
Procedia Engineering 29 (2012) 3820 – 3825

1877-7058 © 2011 Published by Elsevier Ltd.
doi:10.1016/j.proeng.2012.01.577

Available online at www.sciencedirect.com
Available online at www.sciencedirect.com

 Procedia Engineering 00 (2011) 000–000

Procedia
Engineering

www.elsevier.com/locate/procedia

2012 International Workshop on Information and Electronics Engineering (IWIEE)

Reduced Communications Fault Tolerant Task Scheduling
Algorithm for Multiprocessor Systems

Nabil Tabbaa*, Reza Entezari-Maleki, Ali Movaghar

Department of Computer Engineering, Sharif University of Technology Tehran, Iran

Abstract

Multiprocessor systems have been widely used for the execution of parallel applications. Task scheduling is crucial
for the right operation of multiprocessor systems, where the aim is shortening the length of schedules. Fault tolerance
is becoming a necessary attribute in multiprocessor systems as the number of processing elements is getting larger.
This paper presents a fault tolerant scheduling algorithm for task graph applications in multiprocessor systems. The
algorithm is an extension of a previously proposed algorithm with a reduced communications scheme. Simulation
results show the efficiency of the proposed algorithm despite its simplicity.

© 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of Harbin University
of Science and Technology

Keywords: Multiprocessor systems; task scheduling; fault tolerance

1. Introduction

Multiprocessor systems are commonly deployed for executing computationally intensive parallel
applications with various computing requirements. Mapping the tasks to the processors and specifying
their execution time is one of the essential steps in parallel processing. This step, called task scheduling,
determines the efficacy of the application’s parallelization in multiprocessor systems [1].

Component failures may occur in multiprocessor systems. Consequently, there is a growing need for
developing fault tolerant techniques. Actually, the likelihood of failure occurrences is increased by the
fact that many parallel applications are getting larger, and might require long period of time for execution.

* Corresponding author.
E-mail address: tabbaa@ce.sharif.edu.

3821Nabil Tabbaa et al. / Procedia Engineering 29 (2012) 3820 – 38252 N. Tabbaa, R. Entezari-Maleki, A. Movaghar/ Procedia Engineering 00 (2011) 000–000

Hence, a technique is required to enable a multiprocessor system to continue the applications’ execution
even in the presence of one or more processor failures.

Task scheduling is among the techniques which can be used to achieve the required fault tolerance.
The main objective of fault tolerant task scheduling algorithms is to find a suitable mapping of tasks to
the processing elements of a multiprocessor system and tolerate a given number of processor failures [2].

In this paper, a reduced communications fault tolerant task scheduling algorithm is proposed. This
algorithm is an extension of a previously presented algorithm [3] with a reduced communications scheme.
The original algorithm aimed at tolerating multiple processor failures and achieving a minimum possible
schedule length. The goal of the new extension is to reduce the communications duplication between the
replicas of the tasks, while keeping the fault tolerance of the required number of processor failures.

2. Multiprocessor systems

The underlying multiprocessor system consists of a finite processor set P = {P1, P2, …, Pm}. The
processors are fully connected with each other via a reliable link. Thus, the delay of a communication is
the same between any pair of the processing elements. Each processing element is composed of an
application processor, a local memory, and an I/O processor. Because I/O processors handle
communications separately from application processors, the processing elements can perform
computation and communication simultaneously [4].

The processing elements may be heterogeneous or homogeneous. The heterogeneity of the processors
means that they have different speeds or processing capabilities. However, it is assumed that every task of
the application can be executed on any processor, even though the completion times on different
processors may be different. The heterogeneity of processing capability is modeled by a function
C:P→R+, where the processing capability of a processor Pk is given by C(Pk) [4].

3. The original algorithm

The objective of the algorithm proposed in [3] was to map the tasks of directed acyclic graph (DAG)
application to processors with diverse capabilities in a distributed computing system. The algorithm
aimed to minimize the schedule length while tolerating a given number (npf) of processor failures. To
achieve this, active replication scheme was used to allocate npf+1 copies of each task to different
processors.

The original algorithm mainly used the familiar heuristic found in DAG scheduling algorithms that is
called list scheduling. In that algorithm, each node was scheduled to multiple processors to achieve the
required fault tolerance.

In the algorithm proposed in [3], free nodes were ordered by a priority value equals to tlevel+blevel of
the node, where tlevel denotes the dynamic top level and it is computed using (1).

)},,())(,({max)(
)(

jijjnpredni nncnProcnFTntlevel
ij

+=
∈

 (1)

where FT(nj, Proc(nj)) is the finish time of node nj (a predecessor of ni) which has been previously
scheduled on processor Proc(nj), and c(ni, nj) is the data communication cost between ni and nj.

The blevel denotes the static bottom level and it is computed by (2).

)},(),()({max)(
)(

jjiinsuccni nblevelnncnwnblevel
ij

++=
∈

 (2)

3822 	 Nabil Tabbaa et al. / Procedia Engineering 29 (2012) 3820 – 3825 N. Tabbaa, R. Entezari-Maleki, A. Movaghar / Procedia Engineering 00 (2011) 000–000 3

ni
1

ni
2

ni
3

nx
1

nx
2

nx
3

ny
1

ny
2

ny
3

where)(inw is the average execution time of node ni on all the system’s processors. The expected
finish time of free node n that has the highest priority is calculated on all of the processors using (3).

