evaluate the performance. The proposed model,

Fig. 10. The dropping probability of composite service requests in the second
scenario

which considers the hierarchical structure of multi-clouds, is
able to accurately estimate two important measures of these
kinds of systems: the mean response time of the environment
for composite service requests and the dropping probability of
requests.

By applying the colored extensions of Petri nets, we can dis-
tinguish different requests and atomic services which is crucial
in modeling Web service composition in multi-clouds. This is
critical because each cloud in a multi-cloud environment can
provide a various number of a specific type atomic service and
each composite request can demand different atomic services.
TCPNs provide us with the capability of modeling such a
complex system whereas other extensions of Petri nets could
not handle it easily [24]. In addition to modeling the system
and computing the performance measures, our proposed model
reduces the number of clouds involved in serving a composite
service by applying a simple mechanism for sorting the clouds
according to the number of services provided by each of
them. Since the proposed model is designed to be applied to
multi-clouds, reducing the number of clouds serving a single
composite service is of utmost importance [2], [4], [8], [19].

There is a number of research issues remaining open for
future work. One interesting extension would be to use Markov
Decision Process (MDP) in the body of the proposed TCPN
model. Herein, we sort the clouds according to the number
of services provided in each cloud, and then select a cloud
with the maximum numbers of services to host an atomic
service if it provides the requested service and has enough

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 14

capacity. Although this approach can reduce the number of
clouds involved in serving a composite service request, it
reduces neither the mean response time of the environment nor
the dropping probability of requests. To simultaneously reduce
the number of clouds involved in serving a composite service
request and improve the performance (e.g., mean response
time, dropping probability, etc.), one can use Markov Decision
Petri Nets (MDPNs) and Markov Decision Well-formed Nets
(MDWNs) which combine MDP with PNs. Using MDPNs and
MDWNs in modeling such a system and taking more details
of a real system into consideration in a mathematical model
may lead to simultaneously minimizing the number of clouds
involved in providing a service and the mean response time
of requests (or the dropping probability).

Another interesting extension to the proposed TCPN model
is modifying the model and adding more details to the tokens
to consider the deadline factor for each composite service
request. In this case, the cost function and the penalty which
should be imposed upon missing a deadline could be taken
into account. Considering QoS attributes in token types, taking
bandwidth variations across the interconnected clouds into
account, considering performance effects due to the contention
on shared resources, and studying different administration
policies applied to each cloud, we can reach a more com-
prehensive service composition model. Moreover, assigning
priority to composite service requests from different classes
of users, and assigning the faster and more reliable services
to the users with higher priorities can make the model to be
more practical and applicable.

REFERENCES

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud
computing and emerging IT platforms: Vision, hype, and reality for
delivering computing as the 5th utility,” Future Generation Computer
Systems, vol. 25, no. 6, pp. 599–616, 2009.

[2] H. Kurdi, A. Al-Anazi, C. Campbell, and A. A. Faries, “A combina-
torial optimization algorithm for multiple cloud service composition,”
Computers & Electrical Engineering, vol. 42, pp. 107–113, 2015.

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view
of cloud computing,” Communications of the ACM, vol. 53, no. 4, pp.
50–58, 2010.

[4] D. Wang, Y. Yang, and Z. Mi, “A genetic-based approach to web
service composition in geo-distributed cloud environment,” Computers
& Electrical Engineering, vol. 43, pp. 129–141, 2015.

[5] A. Tsalgatidou and T. Pilioura, “An overview of standards and re-
lated technology in web services,” Distributed and Parallel Databases,
vol. 12, no. 2, pp. 135–162, 2002.

[6] Q. Sheng, X. Qiao, A. Vasilakos, C. Szabo, S. Bourne, and X. Xu, “Web
services composition: A decades overview,” Information Sciences, vol.
280, pp. 218–238, 2014.

[7] G. Zou, Y. Chen, Y. Xiang, R. Huang, and Y. Xu, “AI planning
and combinatorial optimization for web service composition in cloud
computing,” in International Conference on Cloud Computing and
Virtualization, Singapore, 17-18 May 2010, pp. 1–8.