)},()],,()))(,((min[maxmax{)()(),(
11)(

lj
k
j

k
jnpfknprednll PrnncnProcnFTnwPCPnFT

j

++×=
+≤≤∈

 (3)

where r(Pl) is the ready time of the processor Pl. The predecessor nodes are already scheduled onto npf+1
processors, and nj

k denotes the kth replica of node nj.
Then, the node n is scheduled on the npf+1 processors which deliver the minimum finish time for that

node. The schedule length SL can be computed using (4).

))]}(,([min{max
11

kk

npfkVn
nProcnFTSL

+≤≤∈
= (4)

4. Communications reduction

By using the active replication scheme in the algorithm described above, each task in the graph is
replicated npf+1 times. For any task ni of the DAG, the npf+1 replicas of each predecessor nj should send
their own data to the npf+1 replicas of ni. Therefore, each communication between two tasks in
precedence is replicated (npf+1)2 times.

It is mandatory to duplicate each task npf+1 times to achieve the required fault tolerance and resist to
npf processor failures. But, duplicating the communications between all the tasks replicas is not
obligatory.

For example, let us take a task ni with two predecessors nx and ny. In the non-fault tolerant schedule,
there is only one replica of each predecessor, and this replica will send one data message to the only
replica of task ni. So, the total number of messages in this example is two.

In Fig. 1(a), the schedule is supposed to tolerate two processor failures (npf=2). Therefore, each task is
replicated three times (i.e., npf+1) on different processors. With duplicating all the communications
between the replicas of ni and the replicas of its predecessors nx and ny, the total number of messages is
increased to 18, so it is duplicated 32 times.

Fig. 1. (a) Fault tolerance with full communications replication; (b) Fault tolerance with reduced communications replication

ni
1

ni
2

ni
3

ny
1

ny
2

ny
3

nx
1

nx
2

nx
3

3823Nabil Tabbaa et al. / Procedia Engineering 29 (2012) 3820 – 38254 N. Tabbaa, R. Entezari-Maleki, A. Movaghar/ Procedia Engineering 00 (2011) 000–000

Suppose the worst case where npf processors failed during the execution of these tasks. If h numbers of
these failed processors were among the npf+1 processors where the replicas of the predecessor nx are
scheduled, then, the number of completed replicas of nx will be npf+1-h.

As the total number of failures is npf, there will be at most npf-h failed processors among the npf+1
processors where the replicas of the task ni are scheduled. Therefore, the number of working replicas of
the predecessor nx which is npf+1-h is always greater than the number of failed replicas of task ni which is
npf-h. Consequently, the required fault tolerance can be achieved if each replica of the predecessor nx sent
its data message to only one replica of the task ni, because always there will be a communication link
between two working processors. This idea can be applied to all predecessors, as it is shown in Fig. 1(b),
and the total number of data messages is increased to six instead of 18. Therefore, the original data
messages are duplicated three times only. Using the reduced communications replication scheme, each
communication between two tasks in precedence is duplicated (npf+1) times instead of (npf+1)2.

In the original algorithm, with the full communications replication scheme, the finish time of task n on
processor Pl was calculated by Eq. (3), where every replica of the task n can start execution after
receiving the data message from the earliest replica of the predecessor nj. While, in the reduced
communications scheme, each replica of the task n will receive the data message from only one replica of
the predecessor nj. So, the finish time of each replica of the task n will be calculated by Eq. (5).

)}()],,())(,([maxmax{)()(),(
)(

lj
k
j

k
jnprednll PrnncnProcnFTnwPCPnFT

j

++×=
∈

 (5)

where, the data message is received only from the kth replica of the predecessor nj (the minimum is not
used here), and this replica k is chosen in a way that minimizes this finish time.

5. Performance evaluation

To evaluate the proposed fault tolerant task scheduling algorithm, the algorithm in its original and
reduced communications versions, is simulated and compared to FTBAR algorithm [5] which is the
closest algorithm found in the literature.

The most important metrics of the performance of the algorithms are the normalized schedule length
(NSL) and the fault tolerance overhead. NSL is obtained by dividing the output schedule length by the
length of the critical path of the DAG. Moreover, the fault tolerance overhead caused by the active
replication, can be computed in the following way: overhead=(FTSL-nonFTSL)/FTSL*100, where FTSL
is the fault tolerant schedule length and the nonFTSL is the schedule length obtained when the number of
tolerated failures npf is set to zero.

The algorithms have been simulated with a set of randomly generated graphs. The execution times of
tasks are randomly selected from a uniform distribution. Similarly, the communication times of data
dependency are randomly selected from a uniform distribution. Each point in the results represents an
average over 60 random graphs. The number of processors of the system is set to 10, and their processing
powers are randomly selected from a uniform distribution. The number of processor failures, npf, that the
obtained schedule is expected to tolerate is set to five.