[8] Q. Yu, L. Chen, and B. Li, “Ant colony optimization applied to web
service compositions in cloud computing,” Computers & Electrical
Engineering, vol. 41, pp. 18–27, 2015.

[9] “Programmableweb,” https://www.programmableweb.com/, accessed:
April 2017.

[10] “Nordic apis,” http://nordicapis.com/, accessed: April 2017.
[11] “Magic quadrant for cloud infrastructure as a service, worldwide,”

https://www.gartner.com/, accessed: April 2017.
[12] “Business and financial news,” https://www.forbes.com, accessed: April

2017.

[13] H. Bao and W. Dou, “A QoS-aware service selection method for cloud
service composition,” in The IEEE 26th International Parallel and
Distributed Processing Symposium Workshops & PhD Forum, Shanghai,
China, 21-25 May 2012, pp. 2254–2261.

[14] A. Jula, E. Sundararajan, and Z. Othman, “Cloud computing service
composition: A systematic literature review,” Expert Systems with Ap-
plications, vol. 41, no. 8, pp. 3809–3824, 2014.

[15] F. Chen, R. Dou, M. Li, and H. Wu, “A flexible QoS-aware web
service composition method by multi-objective optimization in cloud
manufacturing,” Computers & Industrial Engineering, vol. 99, no. C,
pp. 423–431, 2016.

[16] Q. Wu, F. Ishikawa, Q. Zhu, and D.-H. Shin, “QoS-aware multigranular-
ity service composition: Modeling and optimization,” IEEE Transactions
on Systems, Man, and Cybernetics: Systems, vol. 46, no. 11, pp. 1565–
1577, 2016.

[17] F. Wagner, F. Ishikawa, and S. Honiden, “QoS-aware automatic service
composition by applying functional clustering,” in The IEEE Interna-
tional Conference on Web Services, Washington, DC, 4-9 July 2011,
pp. 89–96.

[18] S.-Y. Hwang, E.-P. Lim, C.-H. Lee, and C.-H. Chen, “Dynamic web ser-
vice selection for reliable web service composition,” IEEE Transactions
on Services Computing, vol. 1, no. 2, pp. 104–116, 2008.

[19] X. Li, J. Wu, and S. Lu, “QoS-aware service selection in geographically
distributed clouds,” in The 22nd International Conference on Computer
Communications and Networks, Nassau, Bahamas, 30 July-2 August
2013, pp. 1–5.

[20] J. Zhu, Z. Zheng, Y. Zhou, and M. R. Lyu, “Scaling service-oriented
applications into Geo-distributed clouds,” in The 7th IEEE International
Symposium on Service Oriented System Engineering, San Francisco, CA,
25-28 March 2013, pp. 335–340.

[21] N. J. and A. Vakili, “Comprehensive and systematic review of the
service composition mechanisms in the cloud environments,” Journal
of Network and Computer Applications, vol. 81, pp. 24–36, 2017.

[22] Z. Xiang, S. Deng, and H. Gao, “Service selection using service
clusters,” in The IEEE International Conference on Services Computing,
New York, NY, 27 June-2 July 2015, pp. 769–772.

[23] S. Wang, A. Zhou, F. Yang, and R. N. Chang, “Towards network-
aware service composition in the cloud,” IEEE Transactions on Cloud
Computing, vol. Published online, 2016.

[24] S. Liu, X. Liu, H. Zhao, and W. Fu, “Composite service execution
Petri net and service composition optimization,” in The IEEE Interna-
tional Conference on Service Operations and Logistics and Informatics,
Suzhou, China, 8-10 July 2012, pp. 273–278.

[25] H. Ma, K.-D. Schewe, and Q. Wang, “An abstract model for service
provision, search and composition,” in The IEEE Asia-Pacific Services
Computing Conference, Singapore, 7-11 December 2009, pp. 95–102.

[26] K. Jensen, Coloured Petri Nets. Basic Concepts, Analysis Methods and
Practical Use. EATCS Monographs on Theoretical Computer Science,
Springer-Verlag, 1994, vol. 1, 2, 3.

[27] K. Jensen, L. M. Kristensen, and L. Wells, “Coloured Petri Nets
and CPN Tools for modelling and validation of concurrent systems,”
International Journal on Software Tools for Technology Transfer, vol. 9,
no. 3, pp. 213–254, 2007.

[28] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose, and
R. Buyya, “CloudSim: A toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algo-
rithms,” Software: Practice and Experience, vol. 41, no. 1, pp. 23–50,
2011.

[29] S. Deng, L. Huang, J. Taheri, J. Yin, M. Zhou, and A. Y. Zomaya,
“Mobility-aware service composition in mobile communities,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, no. 3,
pp. 555–568, 2017.

[30] K. Klai and H. Ochi, “A formal approach for service composition in a
cloud resources sharing context,” in The 16th IEEE/ACM International
Symposium on Cluster, Cloud, and Grid Computing, Cartagena, Colom-
bia, 16-19 May 2016, pp. 458–461.

[31] Z. Ding, J. Liu, Y. Sun, C. Jiang, and M. Zhou, “A transaction and
QoS-aware service selection approach based on genetic algorithm,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 45, no. 7,
pp. 1035–1046, 2015.

[32] Y. Lu and X. Xu, “A semantic web-based framework for service compo-
sition in a cloud manufacturing environment,” Journal of Manufacturing
Systems, vol. 42, pp. 69–81, 2017.

[33] S. Wang, Z. Zheng, Q. Sun, H. Zou, and F. Yang, “Cloud model for ser-
vice selection,” in The 30th IEEE International Conference on Computer
Communications Workshops (INFOCOM WKSHPS), Shanghai, China,
10-15 April 2011, pp. 666–671.

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 15

[34] A. Abdullah and X. Li, “Agent-based model to web service composi-
tion,” in The IEEE International Conference on Services Computing,
San Francisco, CA, 27 June-2 July 2016, pp. 523–530.

[35] Y. Chen, J. Huang, C. Lin, and J. Hu, “A partial selection methodology
for efficient QoS-aware service composition,” IEEE Transactions on
Services Computing, vol. 8, no. 3, pp. 384–397, 2015.

[36] Z. Ding, Y. Sun, C. Jiang, M. Zhou, J. Liu, and W. Song, “Performance
evaluation of transactional composite web services,” IEEE Transactions
on Systems, Man, and Cybernetics: Systems, vol. 46, no. 8, pp. 1061–
1074, 2016.

[37] “Ibm: Standards and web services,”
https://www.ibm.com/developerworks/webservices/standards/, accessed:
April 2017.

[38] G. Selvakumar and B. Kaviya, “A survey on RESTful web services com-
position,” in The International Conference on Computer Communication
and Informatics, Coimbatore, India, 7-9 January 2016, pp. 1–4.

[39] N. Xi, C. Sun, J. Ma, and Y. Shen, “Secure service composition
with information flow control in service clouds,” Future Generation
Computer Systems, vol. 49, pp. 142–148, 2015.

[40] M. A. Azgomi and R. Entezari-Maleki, “Task scheduling modelling and
reliability evaluation of grid services using coloured petri nets,” Future
Generation Computer Systems, vol. 26, no. 8, pp. 1141–1150, 2010.

[41] R. Ghosh, F. Longo, V. K. Naik, and K. S. Trivedi, “Modeling and
performance analysis of large scale IaaS clouds,” Future Generation
Computer Systems, vol. 29, no. 5, pp. 1216–1234, 2013.

[42] R. Entezari-Maleki, K. S. Trivedi, and A. Movaghar, “Performability
evaluation of grid environments using stochastic reward nets,” IEEE
Transactions on Dependable and Secure Computing, vol. 12, no. 2, pp.
204–216, 2015.

[43] D. Bruneo, A. Lhoas, F. Longo, and A. Puliafito, “Modeling and
evaluation of energy policies in green clouds,” IEEE Transactions on
Parallel and Distributed Systems, vol. 26, no. 11, pp. 3052–3065, 2015.

[44] R. Entezari-Maleki, L. Sousa, and A. Movaghar, “Performance and
power modeling and evaluation of virtualized servers in iaas clouds,”
Information Sciences, vol. 394-395, pp. 106–122, 2017.