Fig. 2(a) shows the comparison of the NSL between the algorithm, in its two versions, and the FTBAR
algorithm as a function of the number of tasks, which is varied uniformly in the range [20, 200], while
CCR is set to one. In Fig. 2(b), the comparison of the NSL is shown as a function of the CCR, which is
varied uniformly in the range [0.2, 5], while the number of tasks is set to 100. As it can be seen in Fig. 2,
the algorithm, in its two versions, shows better NSL results compared to the FTBAR algorithm for any
number of tasks and any value of CCR.

3824 	 Nabil Tabbaa et al. / Procedia Engineering 29 (2012) 3820 – 3825 N. Tabbaa, R. Entezari-Maleki, A. Movaghar / Procedia Engineering 00 (2011) 000–000 5

0

1

2

3

4

5

0.
2

0.
8

1.
4 2

2.
6

3.
2

3.
8

4.
4 5

CCR

N
or

m
ai

lz
ed

 S
ch

ed
ul

e
L

en
gt

h

Original Algorithm

Reduced Communcations

FTBAR Algorithm

Fig. 2. (a) Normalized schedule length as a function of the number of tasks; (b) Normalized schedule length as a function of CCR

Fig. 3(a) shows the comparison of the overhead between the algorithm, in its two versions, and the
FTBAR algorithm as a function of the number of tasks, which is varied uniformly in the range [20, 200],
while CCR is set to one. In Fig. 3(b), the comparison of the overhead is shown as a function of the CCR
which is varied uniformly in the range [0.2, 5], while the number of tasks is set to 100.

0

50

100

150

200

250

300

350
0.

2

0.
8

1.
4 2

2.
6

3.
2

3.
8

4.
4 5

CCR

A
ve

ra
ge

 O
ve

rh
ea

d
(%

)

Original Algorithm

Reduced Communcations

FTBAR Algorithm

Fig. 3. (a) Fault tolerance overhead as a function of the number of tasks; (b) Fault tolerance overhead as a function of CCR

As shown in Fig. 3, the algorithm in its two versions, shows better overhead results compared to the
FTBAR algorithm for any number of tasks. We can see that for small values of CCR there is a little
difference in the overhead between the proposed algorithm and the FTBAR algorithm, but for higher
values of CCR, the proposed algorithm has a significantly better overhead than the FTBAR algorithm.

6. Conclusions and future work

In this paper a reduced communications fault tolerant algorithm is proposed, for scheduling DAG tasks
in multiprocessor systems. The proposed algorithm is based on a previously published algorithm which
used active replication to schedule npf+1 replicas of each task on different processors to tolerate a given
number npf of processor failures. In the original algorithm, communications between tasks are duplicated

0
1
2
3
4
5
6
7
8

20 50 80 11
0

14
0

17
0

20
0

Number of Tasks

N
or

m
ai

lz
ed

 S
ch

ed
ul

e
L

en
gt

h

Original Algorithm

Reduced Communcations

FTBAR Algorithm

0

50
100

150

200

250
300

350

400

20 50 80 11
0

14
0

17
0

20
0

Number of Tasks

A
ve

ra
ge

 O
ve

rh
ea

d
(%

)

Original Algorithm

Reduced Communcations

FTBAR Algorithm

3825Nabil Tabbaa et al. / Procedia Engineering 29 (2012) 3820 – 38256 N. Tabbaa, R. Entezari-Maleki, A. Movaghar/ Procedia Engineering 00 (2011) 000–000

(npf+1)2 times. The reduced communications version proposed in this paper decreases the duplication in
communications to (npf+1).

In the proposed algorithm, the processors are considered fully connected with identical and non-faulty
links. While this can be appropriate in multiprocessor systems, extensions might be added to this
algorithm to take communication links heterogeneity and failures into account, and make the algorithm
relevant to other distributed computing systems. Another extension that can be added to the proposed
algorithm is the consideration of deadline for the task completion times. These deadlines might be
considered when sorting the nodes in the list scheduling process. Additionally, the algorithm should be
able to detect the feasibility of these deadlines through the scheduling process, an interesting feature of
the algorithm when scheduling large applications.

References

[1] Sinnen O. Task Scheduling for Parallel Systems. 1st ed. New Jersey: John Wiley & Sons Inc.; 2007.

[2] Dubrova E. Fault Tolerant Design: An Introduction. Draft, Kluwer Academic Publishers; 2008.

[3] Tabbaa N, Entezari-Maleki R, Movaghar A. A Fault Tolerant Scheduling Algorithm for DAG Applications in Cluster

Environments. In: International Conference on Digital Information Processing and Communication, Springer-CCIS, Ostrava,

Czech Republic, 2011; 188:189-199.

[4] Kwok YK, Ahmad I. Static Scheduling Algorithms for Allocating Directed Task Graphs to Multiprocessors. ACM
Computing Surveys 1999;31(4):406-471.

[5] Girault A, Kalla H., Sighireanu M, Sorel Y. An Algorithm for Automatically Obtaining Distributed and Fault Tolerant Static

Schedules. In: International Conference on Dependable Systems and Networks, San Francisco, CA, USA, 2003, p. 159-168.