[45] Y. Xia, M. Zhou, X. Luo, S. Pang, and Q. Zhu, “A stochastic approach
to analysis of energy-aware DVS-enabled cloud datacenters,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 45, no. 1,
pp. 73–83, 2015.

Reza Entezari-Maleki is a Post-Doctoral Re-
searcher in the School of Computer Science at In-
stitute for Research in Fundamental Sciences (IPM)
in Tehran, Iran. He received his Ph.D. in Computer
Engineering (Software) from the Sharif University
of Technology, Tehran, Iran in 2014, and M.S. and
B.S. degrees in Computer Engineering (Software)
from the Iran University of Science and Technology,
Tehran, Iran in 2009 and 2007, respectively. He
visited the Seoul National University in South Korea,
twice in 2012 and 2017, Duke University in NC,

USA, in 2013, and Instituto Superior Tecnico, Universidade de Lisboa in
Portugal in 2015. His main research interests are performance/dependability
modeling and evaluation, distributed computing systems, cloud computing,
and task scheduling algorithms.

Sayed Ehsan Etesami received his B.S. degree
in computer engineering (Information Technology)
from the Department of Computer Engineering, Is-
fahan University of Technolgy, Iran, in 2015. He
is currently, an M.S. student in computer engineer-
ing (Information Technology) at the Department of
Computer Engineering, Sharif University of Tech-
nology, Iran. His general research interests are in
the field of performance/dependability modeling and
evaluation, virtualization and cloud computing

Negar Ghorbani received her B.S. degree in com-
puter engineering (Software) from Sharif University
of Technology, Iran in 2016. She is currently a Ph.D.
student in software engineering at the University of
California, Irvine. Her general research interests are
in the field of software engineering, and specifically
software architecture, software security, software
analysis, and performance evaluation.

Arian Akhavan Niaki received his B.S in Com-
puter Engineering (Software) from Sharif University
of Technology, Tehran, Iran in 2016. He is currently
a Ph.D. student in the Computer Science Department
of Stony Brook University in New York, USA. His
current research interests are in the area of computer
networks, network measurement and, performance
evaluation.

Leonel Sousa (M’01 – SM’03) is the Chair of the
Department of Electrical and Computer Engineering
of Instituto Superior Tecnico (IST), where he is
working from 1992 and is Full Professor since 2010.
In 2016 he was a Visiting Professor at Tsukuba
University, with a JSPS Invitation Fellowship for
Research in Japan, and at Carnegie Mellon Uni-
versity, USA. From 2009 to 2013 he was President
of INESC-ID, a R&D Institute affiliated with IST,
and Vice-Chair of the Scientific Council of IST,
from 2013 to 2016. His research interests include

computer architectures, high performance computing and multimedia systems.
He has contributed with more than 250 papers for international journals and
conferences and to the organization of several international conferences, being
currently Associate Editor of the IEEE Transactions on Multimedia, IEEE
Transactions on Circuits and Systems for Video Technology and IEEE Access,
and the Editor-in-Chief of the Eurasip JES. He has contributed to several
international research projects, currently the H2020 FutureTPM, and has been
PI of four research projects funded by the Portuguese Foundation for Science
and Technology. He is member of the HiPEAC Network and leader of the
Working Group 1 of EU COST Action NESUS. He is a Distinguished Scientist
of the ACM.

Ali Movaghar is a Professor in the Department
of Computer Engineering at Sharif University of
Technology in Tehran, Iran and has been on the
Sharif faculty since 1993. He received his B.S.
degree in Electrical Engineering from the University
of Tehran in 1977, and M.S. and Ph.D. degrees
in Computer, Information, and Control Engineering
from the University of Michigan, Ann Arbor, in
1979 and 1985, respectively. He visited the Institut
National de Recherche en Informatique et en Au-
tomatique in Paris, France and the Department of

Electrical Engineering and Computer Science at the University of California,
Irvine in 1984 and 2011, respectively, worked at AT&T Information Systems
in Naperville, IL in 1985-1986, and taught at the University of Michigan, Ann
Arbor in 1987-1989. His research interests include performance/dependability
modeling and formal verification of wireless networks and distributed real-
time systems. He is a senior member of the IEEE and the ACM.

